1 /* -------------------------------------------------------------------------------
3 Copyright (C) 1999-2007 id Software, Inc. and contributors.
4 For a list of contributors, see the accompanying CONTRIBUTORS file.
6 This file is part of GtkRadiant.
8 GtkRadiant is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 GtkRadiant is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GtkRadiant; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 ----------------------------------------------------------------------------------
24 This code has been altered significantly from its original form, to support
25 several games based on the Quake III Arena engine, in the form of "Q3Map2."
27 ------------------------------------------------------------------------------- */
44 ydnar: moved to here 2001-02-04
47 void ColorToBytes( const float *color, byte *colorBytes, float scale )
55 /* ydnar: scaling necessary for simulating r_overbrightBits on external lightmaps */
59 /* make a local copy */
60 VectorScale( color, scale, sample );
63 gamma = 1.0f / lightmapGamma;
64 for( i = 0; i < 3; i++ )
66 /* handle negative light */
67 if( sample[ i ] < 0.0f )
74 sample[ i ] = pow( sample[ i ] / 255.0f, gamma ) * 255.0f;
77 if (lightmapExposure == 1)
79 /* clamp with color normalization */
81 if( sample[ 1 ] > max )
83 if( sample[ 2 ] > max )
86 VectorScale( sample, (255.0f / max), sample );
90 if (lightmapExposure==0)
92 lightmapExposure=1.0f;
94 inv=1.f/lightmapExposure;
98 if( sample[ 1 ] > max )
100 if( sample[ 2 ] > max )
103 dif = (1- exp(-max * inv) ) * 255;
121 /* compensate for ingame overbrighting/bitshifting */
122 VectorScale( sample, (1.0f / lightmapCompensate), sample );
125 colorBytes[ 0 ] = sample[ 0 ];
126 colorBytes[ 1 ] = sample[ 1 ];
127 colorBytes[ 2 ] = sample[ 2 ];
132 /* -------------------------------------------------------------------------------
134 this section deals with phong shading (normal interpolation across brush faces)
136 ------------------------------------------------------------------------------- */
140 smooths together coincident vertex normals across the bsp
143 #define MAX_SAMPLES 256
144 #define THETA_EPSILON 0.000001
145 #define EQUAL_NORMAL_EPSILON 0.01
147 void SmoothNormals( void )
149 int i, j, k, f, cs, numVerts, numVotes, fOld, start;
150 float shadeAngle, defaultShadeAngle, maxShadeAngle, dot, testAngle;
151 bspDrawSurface_t *ds;
155 vec3_t average, diff;
156 int indexes[ MAX_SAMPLES ];
157 vec3_t votes[ MAX_SAMPLES ];
160 /* allocate shade angle table */
161 shadeAngles = safe_malloc( numBSPDrawVerts * sizeof( float ) );
162 memset( shadeAngles, 0, numBSPDrawVerts * sizeof( float ) );
164 /* allocate smoothed table */
165 cs = (numBSPDrawVerts / 8) + 1;
166 smoothed = safe_malloc( cs );
167 memset( smoothed, 0, cs );
169 /* set default shade angle */
170 defaultShadeAngle = DEG2RAD( shadeAngleDegrees );
173 /* run through every surface and flag verts belonging to non-lightmapped surfaces
174 and set per-vertex smoothing angle */
175 for( i = 0; i < numBSPDrawSurfaces; i++ )
178 ds = &bspDrawSurfaces[ i ];
180 /* get shader for shade angle */
181 si = surfaceInfos[ i ].si;
182 if( si->shadeAngleDegrees )
183 shadeAngle = DEG2RAD( si->shadeAngleDegrees );
185 shadeAngle = defaultShadeAngle;
186 if( shadeAngle > maxShadeAngle )
187 maxShadeAngle = shadeAngle;
190 for( j = 0; j < ds->numVerts; j++ )
192 f = ds->firstVert + j;
193 shadeAngles[ f ] = shadeAngle;
194 if( ds->surfaceType == MST_TRIANGLE_SOUP )
195 smoothed[ f >> 3 ] |= (1 << (f & 7));
198 /* ydnar: optional force-to-trisoup */
199 if( trisoup && ds->surfaceType == MST_PLANAR )
201 ds->surfaceType = MST_TRIANGLE_SOUP;
202 ds->lightmapNum[ 0 ] = -3;
206 /* bail if no surfaces have a shade angle */
207 if( maxShadeAngle == 0 )
216 start = I_FloatTime();
218 /* go through the list of vertexes */
219 for( i = 0; i < numBSPDrawVerts; i++ )
222 f = 10 * i / numBSPDrawVerts;
226 Sys_Printf( "%i...", f );
229 /* already smoothed? */
230 if( smoothed[ i >> 3 ] & (1 << (i & 7)) )
234 VectorClear( average );
238 /* build a table of coincident vertexes */
239 for( j = i; j < numBSPDrawVerts && numVerts < MAX_SAMPLES; j++ )
241 /* already smoothed? */
242 if( smoothed[ j >> 3 ] & (1 << (j & 7)) )
246 if( VectorCompare( yDrawVerts[ i ].xyz, yDrawVerts[ j ].xyz ) == qfalse )
249 /* use smallest shade angle */
250 shadeAngle = (shadeAngles[ i ] < shadeAngles[ j ] ? shadeAngles[ i ] : shadeAngles[ j ]);
252 /* check shade angle */
253 dot = DotProduct( bspDrawVerts[ i ].normal, bspDrawVerts[ j ].normal );
256 else if( dot < -1.0 )
258 testAngle = acos( dot ) + THETA_EPSILON;
259 if( testAngle >= shadeAngle )
261 //Sys_Printf( "F(%3.3f >= %3.3f) ", RAD2DEG( testAngle ), RAD2DEG( shadeAngle ) );
264 //Sys_Printf( "P(%3.3f < %3.3f) ", RAD2DEG( testAngle ), RAD2DEG( shadeAngle ) );
266 /* add to the list */
267 indexes[ numVerts++ ] = j;
270 smoothed[ j >> 3 ] |= (1 << (j & 7));
272 /* see if this normal has already been voted */
273 for( k = 0; k < numVotes; k++ )
275 VectorSubtract( bspDrawVerts[ j ].normal, votes[ k ], diff );
276 if( fabs( diff[ 0 ] ) < EQUAL_NORMAL_EPSILON &&
277 fabs( diff[ 1 ] ) < EQUAL_NORMAL_EPSILON &&
278 fabs( diff[ 2 ] ) < EQUAL_NORMAL_EPSILON )
282 /* add a new vote? */
283 if( k == numVotes && numVotes < MAX_SAMPLES )
285 VectorAdd( average, bspDrawVerts[ j ].normal, average );
286 VectorCopy( bspDrawVerts[ j ].normal, votes[ numVotes ] );
291 /* don't average for less than 2 verts */
296 if( VectorNormalize( average, average ) > 0 )
299 for( j = 0; j < numVerts; j++ )
300 VectorCopy( average, yDrawVerts[ indexes[ j ] ].normal );
304 /* free the tables */
309 Sys_Printf( " (%i)\n", (int) (I_FloatTime() - start) );
314 /* -------------------------------------------------------------------------------
316 this section deals with phong shaded lightmap tracing
318 ------------------------------------------------------------------------------- */
320 /* 9th rewrite (recursive subdivision of a lightmap triangle) */
324 calculates the st tangent vectors for normalmapping
327 static qboolean CalcTangentVectors( int numVerts, bspDrawVert_t **dv, vec3_t *stv, vec3_t *ttv )
334 /* calculate barycentric basis for the triangle */
335 bb = (dv[ 1 ]->st[ 0 ] - dv[ 0 ]->st[ 0 ]) * (dv[ 2 ]->st[ 1 ] - dv[ 0 ]->st[ 1 ]) - (dv[ 2 ]->st[ 0 ] - dv[ 0 ]->st[ 0 ]) * (dv[ 1 ]->st[ 1 ] - dv[ 0 ]->st[ 1 ]);
336 if( fabs( bb ) < 0.00000001f )
340 for( i = 0; i < numVerts; i++ )
342 /* calculate s tangent vector */
343 s = dv[ i ]->st[ 0 ] + 10.0f;
344 t = dv[ i ]->st[ 1 ];
345 bary[ 0 ] = ((dv[ 1 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t) - (dv[ 2 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t)) / bb;
346 bary[ 1 ] = ((dv[ 2 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t) - (dv[ 0 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t)) / bb;
347 bary[ 2 ] = ((dv[ 0 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t) - (dv[ 1 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t)) / bb;
349 stv[ i ][ 0 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 0 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 0 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 0 ];
350 stv[ i ][ 1 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 1 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 1 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 1 ];
