]> icculus.org git repositories - divverent/darkplaces.git/blob - gl_models.c
1D, 3D, and cubemap textures are now supported (in addition to 2D)
[divverent/darkplaces.git] / gl_models.c
1
2 #include "quakedef.h"
3 #include "cl_collision.h"
4 #include "r_shadow.h"
5
6 typedef struct
7 {
8         float m[3][4];
9 } zymbonematrix;
10
11 // LordHavoc: vertex arrays
12
13 float *aliasvertbuf;
14 float *aliasvertcolorbuf;
15 float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend
16 float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend
17
18 float *aliasvertcolor2;
19 float *aliasvertnorm;
20 int *aliasvertusage;
21 zymbonematrix *zymbonepose;
22
23 mempool_t *gl_models_mempool;
24
25 void gl_models_start(void)
26 {
27         // allocate vertex processing arrays
28         gl_models_mempool = Mem_AllocPool("GL_Models");
29         aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
30         aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
31         aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3]));
32         aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring
33         zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256]));
34         aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS]));
35 }
36
37 void gl_models_shutdown(void)
38 {
39         Mem_FreePool(&gl_models_mempool);
40 }
41
42 void gl_models_newmap(void)
43 {
44 }
45
46 void GL_Models_Init(void)
47 {
48         R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap);
49 }
50
51 void R_AliasLerpVerts(int vertcount, float *vertices, float *normals,
52                 float lerp1, const trivertx_t *verts1, const vec3_t fscale1, const vec3_t translate1,
53                 float lerp2, const trivertx_t *verts2, const vec3_t fscale2, const vec3_t translate2,
54                 float lerp3, const trivertx_t *verts3, const vec3_t fscale3, const vec3_t translate3,
55                 float lerp4, const trivertx_t *verts4, const vec3_t fscale4, const vec3_t translate4)
56 {
57         int i;
58         vec3_t scale1, scale2, scale3, scale4, translate;
59         const float *n1, *n2, *n3, *n4;
60         float *av, *avn;
61         av = vertices;
62         avn = normals;
63         VectorScale(fscale1, lerp1, scale1);
64         if (lerp2)
65         {
66                 VectorScale(fscale2, lerp2, scale2);
67                 if (lerp3)
68                 {
69                         VectorScale(fscale3, lerp3, scale3);
70                         if (lerp4)
71                         {
72                                 VectorScale(fscale4, lerp4, scale4);
73                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4;
74                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4;
75                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4;
76                                 // generate vertices
77                                 for (i = 0;i < vertcount;i++)
78                                 {
79                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0];
80                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1];
81                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2];
82                                         n1 = m_bytenormals[verts1->lightnormalindex];
83                                         n2 = m_bytenormals[verts2->lightnormalindex];
84                                         n3 = m_bytenormals[verts3->lightnormalindex];
85                                         n4 = m_bytenormals[verts4->lightnormalindex];
86                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4;
87                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4;
88                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4;
89                                         av += 4;
90                                         avn += 3;
91                                         verts1++;verts2++;verts3++;verts4++;
92                                 }
93                         }
94                         else
95                         {
96                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3;
97                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3;
98                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3;
99                                 // generate vertices
100                                 for (i = 0;i < vertcount;i++)
101                                 {
102                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0];
103                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1];
104                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2];
105                                         n1 = m_bytenormals[verts1->lightnormalindex];
106                                         n2 = m_bytenormals[verts2->lightnormalindex];
107                                         n3 = m_bytenormals[verts3->lightnormalindex];
108                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3;
109                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3;
110                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3;
111                                         av += 4;
112                                         avn += 3;
113                                         verts1++;verts2++;verts3++;
114                                 }
115                         }
116                 }
117                 else
118                 {
119                         translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2;
120                         translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2;
121                         translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2;
122                         // generate vertices
123                         for (i = 0;i < vertcount;i++)
124                         {
125                                 av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0];
