rearranged surface renderer some more
[divverent/darkplaces.git] / r_shadow.c
1
2 /*
3 Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
4 An extrusion of the lit faces, beginning at the original geometry and ending
5 further from the light source than the original geometry (presumably at least
6 as far as the light's radius, if the light has a radius at all), capped at
7 both front and back to avoid any problems (extrusion from dark faces also
8 works but has a different set of problems)
9
10 This is normally rendered using Carmack's Reverse technique, in which
11 backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
12 zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
13 where shadows did not intersect the visible geometry, suitable as a stencil
14 mask for rendering lighting everywhere but shadow.
15
16 In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
17 as decrement and the frontfaces as increment, and we redefine the DepthFunc to
18 GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
19 and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
20 additionally we clear stencil to 128 to avoid the need for the unclamped
21 incr/decr extension (not related to patent).
22
23 Patent warning:
24 This algorithm may be covered by Creative's patent (US Patent #6384822),
25 however that patent is quite specific about increment on backfaces and
26 decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
27 opposite this implementation and partially opposite Carmack's Reverse paper
28 (which uses GL_LESS, but increments on backfaces and decrements on frontfaces).
29
30
31
32 Terminology: Stencil Light Volume (sometimes called Light Volumes)
33 Similar to a Stencil Shadow Volume, but inverted; rather than containing the
34 areas in shadow it contains the areas in light, this can only be built
35 quickly for certain limited cases (such as portal visibility from a point),
36 but is quite useful for some effects (sunlight coming from sky polygons is
37 one possible example, translucent occluders is another example).
38
39
40
41 Terminology: Optimized Stencil Shadow Volume
42 A Stencil Shadow Volume that has been processed sufficiently to ensure it has
43 no duplicate coverage of areas (no need to shadow an area twice), often this
44 greatly improves performance but is an operation too costly to use on moving
45 lights (however completely optimal Stencil Light Volumes can be constructed
46 in some ideal cases).
47
48
49
50 Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
51 Per pixel evaluation of lighting equations, at a bare minimum this involves
52 DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
53 vector and surface normal, using a texture of the surface bumps, called a
54 NormalMap) if supported by hardware; in our case there is support for cards
55 which are incapable of DOT3, the quality is quite poor however.  Additionally
56 it is desirable to have specular evaluation per pixel, per vertex
57 normalization of specular halfangle vectors causes noticable distortion but
58 is unavoidable on hardware without GL_ARB_fragment_program or
59 GL_ARB_fragment_shader.
60
61
62
63 Terminology: Normalization CubeMap
64 A cubemap containing normalized dot3-encoded (vectors of length 1 or less
65 encoded as RGB colors) for any possible direction, this technique allows per
66 pixel calculation of incidence vector for per pixel lighting purposes, which
67 would not otherwise be possible per pixel without GL_ARB_fragment_program or
68 GL_ARB_fragment_shader.
69
70
71
72 Terminology: 2D+1D Attenuation Texturing
73 A very crude approximation of light attenuation with distance which results
74 in cylindrical light shapes which fade vertically as a streak (some games
75 such as Doom3 allow this to be rotated to be less noticable in specific
76 cases), the technique is simply modulating lighting by two 2D textures (which
77 can be the same) on different axes of projection (XY and Z, typically), this
78 is the second best technique available without 3D Attenuation Texturing,
79 GL_ARB_fragment_program or GL_ARB_fragment_shader technology.
80
81
82
83 Terminology: 2D+1D Inverse Attenuation Texturing
84 A clever method described in papers on the Abducted engine, this has a squared
85 distance texture (bright on the outside, black in the middle), which is used
86 twice using GL_ADD blending, the result of this is used in an inverse modulate
87 (GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
88 lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
89 texturing).
90
91
92
93 Terminology: 3D Attenuation Texturing
94 A slightly crude approximation of light attenuation with distance, its flaws
95 are limited radius and resolution (performance tradeoffs).
96
97
98
99 Terminology: 3D Attenuation-Normalization Texturing
100 A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
101 vectors shorter the lighting becomes darker, a very effective optimization of
102 diffuse lighting if 3D Attenuation Textures are already used.
103
104
105
106 Terminology: Light Cubemap Filtering
107 A technique for modeling non-uniform light distribution according to
108 direction, for example a lantern may use a cubemap to describe the light
109 emission pattern of the cage around the lantern (as well as soot buildup
110 discoloring the light in certain areas), often also used for softened grate
111 shadows and light shining through a stained glass window (done crudely by
112 texturing the lighting with a cubemap), another good example would be a disco
113 light.  This technique is used heavily in many games (Doom3 does not support
114 this however).
115
116
117
118 Terminology: Light Projection Filtering
119 A technique for modeling shadowing of light passing through translucent
120 surfaces, allowing stained glass windows and other effects to be done more
121 elegantly than possible with Light Cubemap Filtering by applying an occluder
122 texture to the lighting combined with a stencil light volume to limit the lit
123 area, this technique is used by Doom3 for spotlights and flashlights, among
124 other things, this can also be used more generally to render light passing
125 through multiple translucent occluders in a scene (using a light volume to
126 describe the area beyond the occluder, and thus mask off rendering of all
127 other areas).
128
129
130
131 Terminology: Doom3 Lighting
132 A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
133 CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
134 demonstrated by the game Doom3.
135 */
136
137 #include "quakedef.h"
138 #include "r_shadow.h"
139 #include "cl_collision.h"
140 #include "portals.h"
141 #include "image.h"
142
143 extern void R_Shadow_EditLights_Init(void);
144
145 typedef enum r_shadow_rendermode_e
146 {
147         R_SHADOW_RENDERMODE_NONE,
148         R_SHADOW_RENDERMODE_STENCIL,
149         R_SHADOW_RENDERMODE_STENCILTWOSIDE,
150         R_SHADOW_RENDERMODE_LIGHT_VERTEX,
151         R_SHADOW_RENDERMODE_LIGHT_DOT3,
152         R_SHADOW_RENDERMODE_LIGHT_GLSL,
153         R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
154         R_SHADOW_RENDERMODE_VISIBLELIGHTING,
155 }
156 r_shadow_rendermode_t;
157
158 r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
159 r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
160 r_shadow_rendermode_t r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_NONE;
161
162 mempool_t *r_shadow_mempool;
163
164 int maxshadowelements;
165 int *shadowelements;
166
167 int maxshadowmark;
168 int numshadowmark;
169 int *shadowmark;
170 int *shadowmarklist;
171 int shadowmarkcount;
172
173 int maxvertexupdate;
174 int *vertexupdate;
175 int *vertexremap;
176 int vertexupdatenum;
177
178 int r_shadow_buffer_numleafpvsbytes;
179 unsigned char *r_shadow_buffer_leafpvs;
180 int *r_shadow_buffer_leaflist;
181
182 int r_shadow_buffer_numsurfacepvsbytes;
183 unsigned char *r_shadow_buffer_surfacepvs;
184 int *r_shadow_buffer_surfacelist;
185
186 rtexturepool_t *r_shadow_texturepool;
187 rtexture_t *r_shadow_attenuation2dtexture;
188 rtexture_t *r_shadow_attenuation3dtexture;
189
190 // lights are reloaded when this changes
191 char r_shadow_mapname[MAX_QPATH];
192
193 // used only for light filters (cubemaps)
194 rtexturepool_t *r_shadow_filters_texturepool;
195
196 cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
197 cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
198 cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
199 cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
200 cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.25", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
201 cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
202 cvar_t r_shadow_lightattenuationpower = {0, "r_shadow_lightattenuationpower", "0.5", "changes attenuation texture generation (does not affect r_shadow_glsl lighting)"};
203 cvar_t r_shadow_lightattenuationscale = {0, "r_shadow_lightattenuationscale", "1", "changes attenuation texture generation (does not affect r_shadow_glsl lighting)"};
204 cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
205 cvar_t r_shadow_portallight = {0, "r_shadow_portallight", "1", "use portal culling to exactly determine lit triangles when compiling world lights"};
206 cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "1000000", "how far to cast shadows"};
207 cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
208 cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
209 cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal culling optimizations on dynamic lights (slow!  you probably don't want this!)"};
210 cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
211 cvar_t r_shadow_realtime_world_dlightshadows = {CVAR_SAVE, "r_shadow_realtime_world_dlightshadows", "1", "enables shadows from dynamic lights when using full world lighting"};
212 cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
213 cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
214 cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
215 cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
216 cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
217 cvar_t r_shadow_shadow_polygonfactor = {0, "r_shadow_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
218 cvar_t r_shadow_shadow_polygonoffset = {0, "r_shadow_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
219 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect r_shadow_glsl lighting)"};
220 cvar_t r_shadow_glsl = {0, "r_shadow_glsl", "1", "enables use of OpenGL 2.0 pixel shaders for lighting"};
221 cvar_t r_shadow_glsl_offsetmapping = {0, "r_shadow_glsl_offsetmapping", "0", "enables offset mapping effect (also known as parallax mapping or sometimes as virtual displacement mapping, not as good as relief mapping or silohuette mapping but much faster), can cause strange artifacts on many textures, requires bumpmaps for depth information (normalmaps can have depth information as alpha channel, but most do not)"};
222 cvar_t r_shadow_glsl_offsetmapping_scale = {0, "r_shadow_glsl_offsetmapping_scale", "-0.04", "how deep the offset mapping effect is, and whether it is inward or outward"};
223 cvar_t r_shadow_glsl_offsetmapping_bias = {0, "r_shadow_glsl_offsetmapping_bias", "0.04", "pushes the effect closer/further"};
224 cvar_t r_shadow_glsl_usehalffloat = {0, "r_shadow_glsl_usehalffloat", "0", "use half and hvec variables in GLSL shader for a speed gain (NVIDIA only)"};
225 cvar_t r_shadow_glsl_surfacenormalize = {0, "r_shadow_glsl_surfacenormalize", "1", "normalize bumpmap texels in GLSL shader, produces a more rounded look on small bumps and dents"};
226 cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
227 cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
228 cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
229 cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
230 cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
231 cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
232 cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
233
234 float r_shadow_attenpower, r_shadow_attenscale;
235
236 rtlight_t *r_shadow_compilingrtlight;
237 dlight_t *r_shadow_worldlightchain;
238 dlight_t *r_shadow_selectedlight;
239 dlight_t r_shadow_bufferlight;
240 vec3_t r_editlights_cursorlocation;
241
242 extern int con_vislines;
243
244 typedef struct cubemapinfo_s
245 {
246         char basename[64];
247         rtexture_t *texture;