351 stv[ i ][ 2 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 2 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 2 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 2 ];
353 VectorSubtract( stv[ i ], dv[ i ]->xyz, stv[ i ] );
354 VectorNormalize( stv[ i ], stv[ i ] );
356 /* calculate t tangent vector */
357 s = dv[ i ]->st[ 0 ];
358 t = dv[ i ]->st[ 1 ] + 10.0f;
359 bary[ 0 ] = ((dv[ 1 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t) - (dv[ 2 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t)) / bb;
360 bary[ 1 ] = ((dv[ 2 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t) - (dv[ 0 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t)) / bb;
361 bary[ 2 ] = ((dv[ 0 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t) - (dv[ 1 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t)) / bb;
363 ttv[ i ][ 0 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 0 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 0 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 0 ];
364 ttv[ i ][ 1 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 1 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 1 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 1 ];
365 ttv[ i ][ 2 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 2 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 2 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 2 ];
367 VectorSubtract( ttv[ i ], dv[ i ]->xyz, ttv[ i ] );
368 VectorNormalize( ttv[ i ], ttv[ i ] );
371 //% Sys_FPrintf( SYS_VRB, "%d S: (%f %f %f) T: (%f %f %f)\n", i,
372 //% stv[ i ][ 0 ], stv[ i ][ 1 ], stv[ i ][ 2 ], ttv[ i ][ 0 ], ttv[ i ][ 1 ], ttv[ i ][ 2 ] );
375 /* return to caller */
384 perterbs the normal by the shader's normalmap in tangent space
387 static void PerturbNormal( bspDrawVert_t *dv, shaderInfo_t *si, vec3_t pNormal, vec3_t stv[ 3 ], vec3_t ttv[ 3 ] )
394 VectorCopy( dv->normal, pNormal );
396 /* sample normalmap */
397 if( RadSampleImage( si->normalImage->pixels, si->normalImage->width, si->normalImage->height, dv->st, bump ) == qfalse )
400 /* remap sampled normal from [0,255] to [-1,-1] */
401 for( i = 0; i < 3; i++ )
402 bump[ i ] = (bump[ i ] - 127.0f) * (1.0f / 127.5f);
404 /* scale tangent vectors and add to original normal */
405 VectorMA( dv->normal, bump[ 0 ], stv[ 0 ], pNormal );
406 VectorMA( pNormal, bump[ 1 ], ttv[ 0 ], pNormal );
407 VectorMA( pNormal, bump[ 2 ], dv->normal, pNormal );
409 /* renormalize and return */
410 VectorNormalize( pNormal, pNormal );
417 maps a luxel for triangle bv at
421 #define BOGUS_NUDGE -99999.0f
423 static int MapSingleLuxel( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv, vec4_t plane, float pass, vec3_t stv[ 3 ], vec3_t ttv[ 3 ], vec3_t worldverts[ 3 ] )
425 int i, x, y, numClusters, *clusters, pointCluster, *cluster;
426 float *luxel, *origin, *normal, d, lightmapSampleOffset;
433 vec4_t sideplane, hostplane;
438 static float nudges[][ 2 ] =
440 //%{ 0, 0 }, /* try center first */
441 { -NUDGE, 0 }, /* left */
442 { NUDGE, 0 }, /* right */
443 { 0, NUDGE }, /* up */
444 { 0, -NUDGE }, /* down */
445 { -NUDGE, NUDGE }, /* left/up */
446 { NUDGE, -NUDGE }, /* right/down */
447 { NUDGE, NUDGE }, /* right/up */
448 { -NUDGE, -NUDGE }, /* left/down */
449 { BOGUS_NUDGE, BOGUS_NUDGE }
453 /* find luxel xy coords (fixme: subtract 0.5?) */
454 x = dv->lightmap[ 0 ][ 0 ];
455 y = dv->lightmap[ 0 ][ 1 ];
458 else if( x >= lm->sw )
462 else if( y >= lm->sh )
465 /* set shader and cluster list */
469 numClusters = info->numSurfaceClusters;
470 clusters = &surfaceClusters[ info->firstSurfaceCluster ];
479 /* get luxel, origin, cluster, and normal */
480 luxel = SUPER_LUXEL( 0, x, y );
481 origin = SUPER_ORIGIN( x, y );
482 normal = SUPER_NORMAL( x, y );
483 cluster = SUPER_CLUSTER( x, y );
485 /* don't attempt to remap occluded luxels for planar surfaces */
486 if( (*cluster) == CLUSTER_OCCLUDED && lm->plane != NULL )
489 /* only average the normal for premapped luxels */
490 else if( (*cluster) >= 0 )
492 /* do bumpmap calculations */
494 PerturbNormal( dv, si, pNormal, stv, ttv );
496 VectorCopy( dv->normal, pNormal );
498 /* add the additional normal data */
499 VectorAdd( normal, pNormal, normal );
504 /* otherwise, unmapped luxels (*cluster == CLUSTER_UNMAPPED) will have their full attributes calculated */
508 /* axial lightmap projection */
509 if( lm->vecs != NULL )
511 /* calculate an origin for the sample from the lightmap vectors */
512 VectorCopy( lm->origin, origin );
513 for( i = 0; i < 3; i++ )
515 /* add unless it's the axis, which is taken care of later */
516 if( i == lm->axisNum )
518 origin[ i ] += (x * lm->vecs[ 0 ][ i ]) + (y * lm->vecs[ 1 ][ i ]);
521 /* project the origin onto the plane */
522 d = DotProduct( origin, plane ) - plane[ 3 ];
523 d /= plane[ lm->axisNum ];
524 origin[ lm->axisNum ] -= d;
527 /* non axial lightmap projection (explicit xyz) */
529 VectorCopy( dv->xyz, origin );
531 //////////////////////
532 //27's test to make sure samples stay within the triangle boundaries
533 //1) Test the sample origin to see if it lays on the wrong side of any edge (x/y)
534 //2) if it does, nudge it onto the correct side.
536 if (worldverts!=NULL && lightmapTriangleCheck)
540 VectorCopy(worldverts[j],cverts[j]);
542 PlaneFromPoints(hostplane,cverts[0],cverts[1],cverts[2]);
548 //build plane using 2 edges and a normal
551 VectorCopy(cverts[next],temp);
552 VectorAdd(temp,hostplane,temp);
553 PlaneFromPoints(sideplane,cverts[i],cverts[ next ], temp);
555 //planetest sample point
556 e=DotProduct(origin,sideplane);
561 //VectorClear(origin);
562 //Move the sample point back inside triangle bounds
563 origin[0]-=sideplane[0]*(e+1);
564 origin[1]-=sideplane[1]*(e+1);
565 origin[2]-=sideplane[2]*(e+1);
574 ////////////////////////
576 /* planar surfaces have precalculated lightmap vectors for nudging */
577 if( lm->plane != NULL )
579 VectorCopy( lm->vecs[ 0 ], vecs[ 0 ] );
580 VectorCopy( lm->vecs[ 1 ], vecs[ 1 ] );
581 VectorCopy( lm->plane, vecs[ 2 ] );
584 /* non-planar surfaces must calculate them */
588 VectorCopy( plane, vecs[ 2 ] );
590 VectorCopy( dv->normal, vecs[ 2 ] );
591 MakeNormalVectors( vecs[ 2 ], vecs[ 0 ], vecs[ 1 ] );
594 /* push the origin off the surface a bit */
596 lightmapSampleOffset = si->lightmapSampleOffset;
598 lightmapSampleOffset = DEFAULT_LIGHTMAP_SAMPLE_OFFSET;
599 if( lm->axisNum < 0 )
600 VectorMA( origin, lightmapSampleOffset, vecs[ 2 ], origin );
601 else if( vecs[ 2 ][ lm->axisNum ] < 0.0f )
602 origin[ lm->axisNum ] -= lightmapSampleOffset;
604 origin[ lm->axisNum ] += lightmapSampleOffset;
606 VectorCopy(origin,origintwo);
607 if(lightmapExtraVisClusterNudge)
609 origintwo[0]+=vecs[2][0];
610 origintwo[1]+=vecs[2][1];
611 origintwo[2]+=vecs[2][2];
615 pointCluster = ClusterForPointExtFilter( origintwo, LUXEL_EPSILON, numClusters, clusters );
617 /* another retarded hack, storing nudge count in luxel[ 1 ] */
620 /* point in solid? (except in dark mode) */
621 if( pointCluster < 0 && dark == qfalse )
623 /* nudge the the location around */
625 while( nudge[ 0 ] > BOGUS_NUDGE && pointCluster < 0 )
627 /* nudge the vector around a bit */
628 for( i = 0; i < 3; i++ )
630 /* set nudged point*/