126                                 av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1];
127                                 av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2];
128                                 n1 = m_bytenormals[verts1->lightnormalindex];
129                                 n2 = m_bytenormals[verts2->lightnormalindex];
130                                 avn[0] = n1[0] * lerp1 + n2[0] * lerp2;
131                                 avn[1] = n1[1] * lerp1 + n2[1] * lerp2;
132                                 avn[2] = n1[2] * lerp1 + n2[2] * lerp2;
133                                 av += 4;
134                                 avn += 3;
135                                 verts1++;verts2++;
136                         }
137                 }
138         }
139         else
140         {
141                 translate[0] = translate1[0] * lerp1;
142                 translate[1] = translate1[1] * lerp1;
143                 translate[2] = translate1[2] * lerp1;
144                 // generate vertices
145                 if (lerp1 != 1)
146                 {
147                         // general but almost never used case
148                         for (i = 0;i < vertcount;i++)
149                         {
150                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
151                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
152                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
153                                 n1 = m_bytenormals[verts1->lightnormalindex];
154                                 avn[0] = n1[0] * lerp1;
155                                 avn[1] = n1[1] * lerp1;
156                                 avn[2] = n1[2] * lerp1;
157                                 av += 4;
158                                 avn += 3;
159                                 verts1++;
160                         }
161                 }
162                 else
163                 {
164                         // fast normal case
165                         for (i = 0;i < vertcount;i++)
166                         {
167                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
168                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
169                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
170                                 VectorCopy(m_bytenormals[verts1->lightnormalindex], avn);
171                                 av += 4;
172                                 avn += 3;
173                                 verts1++;
174                         }
175                 }
176         }
177 }
178
179 skinframe_t *R_FetchSkinFrame(const entity_render_t *ent)
180 {
181         model_t *model = ent->model;
182         unsigned int s = (unsigned int) ent->skinnum;
183         if (s >= model->numskins)
184                 s = 0;
185         if (model->skinscenes[s].framecount > 1)
186                 return &model->skinframes[model->skinscenes[s].firstframe + (int) (cl.time * 10) % model->skinscenes[s].framecount];
187         else
188                 return &model->skinframes[model->skinscenes[s].firstframe];
189 }
190
191 void R_LerpMDLMD2Vertices(const entity_render_t *ent, float *vertices, float *normals)
192 {
193         const md2frame_t *frame1, *frame2, *frame3, *frame4;
194         const trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts;
195         const model_t *model = ent->model;
196
197         frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame];
198         frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame];
199         frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame];
200         frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame];
201         frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts];
202         frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts];
203         frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts];
204         frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts];
205         R_AliasLerpVerts(model->numverts, vertices, normals,
206                 ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate,
207                 ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate,
208                 ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate,
209                 ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate);
210 }
211
212 void R_DrawQ1Q2AliasModelCallback (const void *calldata1, int calldata2)
213 {
214         int i, c, fullbright, pantsfullbright, shirtfullbright, colormapped, tex;
215         float pantscolor[3], shirtcolor[3];
216         float fog, ifog, colorscale;
217         vec3_t diff;
218         qbyte *bcolor;
219         rmeshstate_t m;
220         model_t *model;
221         skinframe_t *skinframe;
222         const entity_render_t *ent = calldata1;
223         int blendfunc1, blendfunc2;
224
225         R_Mesh_Matrix(&ent->matrix);
226
227         model = ent->model;
228         R_Mesh_ResizeCheck(model->numverts);
229
230         skinframe = R_FetchSkinFrame(ent);
231
232         fullbright = (ent->effects & EF_FULLBRIGHT) != 0;
233
234         fog = 0;
235         if (fogenabled)
236         {
237                 VectorSubtract(ent->origin, r_origin, diff);
238                 fog = DotProduct(diff,diff);
239                 if (fog < 0.01f)
240                         fog = 0.01f;
241                 fog = exp(fogdensity/fog);
242                 if (fog > 1)
243                         fog = 1;
244                 if (fog < 0.01f)
245                         fog = 0;
246                 // fog method: darken, additive fog
247                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
248                 // 2. render fog as additive
249         }
250         ifog = 1 - fog;
251
252         if (ent->effects & EF_ADDITIVE)
253         {
254                 blendfunc1 = GL_SRC_ALPHA;