248 }
249 cubemapinfo_t;
250
251 #define MAX_CUBEMAPS 256
252 static int numcubemaps;
253 static cubemapinfo_t cubemaps[MAX_CUBEMAPS];
254
255 #define SHADERPERMUTATION_COLORMAPPING (1<<0)
256 #define SHADERPERMUTATION_SPECULAR (1<<1)
257 #define SHADERPERMUTATION_FOG (1<<2)
258 #define SHADERPERMUTATION_CUBEFILTER (1<<3)
259 #define SHADERPERMUTATION_OFFSETMAPPING (1<<4)
260 #define SHADERPERMUTATION_SURFACENORMALIZE (1<<5)
261 #define SHADERPERMUTATION_GEFORCEFX (1<<6)
262 #define SHADERPERMUTATION_COUNT (1<<7)
263
264 // indicates if we have tried compiling this shader permutation yet
265 qboolean r_shadow_program_compiledlight[SHADERPERMUTATION_COUNT];
266 // GLSL program object number, or 0 if compile failed
267 GLhandleARB r_shadow_program_light[SHADERPERMUTATION_COUNT];
268
269 void R_Shadow_UncompileWorldLights(void);
270 void R_Shadow_ClearWorldLights(void);
271 void R_Shadow_SaveWorldLights(void);
272 void R_Shadow_LoadWorldLights(void);
273 void R_Shadow_LoadLightsFile(void);
274 void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
275 void R_Shadow_EditLights_Reload_f(void);
276 void R_Shadow_ValidateCvars(void);
277 static void R_Shadow_MakeTextures(void);
278 void R_Shadow_DrawWorldLightShadowVolume(matrix4x4_t *matrix, dlight_t *light);
279
280 const char *builtinshader_light_vert =
281 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
282 "// written by Forest 'LordHavoc' Hale\n"
283 "\n"
284 "// use half floats if available for math performance\n"
285 "#ifdef GEFORCEFX\n"
286 "#define myhalf half\n"
287 "#define myhvec2 hvec2\n"
288 "#define myhvec3 hvec3\n"
289 "#define myhvec4 hvec4\n"
290 "#else\n"
291 "#define myhalf float\n"
292 "#define myhvec2 vec2\n"
293 "#define myhvec3 vec3\n"
294 "#define myhvec4 vec4\n"
295 "#endif\n"
296 "\n"
297 "uniform vec3 LightPosition;\n"
298 "\n"
299 "varying vec2 TexCoord;\n"
300 "varying myhvec3 CubeVector;\n"
301 "varying vec3 LightVector;\n"
302 "\n"
303 "#if defined(USESPECULAR) || defined(USEFOG) || defined(USEOFFSETMAPPING)\n"
304 "uniform vec3 EyePosition;\n"
305 "varying vec3 EyeVector;\n"
306 "#endif\n"
307 "\n"
308 "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3)\n"
309 "\n"
310 "void main(void)\n"
311 "{\n"
312 "       // copy the surface texcoord\n"
313 "       TexCoord = vec2(gl_TextureMatrix[0] * gl_MultiTexCoord0);\n"
314 "\n"
315 "       // transform vertex position into light attenuation/cubemap space\n"
316 "       // (-1 to +1 across the light box)\n"
317 "       CubeVector = vec3(gl_TextureMatrix[3] * gl_Vertex);\n"
318 "\n"
319 "       // transform unnormalized light direction into tangent space\n"
320 "       // (we use unnormalized to ensure that it interpolates correctly and then\n"
321 "       //  normalize it per pixel)\n"
322 "       vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n"
323 "       LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n"
324 "       LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n"
325 "       LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n"
326 "\n"
327 "#if defined(USESPECULAR) || defined(USEFOG) || defined(USEOFFSETMAPPING)\n"
328 "       // transform unnormalized eye direction into tangent space\n"
329 "       vec3 eyeminusvertex = EyePosition - gl_Vertex.xyz;\n"
330 "       EyeVector.x = dot(eyeminusvertex, gl_MultiTexCoord1.xyz);\n"
331 "       EyeVector.y = dot(eyeminusvertex, gl_MultiTexCoord2.xyz);\n"
332 "       EyeVector.z = dot(eyeminusvertex, gl_MultiTexCoord3.xyz);\n"
333 "#endif\n"
334 "\n"
335 "       // transform vertex to camera space, using ftransform to match non-VS\n"
336 "       // rendering\n"
337 "       gl_Position = ftransform();\n"
338 "}\n"
339 ;
340
341 const char *builtinshader_light_frag =
342 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
343 "// written by Forest 'LordHavoc' Hale\n"
344 "\n"
345 "// use half floats if available for math performance\n"
346 "#ifdef GEFORCEFX\n"
347 "#define myhalf half\n"
348 "#define myhvec2 hvec2\n"
349 "#define myhvec3 hvec3\n"
350 "#define myhvec4 hvec4\n"
351 "#else\n"
352 "#define myhalf float\n"
353 "#define myhvec2 vec2\n"
354 "#define myhvec3 vec3\n"
355 "#define myhvec4 vec4\n"
356 "#endif\n"
357 "\n"
358 "uniform myhvec3 LightColor;\n"
359 "#ifdef USEOFFSETMAPPING\n"
360 "uniform myhalf OffsetMapping_Scale;\n"
361 "uniform myhalf OffsetMapping_Bias;\n"
362 "#endif\n"
363 "#ifdef USESPECULAR\n"
364 "uniform myhalf SpecularPower;\n"
365 "#endif\n"
366 "#ifdef USEFOG\n"
367 "uniform myhalf FogRangeRecip;\n"
368 "#endif\n"
369 "uniform myhalf AmbientScale;\n"
370 "uniform myhalf DiffuseScale;\n"
371 "#ifdef USESPECULAR\n"
372 "uniform myhalf SpecularScale;\n"
373 "#endif\n"
374 "\n"
375 "#ifdef USECOLORMAPPING\n"
376 "uniform myhvec3 Color_Pants;\n"
377 "uniform myhvec3 Color_Shirt;\n"
378 "#endif\n"
379 "\n"
380 "uniform sampler2D Texture_Normal;\n"
381 "uniform sampler2D Texture_Color;\n"
382 "uniform sampler2D Texture_Pants;\n"
383 "uniform sampler2D Texture_Shirt;\n"
384 "#ifdef USESPECULAR\n"
385 "uniform sampler2D Texture_Gloss;\n"
386 "#endif\n"
387 "#ifdef USECUBEFILTER\n"
388 "uniform samplerCube Texture_Cube;\n"
389 "#endif\n"
390 "#ifdef USEFOG\n"
391 "uniform sampler2D Texture_FogMask;\n"
392 "#endif\n"
393 "\n"
394 "varying vec2 TexCoord;\n"
395 "varying myhvec3 CubeVector;\n"
396 "varying vec3 LightVector;\n"
397 "#if defined(USESPECULAR) || defined(USEFOG) || defined(USEOFFSETMAPPING)\n"
398 "varying vec3 EyeVector;\n"
399 "#endif\n"
400 "\n"
401 "void main(void)\n"
402 "{\n"
403 "       // attenuation\n"
404 "       //\n"
405 "       // the attenuation is (1-(x*x+y*y+z*z)) which gives a large bright\n"
406 "       // center and sharp falloff at the edge, this is about the most efficient\n"
407 "       // we can get away with as far as providing illumination.\n"
408 "       //\n"
409 "       // pow(1-(x*x+y*y+z*z), 4) is far more realistic but needs large lights to\n"
410 "       // provide significant illumination, large = slow = pain.\n"
411 "       myhalf colorscale = max(1.0 - dot(CubeVector, CubeVector), 0.0);\n"
412 "\n"
413 "#ifdef USEFOG\n"
414 "       // apply fog\n"
415 "       colorscale *= texture2D(Texture_FogMask, myhvec2(length(EyeVector)*FogRangeRecip, 0)).x;\n"
416 "#endif\n"
417 "\n"
418 "#ifdef USEOFFSETMAPPING\n"
419 "       // this is 3 sample because of ATI Radeon 9500-9800/X300 limits\n"
420 "       myhvec2 OffsetVector = normalize(EyeVector).xy * vec2(-0.333, 0.333);\n"
421 "       myhvec2 TexCoordOffset = TexCoord + OffsetVector * (OffsetMapping_Bias + OffsetMapping_Scale * texture2D(Texture_Normal, TexCoord).w);\n"
422 "       TexCoordOffset += OffsetVector * (OffsetMapping_Bias + OffsetMapping_Scale * texture2D(Texture_Normal, TexCoordOffset).w);\n"
423 "       TexCoordOffset += OffsetVector * (OffsetMapping_Bias + OffsetMapping_Scale * texture2D(Texture_Normal, TexCoordOffset).w);\n"
424 "#define TexCoord TexCoordOffset\n"
425 "#endif\n"
426 "\n"
427 "       // get the surface normal\n"
428 "#ifdef SURFACENORMALIZE\n"
429 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - 0.5);\n"
430 "#else\n"
431 "       myhvec3 surfacenormal = -1.0 + 2.0 * myhvec3(texture2D(Texture_Normal, TexCoord));\n"
432 "#endif\n"
433 "\n"
434 "       // calculate shading\n"
435 "       myhvec3 diffusenormal = myhvec3(normalize(LightVector));\n"
436 "       myhvec4 texturecolor = myhvec4(texture2D(Texture_Color, TexCoord));\n"
437 "       colorscale *= texturecolor.a;\n"
438 "       myhvec3 color = myhvec3(texturecolor);\n"
439 "#ifdef USECOLORMAPPING\n"
440 "       color += myhvec3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhvec3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n"
441 "#endif\n"
442 "       color *= (AmbientScale + DiffuseScale * max(dot(surfacenormal, diffusenormal), 0.0));\n"
443 "#ifdef USESPECULAR\n"
444 "       myhvec3 specularnormal = myhvec3(normalize(diffusenormal + myhvec3(normalize(EyeVector))));\n"
445 "       color += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(max(dot(surfacenormal, specularnormal), 0.0), SpecularPower);\n"
446 "#endif\n"
447 "\n"
448 "#ifdef USECUBEFILTER\n"
449 "       // apply light cubemap filter\n"
450 "       color *= myhvec3(textureCube(Texture_Cube, CubeVector));\n"
451 "#endif\n"
452 "\n"
453 "       // calculate fragment color (apply light color and attenuation/fog scaling)\n"
454 "       gl_FragColor = myhvec4(color * LightColor * colorscale, 1);\n"
455 "}\n"
456 ;
457
458 int R_Shadow_CompileShaderPermutation(int permutation)
459 {
460         char *vertstring, *fragstring;
461         int vertstrings_count;
462         int fragstrings_count;
463         const char *vertstrings_list[SHADERPERMUTATION_COUNT+1];
464         const char *fragstrings_list[SHADERPERMUTATION_COUNT+1];
465         char permutationname[256];
466         if (r_shadow_program_compiledlight[permutation])
467                 return r_shadow_program_light[permutation];
468         r_shadow_program_compiledlight[permutation] = true;
469         vertstring = (char *)FS_LoadFile("glsl/light.vert", tempmempool, false, NULL);
470         fragstring = (char *)FS_LoadFile("glsl/light.frag", tempmempool, false, NULL);
471         vertstrings_count = 0;
472         fragstrings_count = 0;
473         permutationname[0] = 0;
474         if (permutation & SHADERPERMUTATION_COLORMAPPING)
475         {
476                 vertstrings_list[vertstrings_count++] = "#define USECOLORMAPPING\n";
477                 fragstrings_list[fragstrings_count++] = "#define USECOLORMAPPING\n";
478                 strlcat(permutationname, " colormapping", sizeof(permutationname));
479         }
480         if (permutation & SHADERPERMUTATION_SPECULAR)
481         {
482                 vertstrings_list[vertstrings_count++] = "#define USESPECULAR\n";
483                 fragstrings_list[fragstrings_count++] = "#define USESPECULAR\n";
484                 strlcat(permutationname, " specular", sizeof(permutationname));
485         }
486         if (permutation & SHADERPERMUTATION_FOG)
487         {
488                 vertstrings_list[vertstrings_count++] = "#define USEFOG\n";
489                 fragstrings_list[fragstrings_count++] = "#define USEFOG\n";
490                 strlcat(permutationname, " fog", sizeof(permutationname));
491         }
492         if (permutation & SHADERPERMUTATION_CUBEFILTER)
493         {
494                 vertstrings_list[vertstrings_count++] = "#define USECUBEFILTER\n";
495                 fragstrings_list[fragstrings_count++] = "#define USECUBEFILTER\n";
496                 strlcat(permutationname, " cubefilter", sizeof(permutationname));
497         }
498         if (permutation & SHADERPERMUTATION_OFFSETMAPPING)
499         {
500                 vertstrings_list[vertstrings_count++] = "#define USEOFFSETMAPPING\n";
501                 fragstrings_list[fragstrings_count++] = "#define USEOFFSETMAPPING\n";
502                 strlcat(permutationname, " offsetmapping", sizeof(permutationname));
503         }
504         if (permutation & SHADERPERMUTATION_SURFACENORMALIZE)
505         {
506                 vertstrings_list[vertstrings_count++] = "#define SURFACENORMALIZE\n";
507                 fragstrings_list[fragstrings_count++] = "#define SURFACENORMALIZE\n";
508                 strlcat(permutationname, " surfacenormalize", sizeof(permutationname));
509         }
510         if (permutation & SHADERPERMUTATION_GEFORCEFX)
511         {
512                 vertstrings_list[vertstrings_count++] = "#define GEFORCEFX\n";
513                 fragstrings_list[fragstrings_count++] = "#define GEFORCEFX\n";
514                 strlcat(permutationname, " halffloat", sizeof(permutationname));
515         }
516         vertstrings_list[vertstrings_count++] = vertstring ? vertstring : builtinshader_light_vert;
517         fragstrings_list[fragstrings_count++] = fragstring ? fragstring : builtinshader_light_frag;
518         r_shadow_program_light[permutation] = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, fragstrings_count, fragstrings_list);
519         if (r_shadow_program_light[permutation])
520         {
521                 qglUseProgramObjectARB(r_shadow_program_light[permutation]);
522                 qglUniform1iARB(qglGetUniformLocationARB(r_shadow_program_light[permutation], "Texture_Normal"), 0);CHECKGLERROR
523                 qglUniform1iARB(qglGetUniformLocationARB(r_shadow_program_light[permutation], "Texture_Color"), 1);CHECKGLERROR