631 nudged[ i ] = origintwo[ i ] + (nudge[ 0 ] * vecs[ 0 ][ i ]) + (nudge[ 1 ] * vecs[ 1 ][ i ]);
635 /* get pvs cluster */
636 pointCluster = ClusterForPointExtFilter( nudged, LUXEL_EPSILON, numClusters, clusters ); //% + 0.625 );
637 if( pointCluster >= 0 )
638 VectorCopy( nudged, origin );
643 /* as a last resort, if still in solid, try drawvert origin offset by normal (except in dark mode) */
644 if( pointCluster < 0 && si != NULL && dark == qfalse )
646 VectorMA( dv->xyz, lightmapSampleOffset, dv->normal, nudged );
647 pointCluster = ClusterForPointExtFilter( nudged, LUXEL_EPSILON, numClusters, clusters );
648 if( pointCluster >= 0 )
649 VectorCopy( nudged, origin );
654 if( pointCluster < 0 )
656 (*cluster) = CLUSTER_OCCLUDED;
657 VectorClear( origin );
658 VectorClear( normal );
664 //% Sys_Printf( "%f %f %f\n", origin[ 0 ], origin[ 1 ], origin[ 2 ] );
666 /* do bumpmap calculations */
668 PerturbNormal( dv, si, pNormal, stv, ttv );
670 VectorCopy( dv->normal, pNormal );
672 /* store the cluster and normal */
673 (*cluster) = pointCluster;
674 VectorCopy( pNormal, normal );
676 /* store explicit mapping pass and implicit mapping pass */
691 recursively subdivides a triangle until its edges are shorter
692 than the distance between two luxels (thanks jc :)
695 static void MapTriangle_r( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 3 ], vec4_t plane, vec3_t stv[ 3 ], vec3_t ttv[ 3 ], vec3_t worldverts[ 3 ] )
697 bspDrawVert_t mid, *dv2[ 3 ];
701 /* map the vertexes */
703 MapSingleLuxel( lm, info, dv[ 0 ], plane, 1, stv, ttv );
704 MapSingleLuxel( lm, info, dv[ 1 ], plane, 1, stv, ttv );
705 MapSingleLuxel( lm, info, dv[ 2 ], plane, 1, stv, ttv );
711 float *a, *b, dx, dy, dist, maxDist;
714 /* find the longest edge and split it */
717 for( i = 0; i < 3; i++ )
720 a = dv[ i ]->lightmap[ 0 ];
721 b = dv[ (i + 1) % 3 ]->lightmap[ 0 ];
724 dx = a[ 0 ] - b[ 0 ];
725 dy = a[ 1 ] - b[ 1 ];
726 dist = (dx * dx) + (dy * dy); //% sqrt( (dx * dx) + (dy * dy) );
736 /* try to early out */
737 if( max < 0 || maxDist <= subdivideThreshold ) /* ydnar: was i < 0 instead of max < 0 (?) */
741 /* split the longest edge and map it */
742 LerpDrawVert( dv[ max ], dv[ (max + 1) % 3 ], &mid );
743 MapSingleLuxel( lm, info, &mid, plane, 1, stv, ttv, worldverts );
745 /* push the point up a little bit to account for fp creep (fixme: revisit this) */
746 //% VectorMA( mid.xyz, 2.0f, mid.normal, mid.xyz );
748 /* recurse to first triangle */
749 VectorCopy( dv, dv2 );
751 MapTriangle_r( lm, info, dv2, plane, stv, ttv, worldverts );
753 /* recurse to second triangle */
754 VectorCopy( dv, dv2 );
755 dv2[ (max + 1) % 3 ] = ∣
756 MapTriangle_r( lm, info, dv2, plane, stv, ttv, worldverts );
763 seed function for MapTriangle_r()
764 requires a cw ordered triangle
767 static qboolean MapTriangle( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 3 ], qboolean mapNonAxial )
771 vec3_t *stv, *ttv, stvStatic[ 3 ], ttvStatic[ 3 ];
772 vec3_t worldverts[ 3 ];
775 /* get plane if possible */
776 if( lm->plane != NULL )
778 VectorCopy( lm->plane, plane );
779 plane[ 3 ] = lm->plane[ 3 ];
782 /* otherwise make one from the points */
783 else if( PlaneFromPoints( plane, dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz ) == qfalse )
786 /* check to see if we need to calculate texture->world tangent vectors */
787 if( info->si->normalImage != NULL && CalcTangentVectors( 3, dv, stvStatic, ttvStatic ) )
798 VectorCopy( dv[ 0 ]->xyz, worldverts[ 0 ] );
799 VectorCopy( dv[ 1 ]->xyz, worldverts[ 1 ] );
800 VectorCopy( dv[ 2 ]->xyz, worldverts[ 2 ] );
802 /* map the vertexes */
803 MapSingleLuxel( lm, info, dv[ 0 ], plane, 1, stv, ttv, worldverts );
804 MapSingleLuxel( lm, info, dv[ 1 ], plane, 1, stv, ttv, worldverts );
805 MapSingleLuxel( lm, info, dv[ 2 ], plane, 1, stv, ttv, worldverts );
807 /* 2002-11-20: prefer axial triangle edges */
810 /* subdivide the triangle */
811 MapTriangle_r( lm, info, dv, plane, stv, ttv, worldverts );
815 for( i = 0; i < 3; i++ )
818 bspDrawVert_t *dv2[ 3 ];
822 a = dv[ i ]->lightmap[ 0 ];
823 b = dv[ (i + 1) % 3 ]->lightmap[ 0 ];
825 /* make degenerate triangles for mapping edges */
826 if( fabs( a[ 0 ] - b[ 0 ] ) < 0.01f || fabs( a[ 1 ] - b[ 1 ] ) < 0.01f )
829 dv2[ 1 ] = dv[ (i + 1) % 3 ];
830 dv2[ 2 ] = dv[ (i + 1) % 3 ];
832 /* map the degenerate triangle */
833 MapTriangle_r( lm, info, dv2, plane, stv, ttv, worldverts );
844 recursively subdivides a quad until its edges are shorter
845 than the distance between two luxels
848 static void MapQuad_r( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 4 ], vec4_t plane, vec3_t stv[ 4 ], vec3_t ttv[ 4 ] )
850 bspDrawVert_t mid[ 2 ], *dv2[ 4 ];
857 float *a, *b, dx, dy, dist, maxDist;
860 /* find the longest edge and split it */
863 for( i = 0; i < 4; i++ )
866 a = dv[ i ]->lightmap[ 0 ];
867 b = dv[ (i + 1) % 4 ]->lightmap[ 0 ];
870 dx = a[ 0 ] - b[ 0 ];
871 dy = a[ 1 ] - b[ 1 ];
872 dist = (dx * dx) + (dy * dy); //% sqrt( (dx * dx) + (dy * dy) );
882 /* try to early out */
883 if( max < 0 || maxDist <= subdivideThreshold )
887 /* we only care about even/odd edges */
890 /* split the longest edges */
891 LerpDrawVert( dv[ max ], dv[ (max + 1) % 4 ], &mid[ 0 ] );
892 LerpDrawVert( dv[ max + 2 ], dv[ (max + 3) % 4 ], &mid[ 1 ] );
894 /* map the vertexes */
895 MapSingleLuxel( lm, info, &mid[ 0 ], plane, 1, stv, ttv, NULL );
896 MapSingleLuxel( lm, info, &mid[ 1 ], plane, 1, stv, ttv, NULL );
901 /* recurse to first quad */
903 dv2[ 1 ] = &mid[ 0 ];
904 dv2[ 2 ] = &mid[ 1 ];
906 MapQuad_r( lm, info, dv2, plane, stv, ttv );
908 /* recurse to second quad */
909 dv2[ 0 ] = &mid[ 0 ];
912 dv2[ 3 ] = &mid[ 1 ];
913 MapQuad_r( lm, info, dv2, plane, stv, ttv );
919 /* recurse to first quad */
922 dv2[ 2 ] = &mid[ 0 ];
923 dv2[ 3 ] = &mid[ 1 ];
924 MapQuad_r( lm, info, dv2, plane, stv, ttv );
926 /* recurse to second quad */
927 dv2[ 0 ] = &mid[ 1 ];
928 dv2[ 1 ] = &mid[ 0 ];
931 MapQuad_r( lm, info, dv2, plane, stv, ttv );
939 seed function for MapQuad_r()
940 requires a cw ordered triangle quad
943 #define QUAD_PLANAR_EPSILON 0.5f
945 static qboolean MapQuad( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 4 ] )
949 vec3_t *stv, *ttv, stvStatic[ 4 ], ttvStatic[ 4 ];
952 /* get plane if possible */
953 if( lm->plane != NULL )
955 VectorCopy( lm->plane, plane );
956 plane[ 3 ] = lm->plane[ 3 ];
959 /* otherwise make one from the points */
960 else if( PlaneFromPoints( plane, dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz ) == qfalse )
963 /* 4th point must fall on the plane */
964 dist = DotProduct( plane, dv[ 3 ]->xyz ) - plane[ 3 ];
965 if( fabs( dist ) > QUAD_PLANAR_EPSILON )
968 /* check to see if we need to calculate texture->world tangent vectors */
969 if( info->si->normalImage != NULL && CalcTangentVectors( 4, dv, stvStatic, ttvStatic ) )
980 /* map the vertexes */
981 MapSingleLuxel( lm, info, dv[ 0 ], plane, 1, stv, ttv, NULL );
982 MapSingleLuxel( lm, info, dv[ 1 ], plane, 1, stv, ttv, NULL );
983 MapSingleLuxel( lm, info, dv[ 2 ], plane, 1, stv, ttv, NULL );
984 MapSingleLuxel( lm, info, dv[ 3 ], plane, 1, stv, ttv, NULL );
986 /* subdivide the quad */
987 MapQuad_r( lm, info, dv, plane, stv, ttv );
995 maps the locations, normals, and pvs clusters for a raw lightmap