255                 blendfunc2 = GL_ONE;
256         }
257         else if (ent->alpha != 1.0 || skinframe->fog != NULL)
258         {
259                 blendfunc1 = GL_SRC_ALPHA;
260                 blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
261         }
262         else
263         {
264                 blendfunc1 = GL_ONE;
265                 blendfunc2 = GL_ZERO;
266         }
267
268         if (!skinframe->base && !skinframe->pants && !skinframe->shirt && !skinframe->glow)
269         {
270                 // untextured
271                 memset(&m, 0, sizeof(m));
272                 m.blendfunc1 = blendfunc1;
273                 m.blendfunc2 = blendfunc2;
274                 colorscale = r_colorscale;
275                 if (gl_combine.integer)
276                 {
277                         colorscale *= 0.25f;
278                         m.texrgbscale[0] = 4;
279                 }
280                 m.tex[0] = R_GetTexture(r_notexture);
281                 R_Mesh_State(&m);
282                 c_alias_polys += model->numtris;
283                 for (i = 0;i < model->numverts * 2;i++)
284                         varray_texcoord[0][i] = model->mdlmd2data_texcoords[i] * 8.0f;
285                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
286                 R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, colorscale, colorscale, colorscale, false);
287                 GL_UseColorArray();
288                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
289                 return;
290         }
291
292         colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt));
293         if (colormapped)
294         {
295                 // 128-224 are backwards ranges
296                 c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12;
297                 bcolor = (qbyte *) (&d_8to24table[c]);
298                 pantsfullbright = c >= 224;
299                 VectorScale(bcolor, (1.0f / 255.0f), pantscolor);
300                 c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12;
301                 bcolor = (qbyte *) (&d_8to24table[c]);
302                 shirtfullbright = c >= 224;
303                 VectorScale(bcolor, (1.0f / 255.0f), shirtcolor);
304         }
305         else
306         {
307                 pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1;
308                 pantsfullbright = shirtfullbright = false;
309         }
310
311         tex = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged);
312         if (tex)
313         {
314                 memset(&m, 0, sizeof(m));
315                 m.blendfunc1 = blendfunc1;
316                 m.blendfunc2 = blendfunc2;
317                 colorscale = r_colorscale;
318                 if (gl_combine.integer)
319                 {
320                         colorscale *= 0.25f;
321                         m.texrgbscale[0] = 4;
322                 }
323                 m.tex[0] = tex;
324                 R_Mesh_State(&m);
325                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
326                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
327                 if (fullbright)
328                         GL_Color(colorscale * ifog, colorscale * ifog, colorscale * ifog, ent->alpha);
329                 else
330                 {
331                         GL_UseColorArray();
332                         R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, colorscale * ifog, colorscale * ifog, colorscale * ifog, false);
333                 }
334                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
335                 c_alias_polys += model->numtris;
336                 blendfunc1 = GL_SRC_ALPHA;
337                 blendfunc2 = GL_ONE;
338         }
339
340         if (colormapped)
341         {
342                 if (skinframe->pants)
343                 {
344                         tex = R_GetTexture(skinframe->pants);
345                         if (tex)
346                         {
347                                 memset(&m, 0, sizeof(m));
348                                 m.blendfunc1 = blendfunc1;
349                                 m.blendfunc2 = blendfunc2;
350                                 colorscale = r_colorscale;
351                                 if (gl_combine.integer)
352                                 {
353                                         colorscale *= 0.25f;
354                                         m.texrgbscale[0] = 4;
355                                 }
356                                 m.tex[0] = tex;
357                                 R_Mesh_State(&m);
358                                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
359                                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
360                                 if (pantsfullbright)
361                                         GL_Color(pantscolor[0] * colorscale * ifog, pantscolor[1] * colorscale * ifog, pantscolor[2] * colorscale * ifog, ent->alpha);
362                                 else
363                                 {
364                                         GL_UseColorArray();
365                                         R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, pantscolor[0] * colorscale * ifog, pantscolor[1] * colorscale * ifog, pantscolor[2] * colorscale * ifog, false);
366                                 }
367                                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
368                                 c_alias_polys += model->numtris;
369                                 blendfunc1 = GL_SRC_ALPHA;
370                                 blendfunc2 = GL_ONE;
371                         }
372                 }
373                 if (skinframe->shirt)
374                 {
375                         tex = R_GetTexture(skinframe->shirt);
376                         if (tex)
377                         {