524                 if (permutation & SHADERPERMUTATION_SPECULAR)
525                 {
526                         qglUniform1iARB(qglGetUniformLocationARB(r_shadow_program_light[permutation], "Texture_Gloss"), 2);CHECKGLERROR
527                 }
528                 if (permutation & SHADERPERMUTATION_CUBEFILTER)
529                 {
530                         qglUniform1iARB(qglGetUniformLocationARB(r_shadow_program_light[permutation], "Texture_Cube"), 3);CHECKGLERROR
531                 }
532                 if (permutation & SHADERPERMUTATION_FOG)
533                 {
534                         qglUniform1iARB(qglGetUniformLocationARB(r_shadow_program_light[permutation], "Texture_FogMask"), 4);CHECKGLERROR
535                 }
536                 qglUniform1iARB(qglGetUniformLocationARB(r_shadow_program_light[permutation], "Texture_Pants"), 5);CHECKGLERROR
537                 qglUniform1iARB(qglGetUniformLocationARB(r_shadow_program_light[permutation], "Texture_Shirt"), 6);CHECKGLERROR
538                 qglUseProgramObjectARB(0);
539         }
540         else
541                 Con_Printf("permutation%s failed for shader %s, some features may not work properly!\n", permutationname, "glsl/light");
542         if (fragstring)
543                 Mem_Free(fragstring);
544         if (vertstring)
545                 Mem_Free(vertstring);
546         return r_shadow_program_light[permutation];
547 }
548
549 void r_shadow_start(void)
550 {
551         int i;
552         // use half float math where available (speed gain on NVIDIA GFFX and GF6)
553         if (gl_support_half_float)
554                 Cvar_SetValue("r_shadow_glsl_usehalffloat", 1);
555         // allocate vertex processing arrays
556         numcubemaps = 0;
557         r_shadow_attenuation2dtexture = NULL;
558         r_shadow_attenuation3dtexture = NULL;
559         r_shadow_texturepool = NULL;
560         r_shadow_filters_texturepool = NULL;
561         R_Shadow_ValidateCvars();
562         R_Shadow_MakeTextures();
563         maxshadowelements = 0;
564         shadowelements = NULL;
565         maxvertexupdate = 0;
566         vertexupdate = NULL;
567         vertexremap = NULL;
568         vertexupdatenum = 0;
569         maxshadowmark = 0;
570         numshadowmark = 0;
571         shadowmark = NULL;
572         shadowmarklist = NULL;
573         shadowmarkcount = 0;
574         r_shadow_buffer_numleafpvsbytes = 0;
575         r_shadow_buffer_leafpvs = NULL;
576         r_shadow_buffer_leaflist = NULL;
577         r_shadow_buffer_numsurfacepvsbytes = 0;
578         r_shadow_buffer_surfacepvs = NULL;
579         r_shadow_buffer_surfacelist = NULL;
580         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
581         {
582                 r_shadow_program_compiledlight[i] = false;
583                 r_shadow_program_light[i] = 0;
584         }
585 }
586
587 void r_shadow_shutdown(void)
588 {
589         int i;
590         R_Shadow_UncompileWorldLights();
591         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
592         {
593                 if (r_shadow_program_light[i])
594                 {
595                         GL_Backend_FreeProgram(r_shadow_program_light[i]);
596                         r_shadow_program_light[i] = 0;
597                 }
598         }
599         numcubemaps = 0;
600         r_shadow_attenuation2dtexture = NULL;
601         r_shadow_attenuation3dtexture = NULL;
602         R_FreeTexturePool(&r_shadow_texturepool);
603         R_FreeTexturePool(&r_shadow_filters_texturepool);
604         maxshadowelements = 0;
605         if (shadowelements)
606                 Mem_Free(shadowelements);
607         shadowelements = NULL;
608         maxvertexupdate = 0;
609         if (vertexupdate)
610                 Mem_Free(vertexupdate);
611         vertexupdate = NULL;
612         if (vertexremap)
613                 Mem_Free(vertexremap);
614         vertexremap = NULL;
615         vertexupdatenum = 0;
616         maxshadowmark = 0;
617         numshadowmark = 0;
618         if (shadowmark)
619                 Mem_Free(shadowmark);
620         shadowmark = NULL;
621         if (shadowmarklist)
622                 Mem_Free(shadowmarklist);
623         shadowmarklist = NULL;
624         shadowmarkcount = 0;
625         r_shadow_buffer_numleafpvsbytes = 0;
626         if (r_shadow_buffer_leafpvs)
627                 Mem_Free(r_shadow_buffer_leafpvs);
628         r_shadow_buffer_leafpvs = NULL;
629         if (r_shadow_buffer_leaflist)
630                 Mem_Free(r_shadow_buffer_leaflist);
631         r_shadow_buffer_leaflist = NULL;
632         r_shadow_buffer_numsurfacepvsbytes = 0;
633         if (r_shadow_buffer_surfacepvs)
634                 Mem_Free(r_shadow_buffer_surfacepvs);
635         r_shadow_buffer_surfacepvs = NULL;
636         if (r_shadow_buffer_surfacelist)
637                 Mem_Free(r_shadow_buffer_surfacelist);
638         r_shadow_buffer_surfacelist = NULL;
639 }
640
641 void r_shadow_newmap(void)
642 {
643 }
644
645 void R_Shadow_Help_f(void)
646 {
647         Con_Printf(
648 "Documentation on r_shadow system:\n"
649 "Settings:\n"
650 "r_shadow_bumpscale_basetexture : base texture as bumpmap with this scale\n"
651 "r_shadow_bumpscale_bumpmap : depth scale for bumpmap conversion\n"
652 "r_shadow_debuglight : render only this light number (-1 = all)\n"
653 "r_shadow_gloss 0/1/2 : no gloss, gloss textures only, force gloss\n"
654 "r_shadow_gloss2intensity : brightness of forced gloss\n"
655 "r_shadow_glossintensity : brightness of textured gloss\n"
656 "r_shadow_lightattenuationpower : used to generate attenuation texture\n"
657 "r_shadow_lightattenuationscale : used to generate attenuation texture\n"
658 "r_shadow_lightintensityscale : scale rendering brightness of all lights\n"
659 "r_shadow_portallight : use portal visibility for static light precomputation\n"
660 "r_shadow_projectdistance : shadow volume projection distance\n"
661 "r_shadow_realtime_dlight : use high quality dynamic lights in normal mode\n"
662 "r_shadow_realtime_dlight_shadows : cast shadows from dlights\n"
663 "r_shadow_realtime_dlight_portalculling : work hard to reduce graphics work\n"
664 "r_shadow_realtime_world : use high quality world lighting mode\n"
665 "r_shadow_realtime_world_dlightshadows : cast shadows from dlights\n"
666 "r_shadow_realtime_world_lightmaps : use lightmaps in addition to lights\n"
667 "r_shadow_realtime_world_shadows : cast shadows from world lights\n"
668 "r_shadow_realtime_world_compile : compile surface/visibility information\n"
669 "r_shadow_realtime_world_compileshadow : compile shadow geometry\n"
670 "r_shadow_glsl : use OpenGL Shading Language for lighting\n"
671 "r_shadow_glsl_offsetmapping : enables Offset Mapping bumpmap enhancement\n"
672 "r_shadow_glsl_offsetmapping_scale : controls depth of Offset Mapping\n"
673 "r_shadow_glsl_offsetmapping_bias : should be negative half of scale\n"
674 "r_shadow_glsl_usehalffloat : use lower quality lighting\n"
675 "r_shadow_glsl_surfacenormalize : makes bumpmapping slightly higher quality\n"
676 "r_shadow_scissor : use scissor optimization\n"
677 "r_shadow_shadow_polygonfactor : nudge shadow volumes closer/further\n"
678 "r_shadow_shadow_polygonoffset : nudge shadow volumes closer/further\n"
679 "r_shadow_texture3d : use 3d attenuation texture (if hardware supports)\n"
680 "r_showlighting : useful for performance testing; bright = slow!\n"
681 "r_showshadowvolumes : useful for performance testing; bright = slow!\n"
682 "Commands:\n"
683 "r_shadow_help : this help\n"
684         );
685 }
686
687 void R_Shadow_Init(void)
688 {
689         Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
690         Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
691         Cvar_RegisterVariable(&r_shadow_debuglight);
692         Cvar_RegisterVariable(&r_shadow_gloss);
693         Cvar_RegisterVariable(&r_shadow_gloss2intensity);
694         Cvar_RegisterVariable(&r_shadow_glossintensity);
695         Cvar_RegisterVariable(&r_shadow_lightattenuationpower);
696         Cvar_RegisterVariable(&r_shadow_lightattenuationscale);
697         Cvar_RegisterVariable(&r_shadow_lightintensityscale);
698         Cvar_RegisterVariable(&r_shadow_portallight);
699         Cvar_RegisterVariable(&r_shadow_projectdistance);
700         Cvar_RegisterVariable(&r_shadow_realtime_dlight);
701         Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
702         Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
703         Cvar_RegisterVariable(&r_shadow_realtime_world);
704         Cvar_RegisterVariable(&r_shadow_realtime_world_dlightshadows);
705         Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
706         Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
707         Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
708         Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
709         Cvar_RegisterVariable(&r_shadow_scissor);
710         Cvar_RegisterVariable(&r_shadow_shadow_polygonfactor);
711         Cvar_RegisterVariable(&r_shadow_shadow_polygonoffset);
712         Cvar_RegisterVariable(&r_shadow_texture3d);
713         Cvar_RegisterVariable(&r_shadow_glsl);
714         Cvar_RegisterVariable(&r_shadow_glsl_offsetmapping);
715         Cvar_RegisterVariable(&r_shadow_glsl_offsetmapping_scale);
716         Cvar_RegisterVariable(&r_shadow_glsl_offsetmapping_bias);
717         Cvar_RegisterVariable(&r_shadow_glsl_usehalffloat);
718         Cvar_RegisterVariable(&r_shadow_glsl_surfacenormalize);
719         Cvar_RegisterVariable(&gl_ext_stenciltwoside);
720         if (gamemode == GAME_TENEBRAE)
721         {
722                 Cvar_SetValue("r_shadow_gloss", 2);
723                 Cvar_SetValue("r_shadow_bumpscale_basetexture", 4);
724         }
725         Cmd_AddCommand("r_shadow_help", R_Shadow_Help_f, "prints documentation on console commands and variables used by realtime lighting and shadowing system");
726         R_Shadow_EditLights_Init();
727         r_shadow_mempool = Mem_AllocPool("R_Shadow", 0, NULL);
728         r_shadow_worldlightchain = NULL;
729         maxshadowelements = 0;
730         shadowelements = NULL;
731         maxvertexupdate = 0;
732         vertexupdate = NULL;
733         vertexremap = NULL;
734         vertexupdatenum = 0;
735         maxshadowmark = 0;
736         numshadowmark = 0;
737         shadowmark = NULL;
738         shadowmarklist = NULL;
739         shadowmarkcount = 0;
740         r_shadow_buffer_numleafpvsbytes = 0;
741         r_shadow_buffer_leafpvs = NULL;
742         r_shadow_buffer_leaflist = NULL;
743         r_shadow_buffer_numsurfacepvsbytes = 0;
744         r_shadow_buffer_surfacepvs = NULL;
745         r_shadow_buffer_surfacelist = NULL;
746         R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap);
747 }
748
749 matrix4x4_t matrix_attenuationxyz =
750 {
751         {
752                 {0.5, 0.0, 0.0, 0.5},
753                 {0.0, 0.5, 0.0, 0.5},
754                 {0.0, 0.0, 0.5, 0.5},
755                 {0.0, 0.0, 0.0, 1.0}
756         }
757 };
758
759 matrix4x4_t matrix_attenuationz =
760 {
761         {
762                 {0.0, 0.0, 0.5, 0.5},
763                 {0.0, 0.0, 0.0, 0.5},
764                 {0.0, 0.0, 0.0, 0.5},
765                 {0.0, 0.0, 0.0, 1.0}
766         }
767 };
768
769 int *R_Shadow_ResizeShadowElements(int numtris)
770 {
771         // make sure shadowelements is big enough for this volume
772         if (maxshadowelements < numtris * 24)
773         {
774                 maxshadowelements = numtris * 24;
775                 if (shadowelements)
776                         Mem_Free(shadowelements);
777                 shadowelements = (int *)Mem_Alloc(r_shadow_mempool, maxshadowelements * sizeof(int));
778         }
779         return shadowelements;
780 }
781
782 static void R_Shadow_EnlargeLeafSurfaceBuffer(int numleafs, int numsurfaces)
783 {
784         int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
785         int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
786         if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
787         {
788                 if (r_shadow_buffer_leafpvs)
789                         Mem_Free(r_shadow_buffer_leafpvs);
790                 if (r_shadow_buffer_leaflist)
791                         Mem_Free(r_shadow_buffer_leaflist);
792                 r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