998 #define VectorDivide( in, d, out ) VectorScale( in, (1.0f / (d)), out ) //% (out)[ 0 ] = (in)[ 0 ] / (d), (out)[ 1 ] = (in)[ 1 ] / (d), (out)[ 2 ] = (in)[ 2 ] / (d)
1000 void MapRawLightmap( int rawLightmapNum )
1002 int n, num, i, x, y, sx, sy, pw[ 5 ], r, *cluster, mapNonAxial;
1003 float *luxel, *origin, *normal, samples, radius, pass;
1005 bspDrawSurface_t *ds;
1006 surfaceInfo_t *info;
1007 mesh_t src, *subdivided, *mesh;
1008 bspDrawVert_t *verts, *dv[ 4 ], fake;
1011 /* bail if this number exceeds the number of raw lightmaps */
1012 if( rawLightmapNum >= numRawLightmaps )
1016 lm = &rawLightmaps[ rawLightmapNum ];
1018 /* -----------------------------------------------------------------
1019 map referenced surfaces onto the raw lightmap
1020 ----------------------------------------------------------------- */
1022 /* walk the list of surfaces on this raw lightmap */
1023 for( n = 0; n < lm->numLightSurfaces; n++ )
1025 /* with > 1 surface per raw lightmap, clear occluded */
1028 for( y = 0; y < lm->sh; y++ )
1030 for( x = 0; x < lm->sw; x++ )
1033 cluster = SUPER_CLUSTER( x, y );
1035 *cluster = CLUSTER_UNMAPPED;
1041 num = lightSurfaces[ lm->firstLightSurface + n ];
1042 ds = &bspDrawSurfaces[ num ];
1043 info = &surfaceInfos[ num ];
1045 /* bail if no lightmap to calculate */
1046 if( info->lm != lm )
1052 /* map the surface onto the lightmap origin/cluster/normal buffers */
1053 switch( ds->surfaceType )
1057 verts = yDrawVerts + ds->firstVert;
1059 /* map the triangles */
1060 for( mapNonAxial = 0; mapNonAxial < 2; mapNonAxial++ )
1062 for( i = 0; i < ds->numIndexes; i += 3 )
1064 dv[ 0 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i ] ];
1065 dv[ 1 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i + 1 ] ];
1066 dv[ 2 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i + 2 ] ];
1067 MapTriangle( lm, info, dv, mapNonAxial );
1073 /* make a mesh from the drawsurf */
1074 src.width = ds->patchWidth;
1075 src.height = ds->patchHeight;
1076 src.verts = &yDrawVerts[ ds->firstVert ];
1077 //% subdivided = SubdivideMesh( src, 8, 512 );
1078 subdivided = SubdivideMesh2( src, info->patchIterations );
1080 /* fit it to the curve and remove colinear verts on rows/columns */
1081 PutMeshOnCurve( *subdivided );
1082 mesh = RemoveLinearMeshColumnsRows( subdivided );
1083 FreeMesh( subdivided );
1086 verts = mesh->verts;
1092 Sys_Printf( "Planar patch: [%1.3f %1.3f %1.3f] [%1.3f %1.3f %1.3f] [%1.3f %1.3f %1.3f]\n",
1093 lm->plane[ 0 ], lm->plane[ 1 ], lm->plane[ 2 ],
1094 lm->vecs[ 0 ][ 0 ], lm->vecs[ 0 ][ 1 ], lm->vecs[ 0 ][ 2 ],
1095 lm->vecs[ 1 ][ 0 ], lm->vecs[ 1 ][ 1 ], lm->vecs[ 1 ][ 2 ] );
1099 /* map the mesh quads */
1102 for( mapNonAxial = 0; mapNonAxial < 2; mapNonAxial++ )
1104 for( y = 0; y < (mesh->height - 1); y++ )
1106 for( x = 0; x < (mesh->width - 1); x++ )
1109 pw[ 0 ] = x + (y * mesh->width);
1110 pw[ 1 ] = x + ((y + 1) * mesh->width);
1111 pw[ 2 ] = x + 1 + ((y + 1) * mesh->width);
1112 pw[ 3 ] = x + 1 + (y * mesh->width);
1113 pw[ 4 ] = x + (y * mesh->width); /* same as pw[ 0 ] */
1118 /* get drawverts and map first triangle */
1119 dv[ 0 ] = &verts[ pw[ r + 0 ] ];
1120 dv[ 1 ] = &verts[ pw[ r + 1 ] ];
1121 dv[ 2 ] = &verts[ pw[ r + 2 ] ];
1122 MapTriangle( lm, info, dv, mapNonAxial );
1124 /* get drawverts and map second triangle */
1125 dv[ 0 ] = &verts[ pw[ r + 0 ] ];
1126 dv[ 1 ] = &verts[ pw[ r + 2 ] ];
1127 dv[ 2 ] = &verts[ pw[ r + 3 ] ];
1128 MapTriangle( lm, info, dv, mapNonAxial );
1135 for( y = 0; y < (mesh->height - 1); y++ )
1137 for( x = 0; x < (mesh->width - 1); x++ )
1140 pw[ 0 ] = x + (y * mesh->width);
1141 pw[ 1 ] = x + ((y + 1) * mesh->width);
1142 pw[ 2 ] = x + 1 + ((y + 1) * mesh->width);
1143 pw[ 3 ] = x + 1 + (y * mesh->width);
1149 /* attempt to map quad first */
1150 dv[ 0 ] = &verts[ pw[ r + 0 ] ];
1151 dv[ 1 ] = &verts[ pw[ r + 1 ] ];
1152 dv[ 2 ] = &verts[ pw[ r + 2 ] ];
1153 dv[ 3 ] = &verts[ pw[ r + 3 ] ];
1154 if( MapQuad( lm, info, dv ) )
1157 /* get drawverts and map first triangle */
1158 MapTriangle( lm, info, dv, mapNonAxial );
1160 /* get drawverts and map second triangle */
1161 dv[ 1 ] = &verts[ pw[ r + 2 ] ];
1162 dv[ 2 ] = &verts[ pw[ r + 3 ] ];
1163 MapTriangle( lm, info, dv, mapNonAxial );
1178 /* -----------------------------------------------------------------
1179 average and clean up luxel normals
1180 ----------------------------------------------------------------- */
1182 /* walk the luxels */
1183 for( y = 0; y < lm->sh; y++ )
1185 for( x = 0; x < lm->sw; x++ )
1188 luxel = SUPER_LUXEL( 0, x, y );
1189 normal = SUPER_NORMAL( x, y );
1190 cluster = SUPER_CLUSTER( x, y );
1192 /* only look at mapped luxels */
1196 /* the normal data could be the sum of multiple samples */
1197 if( luxel[ 3 ] > 1.0f )
1198 VectorNormalize( normal, normal );
1200 /* mark this luxel as having only one normal */
1205 /* non-planar surfaces stop here */
1206 if( lm->plane == NULL )
1209 /* -----------------------------------------------------------------
1210 map occluded or unuxed luxels
1211 ----------------------------------------------------------------- */
1213 /* walk the luxels */
1214 radius = floor( superSample / 2 );
1215 radius = radius > 0 ? radius : 1.0f;
1217 for( pass = 2.0f; pass <= radius; pass += 1.0f )
1219 for( y = 0; y < lm->sh; y++ )
1221 for( x = 0; x < lm->sw; x++ )
1224 luxel = SUPER_LUXEL( 0, x, y );
1225 normal = SUPER_NORMAL( x, y );
1226 cluster = SUPER_CLUSTER( x, y );
1228 /* only look at unmapped luxels */
1229 if( *cluster != CLUSTER_UNMAPPED )
1232 /* divine a normal and origin from neighboring luxels */
1233 VectorClear( fake.xyz );
1234 VectorClear( fake.normal );
1235 fake.lightmap[ 0 ][ 0 ] = x; //% 0.0001 + x;
1236 fake.lightmap[ 0 ][ 1 ] = y; //% 0.0001 + y;
1238 for( sy = (y - 1); sy <= (y + 1); sy++ )
1240 if( sy < 0 || sy >= lm->sh )
1243 for( sx = (x - 1); sx <= (x + 1); sx++ )
1245 if( sx < 0 || sx >= lm->sw || (sx == x && sy == y) )
1248 /* get neighboring luxel */
1249 luxel = SUPER_LUXEL( 0, sx, sy );
1250 origin = SUPER_ORIGIN( sx, sy );
1251 normal = SUPER_NORMAL( sx, sy );
1252 cluster = SUPER_CLUSTER( sx, sy );
1254 /* only consider luxels mapped in previous passes */
1255 if( *cluster < 0 || luxel[ 0 ] >= pass )
1258 /* add its distinctiveness to our own */
1259 VectorAdd( fake.xyz, origin, fake.xyz );
1260 VectorAdd( fake.normal, normal, fake.normal );
1261 samples += luxel[ 3 ];
1266 if( samples == 0.0f )
1270 VectorDivide( fake.xyz, samples, fake.xyz );
1271 //% VectorDivide( fake.normal, samples, fake.normal );
1272 if( VectorNormalize( fake.normal, fake.normal ) == 0.0f )
1275 /* map the fake vert */
1276 MapSingleLuxel( lm, NULL, &fake, lm->plane, pass, NULL, NULL, NULL );
1281 /* -----------------------------------------------------------------
1282 average and clean up luxel normals
1283 ----------------------------------------------------------------- */
1285 /* walk the luxels */
1286 for( y = 0; y < lm->sh; y++ )
1288 for( x = 0; x < lm->sw; x++ )
1291 luxel = SUPER_LUXEL( 0, x, y );
1292 normal = SUPER_NORMAL( x, y );
1293 cluster = SUPER_CLUSTER( x, y );
1295 /* only look at mapped luxels */
1299 /* the normal data could be the sum of multiple samples */
1300 if( luxel[ 3 ] > 1.0f )
1301 VectorNormalize( normal, normal );
1303 /* mark this luxel as having only one normal */
1311 for( y = 0; y < lm->sh; y++ )
1313 for( x = 0; x < lm->sw; x++ )