378                                 memset(&m, 0, sizeof(m));
379                                 m.blendfunc1 = blendfunc1;
380                                 m.blendfunc2 = blendfunc2;
381                                 colorscale = r_colorscale;
382                                 if (gl_combine.integer)
383                                 {
384                                         colorscale *= 0.25f;
385                                         m.texrgbscale[0] = 4;
386                                 }
387                                 m.tex[0] = tex;
388                                 R_Mesh_State(&m);
389                                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
390                                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
391                                 if (shirtfullbright)
392                                         GL_Color(shirtcolor[0] * colorscale * ifog, shirtcolor[1] * colorscale * ifog, shirtcolor[2] * colorscale * ifog, ent->alpha);
393                                 else
394                                 {
395                                         GL_UseColorArray();
396                                         R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, shirtcolor[0] * colorscale * ifog, shirtcolor[1] * colorscale * ifog, shirtcolor[2] * colorscale * ifog, false);
397                                 }
398                                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
399                                 c_alias_polys += model->numtris;
400                                 blendfunc1 = GL_SRC_ALPHA;
401                                 blendfunc2 = GL_ONE;
402                         }
403                 }
404         }
405         if (skinframe->glow)
406         {
407                 tex = R_GetTexture(skinframe->glow);
408                 if (tex)
409                 {
410                         memset(&m, 0, sizeof(m));
411                         m.blendfunc1 = blendfunc1;
412                         m.blendfunc2 = blendfunc2;
413                         m.tex[0] = tex;
414                         R_Mesh_State(&m);
415
416                         blendfunc1 = GL_SRC_ALPHA;
417                         blendfunc2 = GL_ONE;
418                         c_alias_polys += model->numtris;
419                         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
420                         memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
421                         GL_Color(ifog * r_colorscale, ifog * r_colorscale, ifog * r_colorscale, ent->alpha);
422                         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
423                 }
424         }
425         if (fog)
426         {
427                 memset(&m, 0, sizeof(m));
428                 m.blendfunc1 = GL_SRC_ALPHA;
429                 m.blendfunc2 = GL_ONE;
430                 m.tex[0] = R_GetTexture(skinframe->fog);
431                 R_Mesh_State(&m);
432
433                 c_alias_polys += model->numtris;
434                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
435                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
436                 GL_Color(fogcolor[0] * fog * r_colorscale, fogcolor[1] * fog * r_colorscale, fogcolor[2] * fog * r_colorscale, ent->alpha);
437                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
438         }
439 }
440
441 void R_Model_Alias_Draw(entity_render_t *ent)
442 {
443         if (ent->alpha < (1.0f / 64.0f))
444                 return; // basically completely transparent
445
446         c_models++;
447
448         if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL)
449                 R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0);
450         else
451                 R_DrawQ1Q2AliasModelCallback(ent, 0);
452 }
453
454 extern cvar_t r_shadows;
455 void R_Model_Alias_DrawFakeShadow (entity_render_t *ent)
456 {
457         int i;
458         rmeshstate_t m;
459         model_t *model;
460         float *v, planenormal[3], planedist, dist, projection[3], floororigin[3], surfnormal[3], lightdirection[3], v2[3];
461
462         /*
463         if (r_shadows.integer > 1)
464         {
465                 float f, lightscale, lightcolor[3];
466                 vec3_t temp;
467                 mlight_t *sl;
468                 rdlight_t *rd;
469                 memset(&m, 0, sizeof(m));
470                 m.blendfunc1 = GL_ONE;
471                 m.blendfunc2 = GL_ONE;
472                 R_Mesh_State(&m);
473                 R_Mesh_Matrix(&ent->matrix);
474                 for (i = 0, sl = cl.worldmodel->lights;i < cl.worldmodel->numlights;i++, sl++)
475                 {
476                         if (d_lightstylevalue[sl->style] > 0)
477                         {
478                                 VectorSubtract(ent->origin, sl->origin, temp);
479                                 f = DotProduct(temp,temp);
480                                 if (f < (ent->model->radius2 + sl->cullradius2))
481                                 {
482                                         model = ent->model;
483                                         R_Mesh_ResizeCheck(model->numverts * 2);
484                                         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
485                                         Matrix4x4_Transform(&ent->inversematrix, sl->origin, temp);
486                                         GL_Color(0.1 * r_colorscale, 0.025 * r_colorscale, 0.0125 * r_colorscale, 1);
487                                         R_Shadow_Volume(model->numverts, model->numtris, varray_vertex, model->mdlmd2data_indices, model->mdlmd2data_triangleneighbors, temp, sl->cullradius + model->radius - sqrt(f), true);
488                                         GL_UseColorArray();
489                                         lightscale = d_lightstylevalue[sl->style] * (1.0f / 65536.0f);