793                 r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_shadow_mempool, r_shadow_buffer_numleafpvsbytes);
794                 r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_shadow_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
795         }
796         if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
797         {
798                 if (r_shadow_buffer_surfacepvs)
799                         Mem_Free(r_shadow_buffer_surfacepvs);
800                 if (r_shadow_buffer_surfacelist)
801                         Mem_Free(r_shadow_buffer_surfacelist);
802                 r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
803                 r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_shadow_mempool, r_shadow_buffer_numsurfacepvsbytes);
804                 r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_shadow_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
805         }
806 }
807
808 void R_Shadow_PrepareShadowMark(int numtris)
809 {
810         // make sure shadowmark is big enough for this volume
811         if (maxshadowmark < numtris)
812         {
813                 maxshadowmark = numtris;
814                 if (shadowmark)
815                         Mem_Free(shadowmark);
816                 if (shadowmarklist)
817                         Mem_Free(shadowmarklist);
818                 shadowmark = (int *)Mem_Alloc(r_shadow_mempool, maxshadowmark * sizeof(*shadowmark));
819                 shadowmarklist = (int *)Mem_Alloc(r_shadow_mempool, maxshadowmark * sizeof(*shadowmarklist));
820                 shadowmarkcount = 0;
821         }
822         shadowmarkcount++;
823         // if shadowmarkcount wrapped we clear the array and adjust accordingly
824         if (shadowmarkcount == 0)
825         {
826                 shadowmarkcount = 1;
827                 memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
828         }
829         numshadowmark = 0;
830 }
831
832 int R_Shadow_ConstructShadowVolume(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
833 {
834         int i, j;
835         int outtriangles = 0, outvertices = 0;
836         const int *element;
837         const float *vertex;
838
839         if (maxvertexupdate < innumvertices)
840         {
841                 maxvertexupdate = innumvertices;
842                 if (vertexupdate)
843                         Mem_Free(vertexupdate);
844                 if (vertexremap)
845                         Mem_Free(vertexremap);
846                 vertexupdate = (int *)Mem_Alloc(r_shadow_mempool, maxvertexupdate * sizeof(int));
847                 vertexremap = (int *)Mem_Alloc(r_shadow_mempool, maxvertexupdate * sizeof(int));
848                 vertexupdatenum = 0;
849         }
850         vertexupdatenum++;
851         if (vertexupdatenum == 0)
852         {
853                 vertexupdatenum = 1;
854                 memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
855                 memset(vertexremap, 0, maxvertexupdate * sizeof(int));
856         }
857
858         for (i = 0;i < numshadowmarktris;i++)
859                 shadowmark[shadowmarktris[i]] = shadowmarkcount;
860
861         for (i = 0;i < numshadowmarktris;i++)
862         {
863                 element = inelement3i + shadowmarktris[i] * 3;
864                 // make sure the vertices are created
865                 for (j = 0;j < 3;j++)
866                 {
867                         if (vertexupdate[element[j]] != vertexupdatenum)
868                         {
869                                 float ratio, direction[3];
870                                 vertexupdate[element[j]] = vertexupdatenum;
871                                 vertexremap[element[j]] = outvertices;
872                                 vertex = invertex3f + element[j] * 3;
873                                 // project one copy of the vertex to the sphere radius of the light
874                                 // (FIXME: would projecting it to the light box be better?)
875                                 VectorSubtract(vertex, projectorigin, direction);
876                                 ratio = projectdistance / VectorLength(direction);
877                                 VectorCopy(vertex, outvertex3f);
878                                 VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
879                                 outvertex3f += 6;
880                                 outvertices += 2;
881                         }
882                 }
883         }
884
885         for (i = 0;i < numshadowmarktris;i++)
886         {
887                 int remappedelement[3];
888                 int markindex;
889                 const int *neighbortriangle;
890
891                 markindex = shadowmarktris[i] * 3;
892                 element = inelement3i + markindex;
893                 neighbortriangle = inneighbor3i + markindex;
894                 // output the front and back triangles
895                 outelement3i[0] = vertexremap[element[0]];
896                 outelement3i[1] = vertexremap[element[1]];
897                 outelement3i[2] = vertexremap[element[2]];
898                 outelement3i[3] = vertexremap[element[2]] + 1;
899                 outelement3i[4] = vertexremap[element[1]] + 1;
900                 outelement3i[5] = vertexremap[element[0]] + 1;
901
902                 outelement3i += 6;
903                 outtriangles += 2;
904                 // output the sides (facing outward from this triangle)
905                 if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
906                 {
907                         remappedelement[0] = vertexremap[element[0]];
908                         remappedelement[1] = vertexremap[element[1]];
909                         outelement3i[0] = remappedelement[1];
910                         outelement3i[1] = remappedelement[0];
911                         outelement3i[2] = remappedelement[0] + 1;
912                         outelement3i[3] = remappedelement[1];
913                         outelement3i[4] = remappedelement[0] + 1;
914                         outelement3i[5] = remappedelement[1] + 1;
915
916                         outelement3i += 6;
917                         outtriangles += 2;
918                 }
919                 if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
920                 {
921                         remappedelement[1] = vertexremap[element[1]];
922                         remappedelement[2] = vertexremap[element[2]];
923                         outelement3i[0] = remappedelement[2];
924                         outelement3i[1] = remappedelement[1];
925                         outelement3i[2] = remappedelement[1] + 1;
926                         outelement3i[3] = remappedelement[2];
927                         outelement3i[4] = remappedelement[1] + 1;
928                         outelement3i[5] = remappedelement[2] + 1;
929
930                         outelement3i += 6;
931                         outtriangles += 2;
932                 }
933                 if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
934                 {
935                         remappedelement[0] = vertexremap[element[0]];
936                         remappedelement[2] = vertexremap[element[2]];
937                         outelement3i[0] = remappedelement[0];
938                         outelement3i[1] = remappedelement[2];
939                         outelement3i[2] = remappedelement[2] + 1;
940                         outelement3i[3] = remappedelement[0];
941                         outelement3i[4] = remappedelement[2] + 1;
942                         outelement3i[5] = remappedelement[0] + 1;
943
944                         outelement3i += 6;
945                         outtriangles += 2;
946                 }
947         }
948         if (outnumvertices)
949                 *outnumvertices = outvertices;
950         return outtriangles;
951 }
952
953 void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, float projectdistance, int nummarktris, const int *marktris)
954 {
955         int tris, outverts;
956         if (projectdistance < 0.1)
957         {
958                 Con_Printf("R_Shadow_Volume: projectdistance %f\n");
959                 return;
960         }
961         if (!numverts || !nummarktris)
962                 return;
963         // make sure shadowelements is big enough for this volume
964         if (maxshadowelements < nummarktris * 24)
965                 R_Shadow_ResizeShadowElements((nummarktris + 256) * 24);
966         tris = R_Shadow_ConstructShadowVolume(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, varray_vertex3f2, projectorigin, projectdistance, nummarktris, marktris);
967         renderstats.lights_dynamicshadowtriangles += tris;
968         R_Shadow_RenderVolume(outverts, tris, varray_vertex3f2, shadowelements);
969 }
970
971 void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
972 {
973         int t, tend;
974         const int *e;
975         const float *v[3];
976         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
977                 return;
978         tend = firsttriangle + numtris;
979         if (surfacemins[0] >= lightmins[0] && surfacemaxs[0] <= lightmaxs[0]
980          && surfacemins[1] >= lightmins[1] && surfacemaxs[1] <= lightmaxs[1]
981          && surfacemins[2] >= lightmins[2] && surfacemaxs[2] <= lightmaxs[2])
982         {
983                 // surface box entirely inside light box, no box cull
984                 for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
985                         if (PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
986                                 shadowmarklist[numshadowmark++] = t;
987         }
988         else
989         {
990                 // surface box not entirely inside light box, cull each triangle
991                 for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
992                 {
993                         v[0] = invertex3f + e[0] * 3;
994                         v[1] = invertex3f + e[1] * 3;
995                         v[2] = invertex3f + e[2] * 3;
996                         if (PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
997                          && lightmaxs[0] > min(v[0][0], min(v[1][0], v[2][0]))
998                          && lightmins[0] < max(v[0][0], max(v[1][0], v[2][0]))
999                          && lightmaxs[1] > min(v[0][1], min(v[1][1], v[2][1]))
1000                          && lightmins[1] < max(v[0][1], max(v[1][1], v[2][1]))
1001                          && lightmaxs[2] > min(v[0][2], min(v[1][2], v[2][2]))
1002                          && lightmins[2] < max(v[0][2], max(v[1][2], v[2][2])))
1003                                 shadowmarklist[numshadowmark++] = t;
1004                 }
1005         }
1006 }
1007
1008 void R_Shadow_RenderVolume(int numvertices, int numtriangles, const float *vertex3f, const int *element3i)
1009 {
1010         rmeshstate_t m;
1011         if (r_shadow_compilingrtlight)
1012         {
1013                 // if we're compiling an rtlight, capture the mesh
1014                 Mod_ShadowMesh_AddMesh(r_shadow_mempool, r_shadow_compilingrtlight->static_meshchain_shadow, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, numtriangles, element3i);
1015                 return;
1016         }
1017         renderstats.lights_shadowtriangles += numtriangles;
1018         memset(&m, 0, sizeof(m));
1019         m.pointer_vertex = vertex3f;
1020         R_Mesh_State(&m);
1021         GL_LockArrays(0, numvertices);
1022         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
1023         {
1024                 // decrement stencil if backface is behind depthbuffer
1025                 qglCullFace(GL_BACK); // quake is backwards, this culls front faces
1026                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);
1027                 R_Mesh_Draw(0, numvertices, numtriangles, element3i);
1028                 // increment stencil if frontface is behind depthbuffer
1029                 qglCullFace(GL_FRONT); // quake is backwards, this culls back faces
1030                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);
1031         }
1032         R_Mesh_Draw(0, numvertices, numtriangles, element3i);
1033         GL_LockArrays(0, 0);
1034 }
1035
1036 static void R_Shadow_MakeTextures(void)
1037 {