1318 cluster = SUPER_CLUSTER( x, y );
1319 origin = SUPER_ORIGIN( x, y );
1320 normal = SUPER_NORMAL( x, y );
1321 luxel = SUPER_LUXEL( x, y );
1326 /* check if within the bounding boxes of all surfaces referenced */
1327 ClearBounds( mins, maxs );
1328 for( n = 0; n < lm->numLightSurfaces; n++ )
1331 info = &surfaceInfos[ lightSurfaces[ lm->firstLightSurface + n ] ];
1332 TOL = info->sampleSize + 2;
1333 AddPointToBounds( info->mins, mins, maxs );
1334 AddPointToBounds( info->maxs, mins, maxs );
1335 if( origin[ 0 ] > (info->mins[ 0 ] - TOL) && origin[ 0 ] < (info->maxs[ 0 ] + TOL) &&
1336 origin[ 1 ] > (info->mins[ 1 ] - TOL) && origin[ 1 ] < (info->maxs[ 1 ] + TOL) &&
1337 origin[ 2 ] > (info->mins[ 2 ] - TOL) && origin[ 2 ] < (info->maxs[ 2 ] + TOL) )
1342 if( n < lm->numLightSurfaces )
1345 /* report bogus origin */
1346 Sys_Printf( "%6d [%2d,%2d] (%4d): XYZ(%+4.1f %+4.1f %+4.1f) LO(%+4.1f %+4.1f %+4.1f) HI(%+4.1f %+4.1f %+4.1f) <%3.0f>\n",
1347 rawLightmapNum, x, y, *cluster,
1348 origin[ 0 ], origin[ 1 ], origin[ 2 ],
1349 mins[ 0 ], mins[ 1 ], mins[ 2 ],
1350 maxs[ 0 ], maxs[ 1 ], maxs[ 2 ],
1361 sets up dirtmap (ambient occlusion)
1364 #define DIRT_CONE_ANGLE 88 /* degrees */
1365 #define DIRT_NUM_ANGLE_STEPS 16
1366 #define DIRT_NUM_ELEVATION_STEPS 3
1367 #define DIRT_NUM_VECTORS (DIRT_NUM_ANGLE_STEPS * DIRT_NUM_ELEVATION_STEPS)
1369 static vec3_t dirtVectors[ DIRT_NUM_VECTORS ];
1370 static int numDirtVectors = 0;
1372 void SetupDirt( void )
1375 float angle, elevation, angleStep, elevationStep;
1379 Sys_FPrintf( SYS_VRB, "--- SetupDirt ---\n" );
1381 /* calculate angular steps */
1382 angleStep = DEG2RAD( 360.0f / DIRT_NUM_ANGLE_STEPS );
1383 elevationStep = DEG2RAD( DIRT_CONE_ANGLE / DIRT_NUM_ELEVATION_STEPS );
1387 for( i = 0, angle = 0.0f; i < DIRT_NUM_ANGLE_STEPS; i++, angle += angleStep )
1389 /* iterate elevation */
1390 for( j = 0, elevation = elevationStep * 0.5f; j < DIRT_NUM_ELEVATION_STEPS; j++, elevation += elevationStep )
1392 dirtVectors[ numDirtVectors ][ 0 ] = sin( elevation ) * cos( angle );
1393 dirtVectors[ numDirtVectors ][ 1 ] = sin( elevation ) * sin( angle );
1394 dirtVectors[ numDirtVectors ][ 2 ] = cos( elevation );
1399 /* emit some statistics */
1400 Sys_FPrintf( SYS_VRB, "%9d dirtmap vectors\n", numDirtVectors );
1406 calculates dirt value for a given sample
1409 float DirtForSample( trace_t *trace )
1412 float gatherDirt, outDirt, angle, elevation, ooDepth;
1413 vec3_t normal, worldUp, myUp, myRt, temp, direction, displacement;
1419 if( trace == NULL || trace->cluster < 0 )
1424 ooDepth = 1.0f / dirtDepth;
1425 VectorCopy( trace->normal, normal );
1427 /* check if the normal is aligned to the world-up */
1428 if( normal[ 0 ] == 0.0f && normal[ 1 ] == 0.0f && ( normal[ 2 ] == 1.0f || normal[ 2 ] == -1.0f ) )
1430 if( normal[ 2 ] == 1.0f )
1432 VectorSet( myRt, 1.0f, 0.0f, 0.0f );
1433 VectorSet( myUp, 0.0f, 1.0f, 0.0f );
1435 else if( normal[ 2 ] == -1.0f )
1437 VectorSet( myRt, -1.0f, 0.0f, 0.0f );
1438 VectorSet( myUp, 0.0f, 1.0f, 0.0f );
1443 VectorSet( worldUp, 0.0f, 0.0f, 1.0f );
1444 CrossProduct( normal, worldUp, myRt );
1445 VectorNormalize( myRt, myRt );
1446 CrossProduct( myRt, normal, myUp );
1447 VectorNormalize( myUp, myUp );
1450 /* 1 = random mode, 0 (well everything else) = non-random mode */
1454 for( i = 0; i < numDirtVectors; i++ )
1456 /* get random vector */
1457 angle = Random() * DEG2RAD( 360.0f );
1458 elevation = Random() * DEG2RAD( DIRT_CONE_ANGLE );
1459 temp[ 0 ] = cos( angle ) * sin( elevation );
1460 temp[ 1 ] = sin( angle ) * sin( elevation );
1461 temp[ 2 ] = cos( elevation );
1463 /* transform into tangent space */
1464 direction[ 0 ] = myRt[ 0 ] * temp[ 0 ] + myUp[ 0 ] * temp[ 1 ] + normal[ 0 ] * temp[ 2 ];
1465 direction[ 1 ] = myRt[ 1 ] * temp[ 0 ] + myUp[ 1 ] * temp[ 1 ] + normal[ 1 ] * temp[ 2 ];
1466 direction[ 2 ] = myRt[ 2 ] * temp[ 0 ] + myUp[ 2 ] * temp[ 1 ] + normal[ 2 ] * temp[ 2 ];
1469 VectorMA( trace->origin, dirtDepth, direction, trace->end );
1470 SetupTrace( trace );
1476 VectorSubtract( trace->hit, trace->origin, displacement );
1477 gatherDirt += 1.0f - ooDepth * VectorLength( displacement );
1483 /* iterate through ordered vectors */
1484 for( i = 0; i < numDirtVectors; i++ )
1486 /* transform vector into tangent space */
1487 direction[ 0 ] = myRt[ 0 ] * dirtVectors[ i ][ 0 ] + myUp[ 0 ] * dirtVectors[ i ][ 1 ] + normal[ 0 ] * dirtVectors[ i ][ 2 ];
1488 direction[ 1 ] = myRt[ 1 ] * dirtVectors[ i ][ 0 ] + myUp[ 1 ] * dirtVectors[ i ][ 1 ] + normal[ 1 ] * dirtVectors[ i ][ 2 ];
1489 direction[ 2 ] = myRt[ 2 ] * dirtVectors[ i ][ 0 ] + myUp[ 2 ] * dirtVectors[ i ][ 1 ] + normal[ 2 ] * dirtVectors[ i ][ 2 ];
1492 VectorMA( trace->origin, dirtDepth, direction, trace->end );
1493 SetupTrace( trace );
1499 VectorSubtract( trace->hit, trace->origin, displacement );
1500 gatherDirt += 1.0f - ooDepth * VectorLength( displacement );
1506 VectorMA( trace->origin, dirtDepth, normal, trace->end );
1507 SetupTrace( trace );
1513 VectorSubtract( trace->hit, trace->origin, displacement );
1514 gatherDirt += 1.0f - ooDepth * VectorLength( displacement );
1518 if( gatherDirt <= 0.0f )
1521 /* apply gain (does this even do much? heh) */
1522 outDirt = pow( gatherDirt / (numDirtVectors + 1), dirtGain );
1523 if( outDirt > 1.0f )
1527 outDirt *= dirtScale;
1528 if( outDirt > 1.0f )
1531 /* return to sender */
1532 return 1.0f - outDirt;
1539 calculates dirty fraction for each luxel
1542 void DirtyRawLightmap( int rawLightmapNum )
1544 int i, x, y, sx, sy, *cluster;
1545 float *origin, *normal, *dirt, *dirt2, average, samples;
1547 surfaceInfo_t *info;
1552 /* bail if this number exceeds the number of raw lightmaps */
1553 if( rawLightmapNum >= numRawLightmaps )
1557 lm = &rawLightmaps[ rawLightmapNum ];
1560 trace.testOcclusion = qtrue;
1561 trace.forceSunlight = qfalse;
1562 trace.recvShadows = lm->recvShadows;
1563 trace.numSurfaces = lm->numLightSurfaces;
1564 trace.surfaces = &lightSurfaces[ lm->firstLightSurface ];
1565 trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
1566 trace.testAll = qtrue;
1568 /* twosided lighting (may or may not be a good idea for lightmapped stuff) */
1569 trace.twoSided = qfalse;
1570 for( i = 0; i < trace.numSurfaces; i++ )
1573 info = &surfaceInfos[ trace.surfaces[ i ] ];
1575 /* check twosidedness */
1576 if( info->si->twoSided )
1578 trace.twoSided = qtrue;
1584 for( i = 0; i < trace.numSurfaces; i++ )
1587 info = &surfaceInfos[ trace.surfaces[ i ] ];
1589 /* check twosidedness */
1590 if( info->si->noDirty )
1598 for( y = 0; y < lm->sh; y++ )
1600 for( x = 0; x < lm->sw; x++ )
1603 cluster = SUPER_CLUSTER( x, y );
1604 origin = SUPER_ORIGIN( x, y );
1605 normal = SUPER_NORMAL( x, y );
1606 dirt = SUPER_DIRT( x, y );
1608 /* set default dirt */
1611 /* only look at mapped luxels */
1615 /* don't apply dirty on this surface */
1623 trace.cluster = *cluster;
1624 VectorCopy( origin, trace.origin );
1625 VectorCopy( normal, trace.normal );
1628 *dirt = DirtForSample( &trace );
1632 /* testing no filtering */
1636 for( y = 0; y < lm->sh; y++ )
1638 for( x = 0; x < lm->sw; x++ )
1641 cluster = SUPER_CLUSTER( x, y );
1642 dirt = SUPER_DIRT( x, y );
1644 /* filter dirt by adjacency to unmapped luxels */
1647 for( sy = (y - 1); sy <= (y + 1); sy++ )
1649 if( sy < 0 || sy >= lm->sh )