490                                         VectorScale(sl->light, lightscale, lightcolor);
491                                         R_Shadow_VertexLight(model->numverts, varray_vertex, aliasvertnorm, temp, sl->cullradius2, sl->distbias, sl->subtract, lightcolor);
492                                         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
493                                 }
494                         }
495                 }
496                 for (i = 0, rd = r_dlight;i < r_numdlights;i++, rd++)
497                 {
498                         if (ent != rd->ent)
499                         {
500                                 VectorSubtract(ent->origin, rd->origin, temp);
501                                 f = DotProduct(temp,temp);
502                                 if (f < (ent->model->radius2 + rd->cullradius2))
503                                 {
504                                         model = ent->model;
505                                         R_Mesh_ResizeCheck(model->numverts * 2);
506                                         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
507                                         Matrix4x4_Transform(&ent->inversematrix, rd->origin, temp);
508                                         GL_Color(0.1 * r_colorscale, 0.025 * r_colorscale, 0.0125 * r_colorscale, 1);
509                                         R_Shadow_Volume(model->numverts, model->numtris, varray_vertex, model->mdlmd2data_indices, model->mdlmd2data_triangleneighbors, temp, rd->cullradius + model->radius - sqrt(f), true);
510                                         GL_UseColorArray();
511                                         R_Shadow_VertexLight(model->numverts, varray_vertex, aliasvertnorm, temp, rd->cullradius2, LIGHTOFFSET, rd->subtract, rd->light);
512                                         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
513                                 }
514                         }
515                 }
516                 return;
517         }
518         */
519
520         lightdirection[0] = 0.5;
521         lightdirection[1] = 0.2;
522         lightdirection[2] = -1;
523         VectorNormalizeFast(lightdirection);
524
525         VectorMA(ent->origin, 65536.0f, lightdirection, v2);
526         if (CL_TraceLine(ent->origin, v2, floororigin, surfnormal, 0, false, NULL) == 1)
527                 return;
528
529         R_Mesh_Matrix(&ent->matrix);
530
531         model = ent->model;
532         R_Mesh_ResizeCheck(model->numverts);
533
534         memset(&m, 0, sizeof(m));
535         m.blendfunc1 = GL_SRC_ALPHA;
536         m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
537         R_Mesh_State(&m);
538
539         c_alias_polys += model->numtris;
540         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
541
542         // put a light direction in the entity's coordinate space
543         Matrix4x4_Transform3x3(&ent->inversematrix, lightdirection, projection);
544         VectorNormalizeFast(projection);
545
546         // put the plane's normal in the entity's coordinate space
547         Matrix4x4_Transform3x3(&ent->inversematrix, surfnormal, planenormal);
548         VectorNormalizeFast(planenormal);
549
550         // put the plane's distance in the entity's coordinate space
551         VectorSubtract(floororigin, ent->origin, floororigin);
552         planedist = DotProduct(floororigin, surfnormal) + 2;
553
554         dist = -1.0f / DotProduct(projection, planenormal);
555         VectorScale(projection, dist, projection);
556         for (i = 0, v = varray_vertex;i < model->numverts;i++, v += 4)
557         {
558                 dist = DotProduct(v, planenormal) - planedist;
559                 if (dist > 0)
560                 //if (i & 1)
561                         VectorMA(v, dist, projection, v);
562         }
563         GL_Color(0, 0, 0, 0.5);
564         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
565 }
566
567 void R_Model_Alias_DrawDepth(entity_render_t *ent)
568 {
569         R_Mesh_ResizeCheck(ent->model->numverts);
570         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
571         R_Mesh_Draw(ent->model->numverts, ent->model->numtris, ent->model->mdlmd2data_indices);
572 }
573
574 void R_Model_Alias_DrawShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, int visiblevolume)
575 {
576         float projectdistance;
577         projectdistance = lightradius + ent->model->radius - sqrt(DotProduct(relativelightorigin, relativelightorigin));
578         if (projectdistance > 0.1)
579         {
580                 R_Mesh_ResizeCheck(ent->model->numverts * 2);
581                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
582                 R_Shadow_Volume(ent->model->numverts, ent->model->numtris, varray_vertex, ent->model->mdlmd2data_indices, ent->model->mdlmd2data_triangleneighbors, relativelightorigin, lightradius, projectdistance, visiblevolume);
583         }
584 }
585
586 void R_Model_Alias_DrawLight(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, float lightdistbias, float lightsubtract, float *lightcolor)
587 {
588         R_Mesh_ResizeCheck(ent->model->numverts);
589         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
590         R_Shadow_VertexLight(ent->model->numverts, varray_vertex, aliasvertnorm, relativelightorigin, lightradius * lightradius, lightdistbias, lightsubtract, lightcolor);
591         GL_UseColorArray();
592         R_Mesh_Draw(ent->model->numverts, ent->model->numtris, ent->model->mdlmd2data_indices);
593 }
594
595 void R_Model_Alias_DrawOntoLight(entity_render_t *ent)
596 {
597         // FIXME
598 }
599
600 int ZymoticLerpBones(int count, const zymbonematrix *bonebase, const frameblend_t *blend, const zymbone_t *bone)
601 {
602         int i;
603         float lerp1, lerp2, lerp3, lerp4;
604         zymbonematrix *out, rootmatrix, m;