1038         int x, y, z, d;
1039         float v[3], intensity;
1040         unsigned char *data;
1041         R_FreeTexturePool(&r_shadow_texturepool);
1042         r_shadow_texturepool = R_AllocTexturePool();
1043         r_shadow_attenpower = r_shadow_lightattenuationpower.value;
1044         r_shadow_attenscale = r_shadow_lightattenuationscale.value;
1045 #define ATTEN2DSIZE 64
1046 #define ATTEN3DSIZE 32
1047         data = (unsigned char *)Mem_Alloc(tempmempool, max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE*4, ATTEN2DSIZE*ATTEN2DSIZE*4));
1048         for (y = 0;y < ATTEN2DSIZE;y++)
1049         {
1050                 for (x = 0;x < ATTEN2DSIZE;x++)
1051                 {
1052                         v[0] = ((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375);
1053                         v[1] = ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375);
1054                         v[2] = 0;
1055                         intensity = 1.0f - sqrt(DotProduct(v, v));
1056                         if (intensity > 0)
1057                                 intensity = pow(intensity, r_shadow_attenpower) * r_shadow_attenscale * 256.0f;
1058                         d = bound(0, intensity, 255);
1059                         data[(y*ATTEN2DSIZE+x)*4+0] = d;
1060                         data[(y*ATTEN2DSIZE+x)*4+1] = d;
1061                         data[(y*ATTEN2DSIZE+x)*4+2] = d;
1062                         data[(y*ATTEN2DSIZE+x)*4+3] = d;
1063                 }
1064         }
1065         r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, data, TEXTYPE_RGBA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, NULL);
1066         if (r_shadow_texture3d.integer)
1067         {
1068                 for (z = 0;z < ATTEN3DSIZE;z++)
1069                 {
1070                         for (y = 0;y < ATTEN3DSIZE;y++)
1071                         {
1072                                 for (x = 0;x < ATTEN3DSIZE;x++)
1073                                 {
1074                                         v[0] = ((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375);
1075                                         v[1] = ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375);
1076                                         v[2] = ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375);
1077                                         intensity = 1.0f - sqrt(DotProduct(v, v));
1078                                         if (intensity > 0)
1079                                                 intensity = pow(intensity, r_shadow_attenpower) * r_shadow_attenscale * 256.0f;
1080                                         d = bound(0, intensity, 255);
1081                                         data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+0] = d;
1082                                         data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+1] = d;
1083                                         data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+2] = d;
1084                                         data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+3] = d;
1085                                 }
1086                         }
1087                 }
1088                 r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, data, TEXTYPE_RGBA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, NULL);
1089         }
1090         Mem_Free(data);
1091 }
1092
1093 void R_Shadow_ValidateCvars(void)
1094 {
1095         if (r_shadow_texture3d.integer && !gl_texture3d)
1096                 Cvar_SetValueQuick(&r_shadow_texture3d, 0);
1097         if (gl_ext_stenciltwoside.integer && !gl_support_stenciltwoside)
1098                 Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
1099 }
1100
1101 // light currently being rendered
1102 rtlight_t *r_shadow_rtlight;
1103
1104 // this is the location of the eye in entity space
1105 vec3_t r_shadow_entityeyeorigin;
1106 // this is the location of the light in entity space
1107 vec3_t r_shadow_entitylightorigin;
1108 // this transforms entity coordinates to light filter cubemap coordinates
1109 // (also often used for other purposes)
1110 matrix4x4_t r_shadow_entitytolight;
1111 // based on entitytolight this transforms -1 to +1 to 0 to 1 for purposes
1112 // of attenuation texturing in full 3D (Z result often ignored)
1113 matrix4x4_t r_shadow_entitytoattenuationxyz;
1114 // this transforms only the Z to S, and T is always 0.5
1115 matrix4x4_t r_shadow_entitytoattenuationz;
1116
1117 static int r_shadow_lightpermutation;
1118 static int r_shadow_lightprog;
1119
1120 void R_Shadow_RenderMode_Begin(void)
1121 {
1122         rmeshstate_t m;
1123
1124         R_Shadow_ValidateCvars();
1125
1126         if (!r_shadow_attenuation2dtexture
1127          || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
1128          || r_shadow_lightattenuationpower.value != r_shadow_attenpower
1129          || r_shadow_lightattenuationscale.value != r_shadow_attenscale)
1130                 R_Shadow_MakeTextures();
1131
1132         memset(&m, 0, sizeof(m));
1133         R_Mesh_State(&m);
1134         GL_BlendFunc(GL_ONE, GL_ZERO);
1135         GL_DepthMask(false);
1136         GL_DepthTest(true);
1137         GL_Color(0, 0, 0, 1);
1138         qglCullFace(GL_FRONT); // quake is backwards, this culls back faces
1139         qglEnable(GL_CULL_FACE);
1140         GL_Scissor(r_view_x, r_view_y, r_view_width, r_view_height);
1141
1142         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1143
1144         if (gl_ext_stenciltwoside.integer)
1145                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCILTWOSIDE;
1146         else
1147                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCIL;
1148
1149         if (r_shadow_glsl.integer && gl_support_fragment_shader)
1150                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
1151         else if (gl_dot3arb && gl_texturecubemap && r_textureunits.integer >= 2 && gl_combine.integer && gl_stencil)
1152                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_DOT3;
1153         else
1154                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
1155 }
1156
1157 void R_Shadow_RenderMode_ActiveLight(rtlight_t *rtlight)
1158 {
1159         r_shadow_rtlight = rtlight;
1160 }
1161
1162 void R_Shadow_RenderMode_Reset(void)
1163 {
1164         rmeshstate_t m;
1165         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1166         {
1167                 qglUseProgramObjectARB(0);
1168                 // HACK HACK HACK: work around for bug in NVIDIAI 6xxx drivers that causes GL_OUT_OF_MEMORY and/or software rendering
1169                 qglBegin(GL_TRIANGLES);
1170                 qglEnd();
1171                 CHECKGLERROR
1172         }
1173         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1174                 qglDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);
1175         memset(&m, 0, sizeof(m));
1176         R_Mesh_State(&m);
1177 }
1178
1179 void R_Shadow_RenderMode_StencilShadowVolumes(void)
1180 {
1181         R_Shadow_RenderMode_Reset();
1182         GL_Color(1, 1, 1, 1);
1183         GL_ColorMask(0, 0, 0, 0);
1184         GL_BlendFunc(GL_ONE, GL_ZERO);
1185         GL_DepthMask(false);
1186         GL_DepthTest(true);
1187         if (!r_showtrispass)
1188                 qglPolygonOffset(r_shadow_shadow_polygonfactor.value, r_shadow_shadow_polygonoffset.value);
1189         //if (r_shadow_shadow_polygonoffset.value != 0)
1190         //{
1191         //      qglPolygonOffset(r_shadow_shadow_polygonfactor.value, r_shadow_shadow_polygonoffset.value);
1192         //      qglEnable(GL_POLYGON_OFFSET_FILL);
1193         //}
1194         //else
1195         //      qglDisable(GL_POLYGON_OFFSET_FILL);
1196         qglDepthFunc(GL_LESS);
1197         qglCullFace(GL_FRONT); // quake is backwards, this culls back faces
1198         qglEnable(GL_STENCIL_TEST);
1199         qglStencilFunc(GL_ALWAYS, 128, ~0);
1200         r_shadow_rendermode = r_shadow_shadowingrendermode;
1201         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1202         {
1203                 qglDisable(GL_CULL_FACE);
1204                 qglEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);
1205                 qglActiveStencilFaceEXT(GL_BACK); // quake is backwards, this is front faces
1206                 qglStencilMask(~0);
1207                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);
1208                 qglActiveStencilFaceEXT(GL_FRONT); // quake is backwards, this is back faces
1209                 qglStencilMask(~0);
1210                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);
1211         }
1212         else
1213         {
1214                 qglEnable(GL_CULL_FACE);
1215                 qglStencilMask(~0);
1216                 // this is changed by every shadow render so its value here is unimportant
1217                 qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
1218         }
1219         GL_Clear(GL_STENCIL_BUFFER_BIT);
1220         renderstats.lights_clears++;
1221 }
1222
1223 void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent)
1224 {
1225         R_Shadow_RenderMode_Reset();
1226         GL_BlendFunc(GL_ONE, GL_ONE);
1227         GL_DepthMask(false);
1228         GL_DepthTest(true);
1229         if (!r_showtrispass)
1230                 qglPolygonOffset(0, 0);
1231         //qglDisable(GL_POLYGON_OFFSET_FILL);
1232         GL_Color(1, 1, 1, 1);
1233         GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 1);
1234         if (transparent)
1235                 qglDepthFunc(GL_LEQUAL);
1236         else
1237                 qglDepthFunc(GL_EQUAL);
1238         qglCullFace(GL_FRONT); // quake is backwards, this culls back faces
1239         qglEnable(GL_CULL_FACE);
1240         if (stenciltest)
1241                 qglEnable(GL_STENCIL_TEST);
1242         else
1243                 qglDisable(GL_STENCIL_TEST);
1244         qglStencilMask(~0);
1245         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
1246         // only draw light where this geometry was already rendered AND the
1247         // stencil is 128 (values other than this mean shadow)
1248         qglStencilFunc(GL_EQUAL, 128, ~0);
1249         r_shadow_rendermode = r_shadow_lightingrendermode;
1250         // do global setup needed for the chosen lighting mode
1251         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1252         {
1253                 R_Mesh_VertexPointer(varray_vertex3f);
1254                 R_Mesh_TexCoordPointer(0, 2, varray_texcoord2f[0]);
1255                 R_Mesh_TexCoordPointer(1, 3, varray_svector3f);
1256                 R_Mesh_TexCoordPointer(2, 3, varray_tvector3f);
1257                 R_Mesh_TexCoordPointer(3, 3, varray_normal3f);
1258                 R_Mesh_TexBind(0, R_GetTexture(r_texture_blanknormalmap)); // normal
1259                 R_Mesh_TexBind(1, R_GetTexture(r_texture_white)); // diffuse
1260                 R_Mesh_TexBind(2, R_GetTexture(r_texture_white)); // gloss
1261                 R_Mesh_TexBindCubeMap(3, R_GetTexture(r_shadow_rtlight->currentcubemap)); // light filter
1262                 R_Mesh_TexBind(4, R_GetTexture(r_texture_fogattenuation)); // fog
1263                 R_Mesh_TexBind(5, R_GetTexture(r_texture_white)); // pants
1264                 R_Mesh_TexBind(6, R_GetTexture(r_texture_white)); // shirt
1265                 //R_Mesh_TexMatrix(3, r_shadow_entitytolight); // light filter matrix
1266                 GL_BlendFunc(GL_ONE, GL_ONE);
1267                 GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 0);
1268                 CHECKGLERROR
1269         }
1270 }
1271
1272 void R_Shadow_RenderMode_VisibleShadowVolumes(void)
1273 {
1274         R_Shadow_RenderMode_Reset();
1275         GL_BlendFunc(GL_ONE, GL_ONE);
1276         GL_DepthMask(false);
1277         GL_DepthTest(!r_showdisabledepthtest.integer);
1278         if (!r_showtrispass)
1279                 qglPolygonOffset(0, 0);
1280         GL_Color(0.0, 0.0125, 0.1, 1);
1281         GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 1);
1282         qglDepthFunc(GL_GEQUAL);
1283         qglCullFace(GL_FRONT); // this culls back
1284         qglDisable(GL_CULL_FACE);
1285         qglDisable(GL_STENCIL_TEST);
1286         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
1287 }
1288