1652 for( sx = (x - 1); sx <= (x + 1); sx++ )
1654 if( sx < 0 || sx >= lm->sw || (sx == x && sy == y) )
1657 /* get neighboring luxel */
1658 cluster = SUPER_CLUSTER( sx, sy );
1659 dirt2 = SUPER_DIRT( sx, sy );
1660 if( *cluster < 0 || *dirt2 <= 0.0f )
1669 if( samples <= 0.0f )
1674 if( samples <= 0.0f )
1678 *dirt = average / samples;
1687 calculates the pvs cluster, origin, normal of a sub-luxel
1690 static qboolean SubmapRawLuxel( rawLightmap_t *lm, int x, int y, float bx, float by, int *sampleCluster, vec3_t sampleOrigin, vec3_t sampleNormal )
1692 int i, *cluster, *cluster2;
1693 float *origin, *origin2, *normal; //% , *normal2;
1694 vec3_t originVecs[ 2 ]; //% , normalVecs[ 2 ];
1697 /* calulate x vector */
1698 if( (x < (lm->sw - 1) && bx >= 0.0f) || (x == 0 && bx <= 0.0f) )
1700 cluster = SUPER_CLUSTER( x, y );
1701 origin = SUPER_ORIGIN( x, y );
1702 //% normal = SUPER_NORMAL( x, y );
1703 cluster2 = SUPER_CLUSTER( x + 1, y );
1704 origin2 = *cluster2 < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x + 1, y );
1705 //% normal2 = *cluster2 < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x + 1, y );
1707 else if( (x > 0 && bx <= 0.0f) || (x == (lm->sw - 1) && bx >= 0.0f) )
1709 cluster = SUPER_CLUSTER( x - 1, y );
1710 origin = *cluster < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x - 1, y );
1711 //% normal = *cluster < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x - 1, y );
1712 cluster2 = SUPER_CLUSTER( x, y );
1713 origin2 = SUPER_ORIGIN( x, y );
1714 //% normal2 = SUPER_NORMAL( x, y );
1717 Sys_Printf( "WARNING: Spurious lightmap S vector\n" );
1719 VectorSubtract( origin2, origin, originVecs[ 0 ] );
1720 //% VectorSubtract( normal2, normal, normalVecs[ 0 ] );
1722 /* calulate y vector */
1723 if( (y < (lm->sh - 1) && bx >= 0.0f) || (y == 0 && bx <= 0.0f) )
1725 cluster = SUPER_CLUSTER( x, y );
1726 origin = SUPER_ORIGIN( x, y );
1727 //% normal = SUPER_NORMAL( x, y );
1728 cluster2 = SUPER_CLUSTER( x, y + 1 );
1729 origin2 = *cluster2 < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x, y + 1 );
1730 //% normal2 = *cluster2 < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x, y + 1 );
1732 else if( (y > 0 && bx <= 0.0f) || (y == (lm->sh - 1) && bx >= 0.0f) )
1734 cluster = SUPER_CLUSTER( x, y - 1 );
1735 origin = *cluster < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x, y - 1 );
1736 //% normal = *cluster < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x, y - 1 );
1737 cluster2 = SUPER_CLUSTER( x, y );
1738 origin2 = SUPER_ORIGIN( x, y );
1739 //% normal2 = SUPER_NORMAL( x, y );
1742 Sys_Printf( "WARNING: Spurious lightmap T vector\n" );
1744 VectorSubtract( origin2, origin, originVecs[ 1 ] );
1745 //% VectorSubtract( normal2, normal, normalVecs[ 1 ] );
1747 /* calculate new origin */
1748 //% VectorMA( origin, bx, originVecs[ 0 ], sampleOrigin );
1749 //% VectorMA( sampleOrigin, by, originVecs[ 1 ], sampleOrigin );
1750 for( i = 0; i < 3; i++ )
1751 sampleOrigin[ i ] = sampleOrigin[ i ] + (bx * originVecs[ 0 ][ i ]) + (by * originVecs[ 1 ][ i ]);
1754 *sampleCluster = ClusterForPointExtFilter( sampleOrigin, (LUXEL_EPSILON * 2), lm->numLightClusters, lm->lightClusters );
1755 if( *sampleCluster < 0 )
1758 /* calculate new normal */
1759 //% VectorMA( normal, bx, normalVecs[ 0 ], sampleNormal );
1760 //% VectorMA( sampleNormal, by, normalVecs[ 1 ], sampleNormal );
1761 //% if( VectorNormalize( sampleNormal, sampleNormal ) <= 0.0f )
1763 normal = SUPER_NORMAL( x, y );
1764 VectorCopy( normal, sampleNormal );
1772 SubsampleRawLuxel_r()
1773 recursively subsamples a luxel until its color gradient is low enough or subsampling limit is reached
1776 static void SubsampleRawLuxel_r( rawLightmap_t *lm, trace_t *trace, vec3_t sampleOrigin, int x, int y, float bias, float *lightLuxel )
1778 int b, samples, mapped, lighted;
1781 vec3_t origin[ 4 ], normal[ 4 ];
1782 float biasDirs[ 4 ][ 2 ] = { { -1.0f, -1.0f }, { 1.0f, -1.0f }, { -1.0f, 1.0f }, { 1.0f, 1.0f } };
1783 vec3_t color, total;
1787 if( lightLuxel[ 3 ] >= lightSamples )
1791 VectorClear( total );
1795 /* make 2x2 subsample stamp */
1796 for( b = 0; b < 4; b++ )
1799 VectorCopy( sampleOrigin, origin[ b ] );
1801 /* calculate position */
1802 if( !SubmapRawLuxel( lm, x, y, (bias * biasDirs[ b ][ 0 ]), (bias * biasDirs[ b ][ 1 ]), &cluster[ b ], origin[ b ], normal[ b ] ) )
1809 /* increment sample count */
1810 luxel[ b ][ 3 ] = lightLuxel[ 3 ] + 1.0f;
1813 trace->cluster = *cluster;
1814 VectorCopy( origin[ b ], trace->origin );
1815 VectorCopy( normal[ b ], trace->normal );
1819 LightContributionToSample( trace );
1820 if(trace->forceSubsampling > 1.0f)
1822 /* alphashadow: we subsample as deep as we can */
1828 /* add to totals (fixme: make contrast function) */
1829 VectorCopy( trace->color, luxel[ b ] );
1830 VectorAdd( total, trace->color, total );
1831 if( (luxel[ b ][ 0 ] + luxel[ b ][ 1 ] + luxel[ b ][ 2 ]) > 0.0f )
1835 /* subsample further? */
1836 if( (lightLuxel[ 3 ] + 1.0f) < lightSamples &&
1837 (total[ 0 ] > 4.0f || total[ 1 ] > 4.0f || total[ 2 ] > 4.0f) &&
1838 lighted != 0 && lighted != mapped )
1840 for( b = 0; b < 4; b++ )
1842 if( cluster[ b ] < 0 )
1844 SubsampleRawLuxel_r( lm, trace, origin[ b ], x, y, (bias * 0.5f), luxel[ b ] );
1849 //% VectorClear( color );
1851 VectorCopy( lightLuxel, color );
1853 for( b = 0; b < 4; b++ )
1855 if( cluster[ b ] < 0 )
1857 VectorAdd( color, luxel[ b ], color );
1865 color[ 0 ] /= samples;
1866 color[ 1 ] /= samples;
1867 color[ 2 ] /= samples;
1870 VectorCopy( color, lightLuxel );
1871 lightLuxel[ 3 ] += 1.0f;
1874 static void RandomSubsampleRawLuxel( rawLightmap_t *lm, trace_t *trace, vec3_t sampleOrigin, int x, int y, float bias, float *lightLuxel )
1876 int b, samples, mapped;
1878 vec3_t origin, normal;
1881 VectorClear( total );
1883 for(b = 0; b < lightSamples; ++b)
1886 VectorCopy( sampleOrigin, origin );
1888 /* calculate position */
1889 if( !SubmapRawLuxel( lm, x, y, (bias * (2 * Random() - 1)), (bias * (2 * Random() - 1)), &cluster, origin, normal ) )
1896 trace->cluster = cluster;
1897 VectorCopy( origin, trace->origin );
1898 VectorCopy( normal, trace->normal );
1900 LightContributionToSample( trace );
1901 VectorAdd( total, trace->color, total );
1908 lightLuxel[ 0 ] = total[ 0 ] / mapped;
1909 lightLuxel[ 1 ] = total[ 1 ] / mapped;
1910 lightLuxel[ 2 ] = total[ 2 ] / mapped;
1917 IlluminateRawLightmap()
1918 illuminates the luxels
1921 #define STACK_LL_SIZE (SUPER_LUXEL_SIZE * 64 * 64)
1922 #define LIGHT_LUXEL( x, y ) (lightLuxels + ((((y) * lm->sw) + (x)) * SUPER_LUXEL_SIZE))
1924 void IlluminateRawLightmap( int rawLightmapNum )
1926 int i, t, x, y, sx, sy, size, llSize, luxelFilterRadius, lightmapNum;
1927 int *cluster, *cluster2, mapped, lighted, totalLighted;
1929 surfaceInfo_t *info;
1930 qboolean filterColor, filterDir;
1932 float *origin, *normal, *dirt, *luxel, *luxel2, *deluxel, *deluxel2;
1933 unsigned char *flag;
1934 float *lightLuxels, *lightLuxel, samples, filterRadius, weight;
1935 vec3_t color, averageColor, averageDir, total, temp, temp2;
1936 float tests[ 4 ][ 2 ] = { { 0.0f, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 } };
1938 float stackLightLuxels[ STACK_LL_SIZE ];
1941 /* bail if this number exceeds the number of raw lightmaps */
1942 if( rawLightmapNum >= numRawLightmaps )