605         const zymbonematrix *bone1, *bone2, *bone3, *bone4;
606
607         rootmatrix.m[0][0] = 1;
608         rootmatrix.m[0][1] = 0;
609         rootmatrix.m[0][2] = 0;
610         rootmatrix.m[0][3] = 0;
611         rootmatrix.m[1][0] = 0;
612         rootmatrix.m[1][1] = 1;
613         rootmatrix.m[1][2] = 0;
614         rootmatrix.m[1][3] = 0;
615         rootmatrix.m[2][0] = 0;
616         rootmatrix.m[2][1] = 0;
617         rootmatrix.m[2][2] = 1;
618         rootmatrix.m[2][3] = 0;
619
620         bone1 = bonebase + blend[0].frame * count;
621         lerp1 = blend[0].lerp;
622         if (blend[1].lerp)
623         {
624                 bone2 = bonebase + blend[1].frame * count;
625                 lerp2 = blend[1].lerp;
626                 if (blend[2].lerp)
627                 {
628                         bone3 = bonebase + blend[2].frame * count;
629                         lerp3 = blend[2].lerp;
630                         if (blend[3].lerp)
631                         {
632                                 // 4 poses
633                                 bone4 = bonebase + blend[3].frame * count;
634                                 lerp4 = blend[3].lerp;
635                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
636                                 {
637                                         // interpolate matrices
638                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4;
639                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4;
640                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4;
641                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4;
642                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4;
643                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4;
644                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4;
645                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4;
646                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4;
647                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4;
648                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4;
649                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4;
650                                         if (bone->parent >= 0)
651                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
652                                         else
653                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
654                                         bone1++;
655                                         bone2++;
656                                         bone3++;
657                                         bone4++;
658                                         bone++;
659                                 }
660                         }
661                         else
662                         {
663                                 // 3 poses
664                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
665                                 {
666                                         // interpolate matrices
667                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3;
668                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3;
669                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3;
670                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3;
671                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3;
672                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3;
673                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3;
674                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3;
675                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3;
676                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3;
677                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3;
678                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3;
679                                         if (bone->parent >= 0)
680                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
681                                         else
682                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
683                                         bone1++;
684                                         bone2++;
685                                         bone3++;
686                                         bone++;
687                                 }
688                         }
689                 }
690                 else
691                 {
692                         // 2 poses
693                         for (i = 0, out = zymbonepose;i < count;i++, out++)
694                         {
695                                 // interpolate matrices
696                                 m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2;
697                                 m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2;
698                                 m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2;
699                                 m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2;
700                                 m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2;
701                                 m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2;
702                                 m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2;
703                                 m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2;
704                                 m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2;
705                                 m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2;
706                                 m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2;
707                                 m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2;