1289 void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
1290 {
1291         R_Shadow_RenderMode_Reset();
1292         GL_BlendFunc(GL_ONE, GL_ONE);
1293         GL_DepthMask(false);
1294         GL_DepthTest(!r_showdisabledepthtest.integer);
1295         if (!r_showtrispass)
1296                 qglPolygonOffset(0, 0);
1297         GL_Color(0.1, 0.0125, 0, 1);
1298         GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 1);
1299         if (transparent)
1300                 qglDepthFunc(GL_LEQUAL);
1301         else
1302                 qglDepthFunc(GL_EQUAL);
1303         qglCullFace(GL_FRONT); // this culls back
1304         qglEnable(GL_CULL_FACE);
1305         if (stenciltest)
1306                 qglEnable(GL_STENCIL_TEST);
1307         else
1308                 qglDisable(GL_STENCIL_TEST);
1309         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
1310 }
1311
1312 void R_Shadow_RenderMode_End(void)
1313 {
1314         R_Shadow_RenderMode_Reset();
1315         R_Shadow_RenderMode_ActiveLight(NULL);
1316         GL_BlendFunc(GL_ONE, GL_ZERO);
1317         GL_DepthMask(true);
1318         GL_DepthTest(true);
1319         if (!r_showtrispass)
1320                 qglPolygonOffset(0, 0);
1321         //qglDisable(GL_POLYGON_OFFSET_FILL);
1322         GL_Color(1, 1, 1, 1);
1323         GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 1);
1324         GL_Scissor(r_view_x, r_view_y, r_view_width, r_view_height);
1325         qglDepthFunc(GL_LEQUAL);
1326         qglCullFace(GL_FRONT); // quake is backwards, this culls back faces
1327         qglEnable(GL_CULL_FACE);
1328         qglDisable(GL_STENCIL_TEST);
1329         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
1330         if (gl_support_stenciltwoside)
1331                 qglDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);
1332         qglStencilMask(~0);
1333         qglStencilFunc(GL_ALWAYS, 128, ~0);
1334         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1335 }
1336
1337 qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
1338 {
1339         int i, ix1, iy1, ix2, iy2;
1340         float x1, y1, x2, y2;
1341         vec4_t v, v2;
1342         rmesh_t mesh;
1343         mplane_t planes[11];
1344         float vertex3f[256*3];
1345
1346         // if view is inside the light box, just say yes it's visible
1347         if (BoxesOverlap(r_vieworigin, r_vieworigin, mins, maxs))
1348         {
1349                 GL_Scissor(r_view_x, r_view_y, r_view_width, r_view_height);
1350                 return false;
1351         }
1352
1353         // create a temporary brush describing the area the light can affect in worldspace
1354         VectorNegate(frustum[0].normal, planes[ 0].normal);planes[ 0].dist = -frustum[0].dist;
1355         VectorNegate(frustum[1].normal, planes[ 1].normal);planes[ 1].dist = -frustum[1].dist;
1356         VectorNegate(frustum[2].normal, planes[ 2].normal);planes[ 2].dist = -frustum[2].dist;
1357         VectorNegate(frustum[3].normal, planes[ 3].normal);planes[ 3].dist = -frustum[3].dist;
1358         VectorNegate(frustum[4].normal, planes[ 4].normal);planes[ 4].dist = -frustum[4].dist;
1359         VectorSet   (planes[ 5].normal,  1, 0, 0);         planes[ 5].dist =  maxs[0];
1360         VectorSet   (planes[ 6].normal, -1, 0, 0);         planes[ 6].dist = -mins[0];
1361         VectorSet   (planes[ 7].normal, 0,  1, 0);         planes[ 7].dist =  maxs[1];
1362         VectorSet   (planes[ 8].normal, 0, -1, 0);         planes[ 8].dist = -mins[1];
1363         VectorSet   (planes[ 9].normal, 0, 0,  1);         planes[ 9].dist =  maxs[2];
1364         VectorSet   (planes[10].normal, 0, 0, -1);         planes[10].dist = -mins[2];
1365
1366         // turn the brush into a mesh
1367         memset(&mesh, 0, sizeof(rmesh_t));
1368         mesh.maxvertices = 256;
1369         mesh.vertex3f = vertex3f;
1370         mesh.epsilon2 = (1.0f / (32.0f * 32.0f));
1371         R_Mesh_AddBrushMeshFromPlanes(&mesh, 11, planes);
1372
1373         // if that mesh is empty, the light is not visible at all
1374         if (!mesh.numvertices)
1375                 return true;
1376
1377         if (!r_shadow_scissor.integer)
1378                 return false;
1379
1380         // if that mesh is not empty, check what area of the screen it covers
1381         x1 = y1 = x2 = y2 = 0;
1382         v[3] = 1.0f;
1383         for (i = 0;i < mesh.numvertices;i++)
1384         {
1385                 VectorCopy(mesh.vertex3f + i * 3, v);
1386                 GL_TransformToScreen(v, v2);
1387                 //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
1388                 if (i)
1389                 {
1390                         if (x1 > v2[0]) x1 = v2[0];
1391                         if (x2 < v2[0]) x2 = v2[0];
1392                         if (y1 > v2[1]) y1 = v2[1];
1393                         if (y2 < v2[1]) y2 = v2[1];
1394                 }
1395                 else
1396                 {
1397                         x1 = x2 = v2[0];
1398                         y1 = y2 = v2[1];
1399                 }
1400         }
1401
1402         // now convert the scissor rectangle to integer screen coordinates
1403         ix1 = x1 - 1.0f;
1404         iy1 = y1 - 1.0f;
1405         ix2 = x2 + 1.0f;
1406         iy2 = y2 + 1.0f;
1407         //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2);
1408
1409         // clamp it to the screen
1410         if (ix1 < r_view_x) ix1 = r_view_x;
1411         if (iy1 < r_view_y) iy1 = r_view_y;
1412         if (ix2 > r_view_x + r_view_width) ix2 = r_view_x + r_view_width;
1413         if (iy2 > r_view_y + r_view_height) iy2 = r_view_y + r_view_height;
1414
1415         // if it is inside out, it's not visible
1416         if (ix2 <= ix1 || iy2 <= iy1)
1417                 return true;
1418
1419         // the light area is visible, set up the scissor rectangle
1420         GL_Scissor(ix1, vid.height - iy2, ix2 - ix1, iy2 - iy1);
1421         //qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1);
1422         //qglEnable(GL_SCISSOR_TEST);
1423         renderstats.lights_scissored++;
1424         return false;
1425 }
1426
1427 extern float *rsurface_vertex3f;
1428 extern float *rsurface_svector3f;
1429 extern float *rsurface_tvector3f;
1430 extern float *rsurface_normal3f;
1431 extern void RSurf_SetVertexPointer(const entity_render_t *ent, const texture_t *texture, const msurface_t *surface, const vec3_t modelorg, qboolean generatenormals, qboolean generatetangents);
1432
1433 static void R_Shadow_RenderSurfacesLighting_Light_Vertex_Shading(const msurface_t *surface, const float *diffusecolor, const float *ambientcolor)
1434 {
1435         int numverts = surface->num_vertices;
1436         float *vertex3f = rsurface_vertex3f + 3 * surface->num_firstvertex;
1437         float *normal3f = rsurface_normal3f + 3 * surface->num_firstvertex;
1438         float *color4f = varray_color4f + 4 * surface->num_firstvertex;
1439         float dist, dot, distintensity, shadeintensity, v[3], n[3];
1440         if (r_textureunits.integer >= 3)
1441         {
1442                 for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1443                 {
1444                         Matrix4x4_Transform(&r_shadow_entitytolight, vertex3f, v);
1445                         Matrix4x4_Transform3x3(&r_shadow_entitytolight, normal3f, n);
1446                         if ((dot = DotProduct(n, v)) < 0)
1447                         {
1448                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1449                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]);
1450                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]);
1451                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]);
1452                                 if (fogenabled)
1453                                 {
1454                                         float f = VERTEXFOGTABLE(VectorDistance(v, r_shadow_entityeyeorigin));
1455                                         VectorScale(color4f, f, color4f);
1456                                 }
1457                         }
1458                         else
1459                                 VectorClear(color4f);
1460                         color4f[3] = 1;
1461                 }
1462         }
1463         else if (r_textureunits.integer >= 2)
1464         {
1465                 for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1466                 {
1467                         Matrix4x4_Transform(&r_shadow_entitytolight, vertex3f, v);
1468                         if ((dist = fabs(v[2])) < 1)
1469                         {
1470                                 distintensity = pow(1 - dist, r_shadow_attenpower) * r_shadow_attenscale;
1471                                 Matrix4x4_Transform3x3(&r_shadow_entitytolight, normal3f, n);
1472                                 if ((dot = DotProduct(n, v)) < 0)
1473                                 {
1474                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1475                                         color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1476                                         color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1477                                         color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1478                                 }
1479                                 else
1480                                 {
1481                                         color4f[0] = ambientcolor[0] * distintensity;
1482                                         color4f[1] = ambientcolor[1] * distintensity;
1483                                         color4f[2] = ambientcolor[2] * distintensity;
1484                                 }
1485                                 if (fogenabled)
1486                                 {
1487                                         float f = VERTEXFOGTABLE(VectorDistance(v, r_shadow_entityeyeorigin));
1488                                         VectorScale(color4f, f, color4f);
1489                                 }
1490                         }
1491                         else
1492                                 VectorClear(color4f);
1493                         color4f[3] = 1;
1494                 }
1495         }
1496         else
1497         {
1498                 for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1499                 {
1500                         Matrix4x4_Transform(&r_shadow_entitytolight, vertex3f, v);
1501                         if ((dist = DotProduct(v, v)) < 1)
1502                         {
1503                                 dist = sqrt(dist);
1504                                 distintensity = pow(1 - dist, r_shadow_attenpower) * r_shadow_attenscale;
1505                                 Matrix4x4_Transform3x3(&r_shadow_entitytolight, normal3f, n);
1506                                 if ((dot = DotProduct(n, v)) < 0)
1507                                 {
1508                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1509                                         color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1510                                         color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1511                                         color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1512                                 }
1513                                 else
1514                                 {
1515                                         color4f[0] = ambientcolor[0] * distintensity;
1516                                         color4f[1] = ambientcolor[1] * distintensity;
1517                                         color4f[2] = ambientcolor[2] * distintensity;
1518                                 }
1519                                 if (fogenabled)
1520                                 {
1521                                         float f = VERTEXFOGTABLE(VectorDistance(v, r_shadow_entityeyeorigin));
1522                                         VectorScale(color4f, f, color4f);
1523                                 }
1524                         }
1525                         else
1526                                 VectorClear(color4f);
1527                         color4f[3] = 1;
1528                 }
1529         }
1530 }
1531
1532 // TODO: use glTexGen instead of feeding vertices to texcoordpointer?