1946 lm = &rawLightmaps[ rawLightmapNum ];
1949 trace.testOcclusion = !noTrace;
1950 trace.forceSunlight = qfalse;
1951 trace.recvShadows = lm->recvShadows;
1952 trace.numSurfaces = lm->numLightSurfaces;
1953 trace.surfaces = &lightSurfaces[ lm->firstLightSurface ];
1954 trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
1956 /* twosided lighting (may or may not be a good idea for lightmapped stuff) */
1957 trace.twoSided = qfalse;
1958 for( i = 0; i < trace.numSurfaces; i++ )
1961 info = &surfaceInfos[ trace.surfaces[ i ] ];
1963 /* check twosidedness */
1964 if( info->si->twoSided )
1966 trace.twoSided = qtrue;
1971 /* create a culled light list for this raw lightmap */
1972 CreateTraceLightsForBounds( lm->mins, lm->maxs, lm->plane, lm->numLightClusters, lm->lightClusters, LIGHT_SURFACES, &trace );
1974 /* -----------------------------------------------------------------
1976 ----------------------------------------------------------------- */
1979 numLuxelsIlluminated += (lm->sw * lm->sh);
1981 /* test debugging state */
1982 if( debugSurfaces || debugAxis || debugCluster || debugOrigin || dirtDebug || normalmap )
1984 /* debug fill the luxels */
1985 for( y = 0; y < lm->sh; y++ )
1987 for( x = 0; x < lm->sw; x++ )
1990 cluster = SUPER_CLUSTER( x, y );
1992 /* only fill mapped luxels */
1996 /* get particulars */
1997 luxel = SUPER_LUXEL( 0, x, y );
1998 origin = SUPER_ORIGIN( x, y );
1999 normal = SUPER_NORMAL( x, y );
2001 /* color the luxel with raw lightmap num? */
2003 VectorCopy( debugColors[ rawLightmapNum % 12 ], luxel );
2005 /* color the luxel with lightmap axis? */
2006 else if( debugAxis )
2008 luxel[ 0 ] = (lm->axis[ 0 ] + 1.0f) * 127.5f;
2009 luxel[ 1 ] = (lm->axis[ 1 ] + 1.0f) * 127.5f;
2010 luxel[ 2 ] = (lm->axis[ 2 ] + 1.0f) * 127.5f;
2013 /* color the luxel with luxel cluster? */
2014 else if( debugCluster )
2015 VectorCopy( debugColors[ *cluster % 12 ], luxel );
2017 /* color the luxel with luxel origin? */
2018 else if( debugOrigin )
2020 VectorSubtract( lm->maxs, lm->mins, temp );
2021 VectorScale( temp, (1.0f / 255.0f), temp );
2022 VectorSubtract( origin, lm->mins, temp2 );
2023 luxel[ 0 ] = lm->mins[ 0 ] + (temp[ 0 ] * temp2[ 0 ]);
2024 luxel[ 1 ] = lm->mins[ 1 ] + (temp[ 1 ] * temp2[ 1 ]);
2025 luxel[ 2 ] = lm->mins[ 2 ] + (temp[ 2 ] * temp2[ 2 ]);
2028 /* color the luxel with the normal */
2029 else if( normalmap )
2031 luxel[ 0 ] = (normal[ 0 ] + 1.0f) * 127.5f;
2032 luxel[ 1 ] = (normal[ 1 ] + 1.0f) * 127.5f;
2033 luxel[ 2 ] = (normal[ 2 ] + 1.0f) * 127.5f;
2036 /* otherwise clear it */
2038 VectorClear( luxel );
2047 /* allocate temporary per-light luxel storage */
2048 llSize = lm->sw * lm->sh * SUPER_LUXEL_SIZE * sizeof( float );
2049 if( llSize <= (STACK_LL_SIZE * sizeof( float )) )
2050 lightLuxels = stackLightLuxels;
2052 lightLuxels = safe_malloc( llSize );
2055 //% memset( lm->superLuxels[ 0 ], 0, llSize );
2057 /* set ambient color */
2058 for( y = 0; y < lm->sh; y++ )
2060 for( x = 0; x < lm->sw; x++ )
2063 cluster = SUPER_CLUSTER( x, y );
2064 luxel = SUPER_LUXEL( 0, x, y );
2065 normal = SUPER_NORMAL( x, y );
2066 deluxel = SUPER_DELUXEL( x, y );
2068 /* blacken unmapped clusters */
2070 VectorClear( luxel );
2075 VectorCopy( ambientColor, luxel );
2078 brightness = RGBTOGRAY( ambientColor ) * ( 1.0f/255.0f );
2080 // use AT LEAST this amount of contribution from ambient for the deluxemap, fixes points that receive ZERO light
2081 if(brightness < 0.00390625f)
2082 brightness = 0.00390625f;
2084 VectorScale( normal, brightness, deluxel );
2091 /* clear styled lightmaps */
2092 size = lm->sw * lm->sh * SUPER_LUXEL_SIZE * sizeof( float );
2093 for( lightmapNum = 1; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
2095 if( lm->superLuxels[ lightmapNum ] != NULL )
2096 memset( lm->superLuxels[ lightmapNum ], 0, size );
2099 /* debugging code */
2100 //% if( trace.numLights <= 0 )
2101 //% Sys_Printf( "Lightmap %9d: 0 lights, axis: %.2f, %.2f, %.2f\n", rawLightmapNum, lm->axis[ 0 ], lm->axis[ 1 ], lm->axis[ 2 ] );
2103 /* walk light list */
2104 for( i = 0; i < trace.numLights; i++ )
2107 trace.light = trace.lights[ i ];
2110 for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
2112 if( lm->styles[ lightmapNum ] == trace.light->style ||
2113 lm->styles[ lightmapNum ] == LS_NONE )
2117 /* max of MAX_LIGHTMAPS (4) styles allowed to hit a surface/lightmap */
2118 if( lightmapNum >= MAX_LIGHTMAPS )
2120 Sys_Printf( "WARNING: Hit per-surface style limit (%d)\n", MAX_LIGHTMAPS );
2125 memset( lightLuxels, 0, llSize );
2128 /* determine filter radius */
2129 filterRadius = lm->filterRadius > trace.light->filterRadius
2131 : trace.light->filterRadius;
2132 if( filterRadius < 0.0f )
2133 filterRadius = 0.0f;
2135 /* set luxel filter radius */
2136 luxelFilterRadius = superSample * filterRadius / lm->sampleSize;
2137 if( luxelFilterRadius == 0 && (filterRadius > 0.0f || filter) )
2138 luxelFilterRadius = 1;
2140 /* allocate sampling flags storage */
2141 if((lightSamples > 1 || lightRandomSamples) && luxelFilterRadius == 0)
2143 size = lm->sw * lm->sh * SUPER_LUXEL_SIZE * sizeof( unsigned char );
2144 if(lm->superFlags == NULL)
2145 lm->superFlags = safe_malloc( size );
2146 memset( (void *) lm->superFlags, 0, size );
2149 /* initial pass, one sample per luxel */
2150 for( y = 0; y < lm->sh; y++ )
2152 for( x = 0; x < lm->sw; x++ )
2155 cluster = SUPER_CLUSTER( x, y );
2159 /* get particulars */
2160 lightLuxel = LIGHT_LUXEL( x, y );
2161 deluxel = SUPER_DELUXEL( x, y );
2162 origin = SUPER_ORIGIN( x, y );
2163 normal = SUPER_NORMAL( x, y );
2164 flag = SUPER_FLAG( x, y );
2167 ////////// 27's temp hack for testing edge clipping ////
2168 if( origin[0]==0 && origin[1]==0 && origin[2]==0 )
2170 lightLuxel[ 1 ] = 255;
2171 lightLuxel[ 3 ] = 1.0f;
2177 /* set contribution count */
2178 lightLuxel[ 3 ] = 1.0f;
2181 trace.cluster = *cluster;
2182 VectorCopy( origin, trace.origin );
2183 VectorCopy( normal, trace.normal );
2185 /* get light for this sample */
2186 LightContributionToSample( &trace );
2187 VectorCopy( trace.color, lightLuxel );
2189 /* add the contribution to the deluxemap */
2191 VectorAdd( deluxel, trace.directionContribution, deluxel );
2193 /* check for evilness */
2194 if(trace.forceSubsampling > 1.0f && (lightSamples > 1 || lightRandomSamples) && luxelFilterRadius == 0)
2197 *flag |= FLAG_FORCE_SUBSAMPLING; /* force */
2200 else if( trace.color[ 0 ] || trace.color[ 1 ] || trace.color[ 2 ] )
2206 /* don't even bother with everything else if nothing was lit */
2207 if( totalLighted == 0 )
2210 /* secondary pass, adaptive supersampling (fixme: use a contrast function to determine if subsampling is necessary) */
2211 /* 2003-09-27: changed it so filtering disamples supersampling, as it would waste time */
2212 if( (lightSamples > 1 || lightRandomSamples) && luxelFilterRadius == 0 )
2215 for( y = 0; y < (lm->sh - 1); y++ )
2217 for( x = 0; x < (lm->sw - 1); x++ )
2222 VectorClear( total );
2224 /* test 2x2 stamp */
2225 for( t = 0; t < 4; t++ )
2227 /* set sample coords */
2228 sx = x + tests[ t ][ 0 ];
2229 sy = y + tests[ t ][ 1 ];
2232 cluster = SUPER_CLUSTER( sx, sy );
2238 flag = SUPER_FLAG( sx, sy );
2239 if(*flag & FLAG_FORCE_SUBSAMPLING)
2241 /* force a lighted/mapped discrepancy so we subsample */