708                                 if (bone->parent >= 0)
709                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
710                                 else
711                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
712                                 bone1++;
713                                 bone2++;
714                                 bone++;
715                         }
716                 }
717         }
718         else
719         {
720                 // 1 pose
721                 if (lerp1 != 1)
722                 {
723                         // lerp != 1.0
724                         for (i = 0, out = zymbonepose;i < count;i++, out++)
725                         {
726                                 // interpolate matrices
727                                 m.m[0][0] = bone1->m[0][0] * lerp1;
728                                 m.m[0][1] = bone1->m[0][1] * lerp1;
729                                 m.m[0][2] = bone1->m[0][2] * lerp1;
730                                 m.m[0][3] = bone1->m[0][3] * lerp1;
731                                 m.m[1][0] = bone1->m[1][0] * lerp1;
732                                 m.m[1][1] = bone1->m[1][1] * lerp1;
733                                 m.m[1][2] = bone1->m[1][2] * lerp1;
734                                 m.m[1][3] = bone1->m[1][3] * lerp1;
735                                 m.m[2][0] = bone1->m[2][0] * lerp1;
736                                 m.m[2][1] = bone1->m[2][1] * lerp1;
737                                 m.m[2][2] = bone1->m[2][2] * lerp1;
738                                 m.m[2][3] = bone1->m[2][3] * lerp1;
739                                 if (bone->parent >= 0)
740                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
741                                 else
742                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
743                                 bone1++;
744                                 bone++;
745                         }
746                 }
747                 else
748                 {
749                         // lerp == 1.0
750                         for (i = 0, out = zymbonepose;i < count;i++, out++)
751                         {
752                                 if (bone->parent >= 0)
753                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]);
754                                 else
755                                         R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]);
756                                 bone1++;
757                                 bone++;
758                         }
759                 }
760         }
761         return true;
762 }
763
764 void ZymoticTransformVerts(int vertcount, float *vertex, int *bonecounts, zymvertex_t *vert)
765 {
766         int c;
767         float *out = vertex;
768         zymbonematrix *matrix;
769         while(vertcount--)
770         {
771                 c = *bonecounts++;
772                 // FIXME: validate bonecounts at load time (must be >= 1)
773                 // FIXME: need 4th component in origin, for how much of the translate to blend in
774                 if (c == 1)
775                 {
776                         matrix = &zymbonepose[vert->bonenum];
777                         out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
778                         out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
779                         out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
780                         vert++;
781                 }
782                 else
783                 {
784                         VectorClear(out);
785                         while(c--)
786                         {
787                                 matrix = &zymbonepose[vert->bonenum];
788                                 out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
789                                 out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
790                                 out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
791                                 vert++;
792                         }
793                 }
794                 out += 4;
795         }
796 }
797
798 void ZymoticCalcNormals(int vertcount, float *vertex, float *normals, int shadercount, int *renderlist)
799 {
800         int a, b, c, d;
801         float *out, v1[3], v2[3], normal[3], s;
802         int *u;
803         // clear normals
804         memset(normals, 0, sizeof(float) * vertcount * 3);
805         memset(aliasvertusage, 0, sizeof(int) * vertcount);
806         // parse render list and accumulate surface normals
807         while(shadercount--)
808         {
809                 d = *renderlist++;
810                 while (d--)
811                 {
812                         a = renderlist[0]*4;
813                         b = renderlist[1]*4;
814                         c = renderlist[2]*4;
815                         v1[0] = vertex[a+0] - vertex[b+0];
816                         v1[1] = vertex[a+1] - vertex[b+1];
817                         v1[2] = vertex[a+2] - vertex[b+2];
818                         v2[0] = vertex[c+0] - vertex[b+0];
819                         v2[1] = vertex[c+1] - vertex[b+1];
820                         v2[2] = vertex[c+2] - vertex[b+2];
821                         CrossProduct(v1, v2, normal);
822                         VectorNormalizeFast(normal);
823                         // add surface normal to vertices
824                         a = renderlist[0] * 3;
825                         normals[a+0] += normal[0];
826                         normals[a+1] += normal[1];
827                         normals[a+2] += normal[2];
828                         aliasvertusage[renderlist[0]]++;
829                         a = renderlist[1] * 3;
830                         normals[a+0] += normal[0];
831                         normals[a+1] += normal[1];
832                         normals[a+2] += normal[2];