1533 #define USETEXMATRIX
1534
1535 #ifndef USETEXMATRIX
1536 // this should be done in a texture matrix or vertex program when possible, but here's code to do it manually
1537 // if hardware texcoord manipulation is not available (or not suitable, this would really benefit from 3DNow! or SSE
1538 static void R_Shadow_Transform_Vertex3f_TexCoord3f(float *tc3f, int numverts, const float *vertex3f, const matrix4x4_t *matrix)
1539 {
1540         do
1541         {
1542                 tc3f[0] = vertex3f[0] * matrix->m[0][0] + vertex3f[1] * matrix->m[0][1] + vertex3f[2] * matrix->m[0][2] + matrix->m[0][3];
1543                 tc3f[1] = vertex3f[0] * matrix->m[1][0] + vertex3f[1] * matrix->m[1][1] + vertex3f[2] * matrix->m[1][2] + matrix->m[1][3];
1544                 tc3f[2] = vertex3f[0] * matrix->m[2][0] + vertex3f[1] * matrix->m[2][1] + vertex3f[2] * matrix->m[2][2] + matrix->m[2][3];
1545                 vertex3f += 3;
1546                 tc3f += 3;
1547         }
1548         while (--numverts);
1549 }
1550
1551 static void R_Shadow_Transform_Vertex3f_TexCoord2f(float *tc2f, int numverts, const float *vertex3f, const matrix4x4_t *matrix)
1552 {
1553         do
1554         {
1555                 tc2f[0] = vertex3f[0] * matrix->m[0][0] + vertex3f[1] * matrix->m[0][1] + vertex3f[2] * matrix->m[0][2] + matrix->m[0][3];
1556                 tc2f[1] = vertex3f[0] * matrix->m[1][0] + vertex3f[1] * matrix->m[1][1] + vertex3f[2] * matrix->m[1][2] + matrix->m[1][3];
1557                 vertex3f += 3;
1558                 tc2f += 2;
1559         }
1560         while (--numverts);
1561 }
1562 #endif
1563
1564 static void R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(float *out3f, int numverts, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const vec3_t relativelightorigin)
1565 {
1566         int i;
1567         float lightdir[3];
1568         for (i = 0;i < numverts;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1569         {
1570                 VectorSubtract(relativelightorigin, vertex3f, lightdir);
1571                 // the cubemap normalizes this for us
1572                 out3f[0] = DotProduct(svector3f, lightdir);
1573                 out3f[1] = DotProduct(tvector3f, lightdir);
1574                 out3f[2] = DotProduct(normal3f, lightdir);
1575         }
1576 }
1577
1578 static void R_Shadow_GenTexCoords_Specular_NormalCubeMap(float *out3f, int numverts, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const vec3_t relativelightorigin, const vec3_t relativeeyeorigin)
1579 {
1580         int i;
1581         float lightdir[3], eyedir[3], halfdir[3];
1582         for (i = 0;i < numverts;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1583         {
1584                 VectorSubtract(relativelightorigin, vertex3f, lightdir);
1585                 VectorNormalize(lightdir);
1586                 VectorSubtract(relativeeyeorigin, vertex3f, eyedir);
1587                 VectorNormalize(eyedir);
1588                 VectorAdd(lightdir, eyedir, halfdir);
1589                 // the cubemap normalizes this for us
1590                 out3f[0] = DotProduct(svector3f, halfdir);
1591                 out3f[1] = DotProduct(tvector3f, halfdir);
1592                 out3f[2] = DotProduct(normal3f, halfdir);
1593         }
1594 }
1595
1596 static void R_Shadow_RenderSurfacesLighting_VisibleLighting(const entity_render_t *ent, const texture_t *texture, int numsurfaces, msurface_t **surfacelist, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float specularscale, qboolean dopants, qboolean doshirt)
1597 {
1598         // used to display how many times a surface is lit for level design purposes
1599         int surfacelistindex;
1600         rmeshstate_t m;
1601         GL_Color(0.1, 0.025, 0, 1);
1602         memset(&m, 0, sizeof(m));
1603         R_Mesh_State(&m);
1604         for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
1605         {
1606                 const msurface_t *surface = surfacelist[surfacelistindex];
1607                 RSurf_SetVertexPointer(ent, texture, surface, r_shadow_entityeyeorigin, false, false);
1608                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
1609                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle);
1610                 GL_LockArrays(0, 0);
1611         }
1612 }
1613
1614 static void R_Shadow_RenderSurfacesLighting_Light_GLSL(const entity_render_t *ent, const texture_t *texture, int numsurfaces, msurface_t **surfacelist, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float specularscale, qboolean dopants, qboolean doshirt)
1615 {
1616         // ARB2 GLSL shader path (GFFX5200, Radeon 9500)
1617         int surfacelistindex;
1618         // select a permutation of the lighting shader appropriate to this
1619         // combination of texture, entity, light source, and fogging, only use the
1620         // minimum features necessary to avoid wasting rendering time in the
1621         // fragment shader on features that are not being used
1622         r_shadow_lightpermutation = 0;
1623         if (fogenabled)
1624                 r_shadow_lightpermutation |= SHADERPERMUTATION_FOG;
1625         if ((dopants || doshirt))
1626                 r_shadow_lightpermutation |= SHADERPERMUTATION_COLORMAPPING;
1627         if (specularscale > 0)
1628                 r_shadow_lightpermutation |= SHADERPERMUTATION_SPECULAR;
1629         if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
1630                 r_shadow_lightpermutation |= SHADERPERMUTATION_CUBEFILTER;
1631         if (r_shadow_glsl_offsetmapping.integer)
1632                 r_shadow_lightpermutation |= SHADERPERMUTATION_OFFSETMAPPING;
1633         if (r_shadow_glsl_surfacenormalize.integer)
1634                 r_shadow_lightpermutation |= SHADERPERMUTATION_SURFACENORMALIZE;
1635         if (r_shadow_glsl_usehalffloat.integer)
1636                 r_shadow_lightpermutation |= SHADERPERMUTATION_GEFORCEFX;
1637         r_shadow_lightprog = r_shadow_program_light[r_shadow_lightpermutation];
1638         if (!r_shadow_lightprog)
1639         {
1640                 if (!r_shadow_program_compiledlight[r_shadow_lightpermutation])
1641                         r_shadow_lightprog = R_Shadow_CompileShaderPermutation(r_shadow_lightpermutation);
1642                 if (!r_shadow_lightprog)
1643                 {
1644                         // remove features until we find a valid permutation
1645                         int i;
1646                         for (i = SHADERPERMUTATION_COUNT-1;;i>>=1)
1647                         {
1648                                 // reduce i more quickly whenever it would not remove any bits
1649                                 if (r_shadow_lightpermutation < i)
1650                                         continue;
1651                                 r_shadow_lightpermutation &= i;
1652                                 if (!r_shadow_program_compiledlight[r_shadow_lightpermutation])
1653                                         R_Shadow_CompileShaderPermutation(r_shadow_lightpermutation);
1654                                 r_shadow_lightprog = r_shadow_program_light[r_shadow_lightpermutation];
1655                                 if (r_shadow_lightprog)
1656                                         break;
1657                                 if (!i)
1658                                         return; // utterly failed
1659                         }
1660                 }
1661         }
1662         qglUseProgramObjectARB(r_shadow_lightprog);CHECKGLERROR
1663         R_Mesh_TexMatrix(0, &texture->currenttexmatrix);
1664         R_Mesh_TexMatrix(3, &r_shadow_entitytolight);
1665         R_Mesh_TexBind(0, R_GetTexture(normalmaptexture));
1666         R_Mesh_TexBind(1, R_GetTexture(basetexture));
1667         qglUniform3fARB(qglGetUniformLocationARB(r_shadow_lightprog, "LightPosition"), r_shadow_entitylightorigin[0], r_shadow_entitylightorigin[1], r_shadow_entitylightorigin[2]);CHECKGLERROR
1668         if (r_shadow_lightpermutation & (SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_FOG | SHADERPERMUTATION_OFFSETMAPPING))
1669         {
1670                 qglUniform3fARB(qglGetUniformLocationARB(r_shadow_lightprog, "EyePosition"), r_shadow_entityeyeorigin[0], r_shadow_entityeyeorigin[1], r_shadow_entityeyeorigin[2]);CHECKGLERROR
1671         }
1672         qglUniform3fARB(qglGetUniformLocationARB(r_shadow_lightprog, "LightColor"), lightcolorbase[0], lightcolorbase[1], lightcolorbase[2]);CHECKGLERROR
1673         if (r_shadow_lightpermutation & SHADERPERMUTATION_COLORMAPPING)
1674         {
1675                 R_Mesh_TexBind(5, R_GetTexture(pantstexture));
1676                 R_Mesh_TexBind(6, R_GetTexture(shirttexture));
1677                 qglUniform3fARB(qglGetUniformLocationARB(r_shadow_lightprog, "Color_Pants"), ent->colormap_pantscolor[0], ent->colormap_pantscolor[1], ent->colormap_pantscolor[2]);CHECKGLERROR
1678                 qglUniform3fARB(qglGetUniformLocationARB(r_shadow_lightprog, "Color_Shirt"), ent->colormap_shirtcolor[0], ent->colormap_shirtcolor[1], ent->colormap_shirtcolor[2]);CHECKGLERROR
1679         }
1680         if (r_shadow_lightpermutation & SHADERPERMUTATION_FOG)
1681         {
1682                 qglUniform1fARB(qglGetUniformLocationARB(r_shadow_lightprog, "FogRangeRecip"), fograngerecip);CHECKGLERROR
1683         }
1684         qglUniform1fARB(qglGetUniformLocationARB(r_shadow_lightprog, "AmbientScale"), r_shadow_rtlight->ambientscale);CHECKGLERROR
1685         qglUniform1fARB(qglGetUniformLocationARB(r_shadow_lightprog, "DiffuseScale"), r_shadow_rtlight->diffusescale);CHECKGLERROR
1686         if (r_shadow_lightpermutation & SHADERPERMUTATION_SPECULAR)
1687         {
1688                 R_Mesh_TexBind(2, R_GetTexture(glosstexture));
1689                 qglUniform1fARB(qglGetUniformLocationARB(r_shadow_lightprog, "SpecularPower"), 8);CHECKGLERROR
1690                 qglUniform1fARB(qglGetUniformLocationARB(r_shadow_lightprog, "SpecularScale"), specularscale);CHECKGLERROR
1691         }
1692         if (r_shadow_lightpermutation & SHADERPERMUTATION_OFFSETMAPPING)
1693         {
1694                 qglUniform1fARB(qglGetUniformLocationARB(r_shadow_lightprog, "OffsetMapping_Scale"), r_shadow_glsl_offsetmapping_scale.value);CHECKGLERROR
1695                 qglUniform1fARB(qglGetUniformLocationARB(r_shadow_lightprog, "OffsetMapping_Bias"), r_shadow_glsl_offsetmapping_bias.value);CHECKGLERROR
1696         }
1697         for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
1698         {
1699                 const msurface_t *surface = surfacelist[surfacelistindex];
1700                 const int *elements = surface->groupmesh->data_element3i + surface->num_firsttriangle * 3;
1701                 RSurf_SetVertexPointer(ent, texture, surface, r_shadow_entityeyeorigin, false, true);
1702                 R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f);
1703                 R_Mesh_TexCoordPointer(1, 3, rsurface_svector3f);
1704                 R_Mesh_TexCoordPointer(2, 3, rsurface_tvector3f);
1705                 R_Mesh_TexCoordPointer(3, 3, rsurface_normal3f);
1706                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
1707                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
1708                 GL_LockArrays(0, 0);
1709         }
1710 }
1711
1712 static void R_Shadow_RenderSurfacesLighting_Light_Dot3_AmbientPass(const entity_render_t *ent, const texture_t *texture, const msurface_t *surface, const vec3_t lightcolorbase, rtexture_t *basetexture, float colorscale)
1713 {
1714         int renders;
1715         float color2[3];
1716         rmeshstate_t m;
1717         const int *elements = surface->groupmesh->data_element3i + surface->num_firsttriangle * 3;
1718         GL_Color(1,1,1,1);
1719         // colorscale accounts for how much we multiply the brightness
1720         // during combine.
