]> icculus.org git repositories - icculus/xz.git/blob - src/liblzma/check/sha256.c
Put the interesting parts of XZ Utils into the public domain.
[icculus/xz.git] / src / liblzma / check / sha256.c
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       sha256.c
4 /// \brief      SHA-256
5 ///
6 /// \todo       Crypto++ has x86 ASM optimizations. They use SSE so if they
7 ///             are imported to liblzma, SSE instructions need to be used
8 ///             conditionally to keep the code working on older boxes.
9 ///             We could also support using some external libary for SHA-256.
10 //
11 //  This code is based on the code found from 7-Zip, which has a modified
12 //  version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
13 //  The code was modified a little to fit into liblzma.
14 //
15 //  Authors:    Kevin Springle
16 //              Wei Dai
17 //              Igor Pavlov
18 //              Lasse Collin
19 //
20 //  This file has been put into the public domain.
21 //  You can do whatever you want with this file.
22 //
23 ///////////////////////////////////////////////////////////////////////////////
24
25 #include "check.h"
26
27 #ifndef WORDS_BIGENDIAN
28 #       include "../../common/bswap.h"
29 #endif
30
31 // At least on x86, GCC is able to optimize this to a rotate instruction.
32 #define rotr_32(num, amount) ((num) >> (amount) | (num) << (32 - (amount)))
33
34 #define blk0(i) (W[i] = data[i])
35 #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
36                 + s0(W[(i - 15) & 15]))
37
38 #define Ch(x, y, z) (z ^ (x & (y ^ z)))
39 #define Maj(x, y, z) ((x & y) | (z & (x | y)))
40
41 #define a(i) T[(0 - i) & 7]
42 #define b(i) T[(1 - i) & 7]
43 #define c(i) T[(2 - i) & 7]
44 #define d(i) T[(3 - i) & 7]
45 #define e(i) T[(4 - i) & 7]
46 #define f(i) T[(5 - i) & 7]
47 #define g(i) T[(6 - i) & 7]
48 #define h(i) T[(7 - i) & 7]
49
50 #define R(i) \
51         h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] \
52                 + (j ? blk2(i) : blk0(i)); \
53         d(i) += h(i); \
54         h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
55
56 #define S0(x) (rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22))
57 #define S1(x) (rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25))
58 #define s0(x) (rotr_32(x, 7) ^ rotr_32(x, 18) ^ (x >> 3))
59 #define s1(x) (rotr_32(x, 17) ^ rotr_32(x, 19) ^ (x >> 10))
60
61
62 static const uint32_t SHA256_K[64] = {
63         0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
64         0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
65         0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
66         0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
67         0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
68         0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
69         0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
70         0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
71         0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
72         0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
73         0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
74         0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
75         0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
76         0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
77         0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
78         0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
79 };
80
81
82 static void
83 transform(uint32_t state[static 8], const uint32_t data[static 16])
84 {
85         uint32_t W[16];
86         uint32_t T[8];
87
88         // Copy state[] to working vars.
89         memcpy(T, state, sizeof(T));
90
91         // 64 operations, partially loop unrolled
92         for (unsigned int j = 0; j < 64; j += 16) {
93                 R( 0); R( 1); R( 2); R( 3);
94                 R( 4); R( 5); R( 6); R( 7);
95                 R( 8); R( 9); R(10); R(11);
96                 R(12); R(13); R(14); R(15);
97         }
98
99         // Add the working vars back into state[].
100         state[0] += a(0);
101         state[1] += b(0);
102         state[2] += c(0);
103         state[3] += d(0);
104         state[4] += e(0);
105         state[5] += f(0);
106         state[6] += g(0);
107         state[7] += h(0);
108 }
109
110
111 static void
112 process(lzma_check_state *check)
113 {
114 #ifdef WORDS_BIGENDIAN
115         transform(check->state.sha256.state, check->buffer.u32);
116
117 #else
118         uint32_t data[16];
119
120         for (size_t i = 0; i < 16; ++i)
121                 data[i] = bswap_32(check->buffer.u32[i]);
122
123         transform(check->state.sha256.state, data);
124 #endif
125
126         return;
127 }
128
129
130 extern void
131 lzma_sha256_init(lzma_check_state *check)
132 {
133         static const uint32_t s[8] = {
134                 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
135                 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
136         };
137
138         memcpy(check->state.sha256.state, s, sizeof(s));
139         check->state.sha256.size = 0;
140
141         return;
142 }
143
144
145 extern void
146 lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
147 {
148         // Copy the input data into a properly aligned temporary buffer.
149         // This way we can be called with arbitrarily sized buffers
150         // (no need to be multiple of 64 bytes), and the code works also
151         // on architectures that don't allow unaligned memory access.
152         while (size > 0) {
153                 const size_t copy_start = check->state.sha256.size & 0x3F;
154                 size_t copy_size = 64 - copy_start;
155                 if (copy_size > size)
156                         copy_size = size;
157
158                 memcpy(check->buffer.u8 + copy_start, buf, copy_size);
159
160                 buf += copy_size;
161                 size -= copy_size;
162                 check->state.sha256.size += copy_size;
163
164                 if ((check->state.sha256.size & 0x3F) == 0)
165                         process(check);
166         }
167
168         return;
169 }
170
171
172 extern void
173 lzma_sha256_finish(lzma_check_state *check)
174 {
175         // Add padding as described in RFC 3174 (it describes SHA-1 but
176         // the same padding style is used for SHA-256 too).
177         size_t pos = check->state.sha256.size & 0x3F;
178         check->buffer.u8[pos++] = 0x80;
179
180         while (pos != 64 - 8) {
181                 if (pos == 64) {
182                         process(check);
183                         pos = 0;
184                 }
185
186                 check->buffer.u8[pos++] = 0x00;
187         }
188
189         // Convert the message size from bytes to bits.
190         check->state.sha256.size *= 8;
191
192 #ifdef WORDS_BIGENDIAN
193         check->buffer.u64[(64 - 8) / 8] = check->state.sha256.size;
194 #else
195         check->buffer.u64[(64 - 8) / 8] = bswap_64(check->state.sha256.size);
196 #endif
197
198         process(check);
199
200         for (size_t i = 0; i < 8; ++i)
201 #ifdef WORDS_BIGENDIAN
202                 check->buffer.u32[i] = check->state.sha256.state[i];
203 #else
204                 check->buffer.u32[i] = bswap_32(check->state.sha256.state[i]);
205 #endif
206
207         return;
208 }