833                         aliasvertusage[renderlist[1]]++;
834                         a = renderlist[2] * 3;
835                         normals[a+0] += normal[0];
836                         normals[a+1] += normal[1];
837                         normals[a+2] += normal[2];
838                         aliasvertusage[renderlist[2]]++;
839                         renderlist += 3;
840                 }
841         }
842         // FIXME: precalc this
843         // average surface normals
844         out = normals;
845         u = aliasvertusage;
846         while(vertcount--)
847         {
848                 if (*u > 1)
849                 {
850                         s = ixtable[*u];
851                         out[0] *= s;
852                         out[1] *= s;
853                         out[2] *= s;
854                 }
855                 u++;
856                 out += 3;
857         }
858 }
859
860 void R_DrawZymoticModelMeshCallback (const void *calldata1, int calldata2)
861 {
862         float fog, ifog, colorscale;
863         vec3_t diff;
864         int i, *renderlist, *elements;
865         zymtype1header_t *m;
866         rtexture_t *texture;
867         rmeshstate_t mstate;
868         const entity_render_t *ent = calldata1;
869         int shadernum = calldata2;
870         int numverts, numtriangles;
871
872         R_Mesh_Matrix(&ent->matrix);
873
874         // find the vertex index list and texture
875         m = ent->model->zymdata_header;
876         renderlist = (int *)(m->lump_render.start + (int) m);
877         for (i = 0;i < shadernum;i++)
878                 renderlist += renderlist[0] * 3 + 1;
879         texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum];
880
881         numverts = m->numverts;
882         numtriangles = *renderlist++;
883         elements = renderlist;
884         R_Mesh_ResizeCheck(numverts);
885
886         fog = 0;
887         if (fogenabled)
888         {
889                 VectorSubtract(ent->origin, r_origin, diff);
890                 fog = DotProduct(diff,diff);
891                 if (fog < 0.01f)
892                         fog = 0.01f;
893                 fog = exp(fogdensity/fog);
894                 if (fog > 1)
895                         fog = 1;
896                 if (fog < 0.01f)
897                         fog = 0;
898                 // fog method: darken, additive fog
899                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
900                 // 2. render fog as additive
901         }
902         ifog = 1 - fog;
903
904         memset(&mstate, 0, sizeof(mstate));
905         if (ent->effects & EF_ADDITIVE)
906         {
907                 mstate.blendfunc1 = GL_SRC_ALPHA;
908                 mstate.blendfunc2 = GL_ONE;
909         }
910         else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture))
911         {
912                 mstate.blendfunc1 = GL_SRC_ALPHA;
913                 mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
914         }
915         else
916         {
917                 mstate.blendfunc1 = GL_ONE;
918                 mstate.blendfunc2 = GL_ZERO;
919         }
920         colorscale = r_colorscale;
921         if (gl_combine.integer)
922         {
923                 mstate.texrgbscale[0] = 4;
924                 colorscale *= 0.25f;
925         }
926         mstate.tex[0] = R_GetTexture(texture);
927         R_Mesh_State(&mstate);
928         ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m));
929         ZymoticTransformVerts(numverts, varray_vertex, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m));
930         ZymoticCalcNormals(numverts, varray_vertex, aliasvertnorm, m->numshaders, (int *)(m->lump_render.start + (int) m));
931         memcpy(varray_texcoord[0], (float *)(m->lump_texcoords.start + (int) m), numverts * sizeof(float[2]));
932         GL_UseColorArray();
933         R_LightModel(ent, numverts, varray_vertex, aliasvertnorm, varray_color, ifog * colorscale, ifog * colorscale, ifog * colorscale, false);
934         R_Mesh_Draw(numverts, numtriangles, elements);
935         c_alias_polys += numtriangles;
936
937         if (fog)
938         {
939                 memset(&mstate, 0, sizeof(mstate));
940                 mstate.blendfunc1 = GL_SRC_ALPHA;
941                 mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
942                 // FIXME: need alpha mask for fogging...
943                 //mstate.tex[0] = R_GetTexture(texture);
944                 R_Mesh_State(&mstate);
945                 GL_Color(fogcolor[0] * r_colorscale, fogcolor[1] * r_colorscale, fogcolor[2] * r_colorscale, ent->alpha * fog);
946                 R_Mesh_Draw(numverts, numtriangles, elements);
947                 c_alias_polys += numtriangles;
948         }
949 }
950
951 void R_Model_Zymotic_Draw(entity_render_t *ent)
952 {
953         int i;
954         zymtype1header_t *m;
955         rtexture_t *texture;
956
957         if (ent->alpha < (1.0f / 64.0f))
958                 return; // basically completely transparent
959
960         c_models++;
961
962         m = ent->model->zymdata_header;
963         for (i = 0;i < m->numshaders;i++)
964         {
965                 texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i];
966                 if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture))
967                         R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i);
968                 else
969                         R_DrawZymoticModelMeshCallback(ent, i);
970         }
971 }
972
973 void R_Model_Zymotic_DrawFakeShadow(entity_render_t *ent)
974 {
975         // FIXME
976 }
977
978 void R_Model_Zymotic_DrawLight(entity_render_t *ent, vec3_t relativelightorigin, float lightradius2, float lightdistbias, float lightsubtract, float *lightcolor)
979 {
980         // FIXME
981 }
982
983 void R_Model_Zymotic_DrawOntoLight(entity_render_t *ent)
984 {
985         // FIXME
986 }