2246 lightLuxel = LIGHT_LUXEL( sx, sy );
2247 VectorAdd( total, lightLuxel, total );
2248 if( (lightLuxel[ 0 ] + lightLuxel[ 1 ] + lightLuxel[ 2 ]) > 0.0f )
2252 /* if total color is under a certain amount, then don't bother subsampling */
2253 if( total[ 0 ] <= 4.0f && total[ 1 ] <= 4.0f && total[ 2 ] <= 4.0f )
2256 /* if all 4 pixels are either in shadow or light, then don't subsample */
2257 if( lighted != 0 && lighted != mapped )
2259 for( t = 0; t < 4; t++ )
2261 /* set sample coords */
2262 sx = x + tests[ t ][ 0 ];
2263 sy = y + tests[ t ][ 1 ];
2266 cluster = SUPER_CLUSTER( sx, sy );
2269 flag = SUPER_FLAG( sx, sy );
2270 if(*flag & FLAG_ALREADY_SUBSAMPLED) // already subsampled
2272 lightLuxel = LIGHT_LUXEL( sx, sy );
2273 origin = SUPER_ORIGIN( sx, sy );
2275 /* only subsample shadowed luxels */
2276 //% if( (lightLuxel[ 0 ] + lightLuxel[ 1 ] + lightLuxel[ 2 ]) <= 0.0f )
2280 if(lightRandomSamples)
2281 RandomSubsampleRawLuxel( lm, &trace, origin, sx, sy, 0.5f, lightLuxel );
2283 SubsampleRawLuxel_r( lm, &trace, origin, sx, sy, 0.25f * lightSamplesSearchBoxSize, lightLuxel );
2285 *flag |= FLAG_ALREADY_SUBSAMPLED;
2287 /* debug code to colorize subsampled areas to yellow */
2288 //% luxel = SUPER_LUXEL( lightmapNum, sx, sy );
2289 //% VectorSet( luxel, 255, 204, 0 );
2296 /* tertiary pass, apply dirt map (ambient occlusion) */
2300 for( y = 0; y < lm->sh; y++ )
2302 for( x = 0; x < lm->sw; x++ )
2305 cluster = SUPER_CLUSTER( x, y );
2309 /* get particulars */
2310 lightLuxel = LIGHT_LUXEL( x, y );
2311 dirt = SUPER_DIRT( x, y );
2313 /* scale light value */
2314 VectorScale( lightLuxel, *dirt, lightLuxel );
2319 /* allocate sampling lightmap storage */
2320 if( lm->superLuxels[ lightmapNum ] == NULL )
2322 /* allocate sampling lightmap storage */
2323 size = lm->sw * lm->sh * SUPER_LUXEL_SIZE * sizeof( float );
2324 lm->superLuxels[ lightmapNum ] = safe_malloc( size );
2325 memset( lm->superLuxels[ lightmapNum ], 0, size );
2329 if( lightmapNum > 0 )
2331 lm->styles[ lightmapNum ] = trace.light->style;
2332 //% Sys_Printf( "Surface %6d has lightstyle %d\n", rawLightmapNum, trace.light->style );
2335 /* copy to permanent luxels */
2336 for( y = 0; y < lm->sh; y++ )
2338 for( x = 0; x < lm->sw; x++ )
2340 /* get cluster and origin */
2341 cluster = SUPER_CLUSTER( x, y );
2344 origin = SUPER_ORIGIN( x, y );
2347 if( luxelFilterRadius )
2350 VectorClear( averageColor );
2353 /* cheaper distance-based filtering */
2354 for( sy = (y - luxelFilterRadius); sy <= (y + luxelFilterRadius); sy++ )
2356 if( sy < 0 || sy >= lm->sh )
2359 for( sx = (x - luxelFilterRadius); sx <= (x + luxelFilterRadius); sx++ )
2361 if( sx < 0 || sx >= lm->sw )
2364 /* get particulars */
2365 cluster = SUPER_CLUSTER( sx, sy );
2368 lightLuxel = LIGHT_LUXEL( sx, sy );
2371 weight = (abs( sx - x ) == luxelFilterRadius ? 0.5f : 1.0f);
2372 weight *= (abs( sy - y ) == luxelFilterRadius ? 0.5f : 1.0f);
2374 /* scale luxel by filter weight */
2375 VectorScale( lightLuxel, weight, color );
2376 VectorAdd( averageColor, color, averageColor );
2382 if( samples <= 0.0f )
2385 /* scale into luxel */
2386 luxel = SUPER_LUXEL( lightmapNum, x, y );
2389 /* handle negative light */
2390 if( trace.light->flags & LIGHT_NEGATIVE )
2392 luxel[ 0 ] -= averageColor[ 0 ] / samples;
2393 luxel[ 1 ] -= averageColor[ 1 ] / samples;
2394 luxel[ 2 ] -= averageColor[ 2 ] / samples;
2397 /* handle normal light */
2400 luxel[ 0 ] += averageColor[ 0 ] / samples;
2401 luxel[ 1 ] += averageColor[ 1 ] / samples;
2402 luxel[ 2 ] += averageColor[ 2 ] / samples;
2409 /* get particulars */
2410 lightLuxel = LIGHT_LUXEL( x, y );
2411 luxel = SUPER_LUXEL( lightmapNum, x, y );
2413 /* handle negative light */
2414 if( trace.light->flags & LIGHT_NEGATIVE )
2415 VectorScale( averageColor, -1.0f, averageColor );
2420 /* handle negative light */
2421 if( trace.light->flags & LIGHT_NEGATIVE )
2422 VectorSubtract( luxel, lightLuxel, luxel );
2424 /* handle normal light */
2426 VectorAdd( luxel, lightLuxel, luxel );
2432 /* free temporary luxels */
2433 if( lightLuxels != stackLightLuxels )
2434 free( lightLuxels );
2437 /* free light list */
2438 FreeTraceLights( &trace );
2440 /* floodlight pass */
2442 FloodlightIlluminateLightmap(lm);
2446 for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
2449 if( lm->superLuxels[ lightmapNum ] == NULL )
2452 for( y = 0; y < lm->sh; y++ )
2454 for( x = 0; x < lm->sw; x++ )
2457 cluster = SUPER_CLUSTER( x, y );
2458 //% if( *cluster < 0 )
2461 /* get particulars */
2462 luxel = SUPER_LUXEL( lightmapNum, x, y );
2463 normal = SUPER_NORMAL ( x, y );
2465 luxel[0]=(normal[0]*127)+127;
2466 luxel[1]=(normal[1]*127)+127;
2467 luxel[2]=(normal[2]*127)+127;
2473 /* -----------------------------------------------------------------
2475 ----------------------------------------------------------------- */
2479 /* walk lightmaps */
2480 for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
2483 if( lm->superLuxels[ lightmapNum ] == NULL )
2486 /* apply dirt to each luxel */
2487 for( y = 0; y < lm->sh; y++ )
2489 for( x = 0; x < lm->sw; x++ )
2492 cluster = SUPER_CLUSTER( x, y );
2493 //% if( *cluster < 0 ) // TODO why not do this check? These pixels should be zero anyway
2496 /* get particulars */
2497 luxel = SUPER_LUXEL( lightmapNum, x, y );
2498 dirt = SUPER_DIRT( x, y );
2501 VectorScale( luxel, *dirt, luxel );
2505 VectorSet( luxel, *dirt * 255.0f, *dirt * 255.0f, *dirt * 255.0f );
2511 /* -----------------------------------------------------------------
2513 ----------------------------------------------------------------- */
2515 /* walk lightmaps */
2516 for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
2519 if( lm->superLuxels[ lightmapNum ] == NULL )
2522 /* average occluded luxels from neighbors */
2523 for( y = 0; y < lm->sh; y++ )
2525 for( x = 0; x < lm->sw; x++ )
2527 /* get particulars */
2528 cluster = SUPER_CLUSTER( x, y );
2529 luxel = SUPER_LUXEL( lightmapNum, x, y );
2530 deluxel = SUPER_DELUXEL( x, y );
2531 normal = SUPER_NORMAL( x, y );
2533 /* determine if filtering is necessary */
2534 filterColor = qfalse;
2537 (lm->splotchFix && (luxel[ 0 ] <= ambientColor[ 0 ] || luxel[ 1 ] <= ambientColor[ 1 ] || luxel[ 2 ] <= ambientColor[ 2 ])) )
2538 filterColor = qtrue;
2540 if( deluxemap && lightmapNum == 0 && (*cluster < 0 || filter) )
2543 if( !filterColor && !filterDir )
2546 /* choose seed amount */
2547 VectorClear( averageColor );
2548 VectorClear( averageDir );
2551 /* walk 3x3 matrix */
2552 for( sy = (y - 1); sy <= (y + 1); sy++ )
2554 if( sy < 0 || sy >= lm->sh )
2557 for( sx = (x - 1); sx <= (x + 1); sx++ )
2559 if( sx < 0 || sx >= lm->sw || (sx == x && sy == y) )
2562 /* get neighbor's particulars */
2563 cluster2 = SUPER_CLUSTER( sx, sy );
2564 luxel2 = SUPER_LUXEL( lightmapNum, sx, sy );
2565 deluxel2 = SUPER_DELUXEL( sx, sy );
2567 /* ignore unmapped/unlit luxels */
2568 if( *cluster2 < 0 || luxel2[ 3 ] == 0.0f ||
2569 (lm->splotchFix && VectorCompare( luxel2, ambientColor )) )
2572 /* add its distinctiveness to our own */
2573 VectorAdd( averageColor, luxel2, averageColor );
2574 samples += luxel2[ 3 ];
2576 VectorAdd( averageDir, deluxel2, averageDir );
2581 if( samples <= 0.0f )
2584 /* dark lightmap seams */
2587 if( lightmapNum == 0 )
2588 VectorMA( averageColor, 2.0f, ambientColor, averageColor );