1721         //
1722         // mult is how many times the final pass of the lighting will be
1723         // performed to get more brightness than otherwise possible.
1724         //
1725         // Limit mult to 64 for sanity sake.
1726         if (r_shadow_texture3d.integer && r_shadow_rtlight->currentcubemap != r_texture_whitecube && r_textureunits.integer >= 4)
1727         {
1728                 // 3 3D combine path (Geforce3, Radeon 8500)
1729                 memset(&m, 0, sizeof(m));
1730                 m.pointer_vertex = rsurface_vertex3f;
1731                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1732 #ifdef USETEXMATRIX
1733                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
1734                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
1735 #else
1736                 m.pointer_texcoord3f[0] = varray_texcoord3f[0];
1737                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
1738 #endif
1739                 m.tex[1] = R_GetTexture(basetexture);
1740                 m.pointer_texcoord[1] = surface->groupmesh->data_texcoordtexture2f;
1741                 m.texmatrix[1] = texture->currenttexmatrix;
1742                 m.texcubemap[2] = R_GetTexture(r_shadow_rtlight->currentcubemap);
1743 #ifdef USETEXMATRIX
1744                 m.pointer_texcoord3f[2] = rsurface_vertex3f;
1745                 m.texmatrix[2] = r_shadow_entitytolight;
1746 #else
1747                 m.pointer_texcoord3f[2] = varray_texcoord3f[2];
1748                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[2] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
1749 #endif
1750                 GL_BlendFunc(GL_ONE, GL_ONE);
1751         }
1752         else if (r_shadow_texture3d.integer && r_shadow_rtlight->currentcubemap == r_texture_whitecube && r_textureunits.integer >= 2)
1753         {
1754                 // 2 3D combine path (Geforce3, original Radeon)
1755                 memset(&m, 0, sizeof(m));
1756                 m.pointer_vertex = rsurface_vertex3f;
1757                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1758 #ifdef USETEXMATRIX
1759                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
1760                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
1761 #else
1762                 m.pointer_texcoord3f[0] = varray_texcoord3f[0];
1763                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
1764 #endif
1765                 m.tex[1] = R_GetTexture(basetexture);
1766                 m.pointer_texcoord[1] = surface->groupmesh->data_texcoordtexture2f;
1767                 m.texmatrix[1] = texture->currenttexmatrix;
1768                 GL_BlendFunc(GL_ONE, GL_ONE);
1769         }
1770         else if (r_textureunits.integer >= 4 && r_shadow_rtlight->currentcubemap != r_texture_whitecube)
1771         {
1772                 // 4 2D combine path (Geforce3, Radeon 8500)
1773                 memset(&m, 0, sizeof(m));
1774                 m.pointer_vertex = rsurface_vertex3f;
1775                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1776 #ifdef USETEXMATRIX
1777                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
1778                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
1779 #else
1780                 m.pointer_texcoord[0] = varray_texcoord2f[0];
1781                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
1782 #endif
1783                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1784 #ifdef USETEXMATRIX
1785                 m.pointer_texcoord3f[1] = rsurface_vertex3f;
1786                 m.texmatrix[1] = r_shadow_entitytoattenuationz;
1787 #else
1788                 m.pointer_texcoord[1] = varray_texcoord2f[1];
1789                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
1790 #endif
1791                 m.tex[2] = R_GetTexture(basetexture);
1792                 m.pointer_texcoord[2] = surface->groupmesh->data_texcoordtexture2f;
1793                 m.texmatrix[2] = texture->currenttexmatrix;
1794                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
1795                 {
1796                         m.texcubemap[3] = R_GetTexture(r_shadow_rtlight->currentcubemap);
1797 #ifdef USETEXMATRIX
1798                         m.pointer_texcoord3f[3] = rsurface_vertex3f;
1799                         m.texmatrix[3] = r_shadow_entitytolight;
1800 #else
1801                         m.pointer_texcoord3f[3] = varray_texcoord3f[3];
1802                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[3] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
1803 #endif
1804                 }
1805                 GL_BlendFunc(GL_ONE, GL_ONE);
1806         }
1807         else if (r_textureunits.integer >= 3 && r_shadow_rtlight->currentcubemap == r_texture_whitecube)
1808         {
1809                 // 3 2D combine path (Geforce3, original Radeon)
1810                 memset(&m, 0, sizeof(m));
1811                 m.pointer_vertex = rsurface_vertex3f;
1812                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1813 #ifdef USETEXMATRIX
1814                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
1815                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
1816 #else
1817                 m.pointer_texcoord[0] = varray_texcoord2f[0];
1818                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
1819 #endif
1820                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1821 #ifdef USETEXMATRIX
1822                 m.pointer_texcoord3f[1] = rsurface_vertex3f;
1823                 m.texmatrix[1] = r_shadow_entitytoattenuationz;
1824 #else
1825                 m.pointer_texcoord[1] = varray_texcoord2f[1];
1826                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
1827 #endif
1828                 m.tex[2] = R_GetTexture(basetexture);
1829                 m.pointer_texcoord[2] = surface->groupmesh->data_texcoordtexture2f;
1830                 m.texmatrix[2] = texture->currenttexmatrix;
1831                 GL_BlendFunc(GL_ONE, GL_ONE);
1832         }
1833         else
1834         {
1835                 // 2/2/2 2D combine path (any dot3 card)
1836                 memset(&m, 0, sizeof(m));
1837                 m.pointer_vertex = rsurface_vertex3f;
1838                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1839 #ifdef USETEXMATRIX
1840                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
1841                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
1842 #else
1843                 m.pointer_texcoord[0] = varray_texcoord2f[0];
1844                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
1845 #endif
1846                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1847 #ifdef USETEXMATRIX
1848                 m.pointer_texcoord3f[1] = rsurface_vertex3f;
1849                 m.texmatrix[1] = r_shadow_entitytoattenuationz;
1850 #else
1851                 m.pointer_texcoord[1] = varray_texcoord2f[1];
1852                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
1853 #endif
1854                 R_Mesh_State(&m);
1855                 GL_ColorMask(0,0,0,1);
1856                 GL_BlendFunc(GL_ONE, GL_ZERO);
1857                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
1858                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
1859                 GL_LockArrays(0, 0);
1860
1861                 memset(&m, 0, sizeof(m));
1862                 m.pointer_vertex = rsurface_vertex3f;
1863                 m.tex[0] = R_GetTexture(basetexture);
1864                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
1865                 m.texmatrix[0] = texture->currenttexmatrix;
1866                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
1867                 {
1868                         m.texcubemap[1] = R_GetTexture(r_shadow_rtlight->currentcubemap);
1869 #ifdef USETEXMATRIX
1870                         m.pointer_texcoord3f[1] = rsurface_vertex3f;
1871                         m.texmatrix[1] = r_shadow_entitytolight;
1872 #else
1873                         m.pointer_texcoord3f[1] = varray_texcoord3f[1];
1874                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
1875 #endif
1876                 }
1877                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1878         }
1879         // this final code is shared
1880         R_Mesh_State(&m);
1881         GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 0);
1882         VectorScale(lightcolorbase, colorscale, color2);
1883         GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
1884         for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--)
1885         {
1886                 GL_Color(bound(0, color2[0], 1), bound(0, color2[1], 1), bound(0, color2[2], 1), 1);
1887                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
1888         }
1889         GL_LockArrays(0, 0);
1890 }
1891
1892 static void R_Shadow_RenderSurfacesLighting_Light_Dot3_DiffusePass(const entity_render_t *ent, const texture_t *texture, const msurface_t *surface, const vec3_t lightcolorbase, rtexture_t *basetexture, rtexture_t *normalmaptexture, float colorscale)
1893 {
1894         int renders;
1895         float color2[3];
1896         rmeshstate_t m;
1897         const int *elements = surface->groupmesh->data_element3i + surface->num_firsttriangle * 3;
1898         GL_Color(1,1,1,1);
1899         // colorscale accounts for how much we multiply the brightness
1900         // during combine.
1901         //
1902         // mult is how many times the final pass of the lighting will be
1903         // performed to get more brightness than otherwise possible.
1904         //
1905         // Limit mult to 64 for sanity sake.
1906         if (r_shadow_texture3d.integer && r_textureunits.integer >= 4)
1907         {
1908                 // 3/2 3D combine path (Geforce3, Radeon 8500)
1909                 memset(&m, 0, sizeof(m));
1910                 m.pointer_vertex = rsurface_vertex3f;
1911                 m.tex[0] = R_GetTexture(normalmaptexture);
1912                 m.texcombinergb[0] = GL_REPLACE;
1913                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
1914                 m.texmatrix[0] = texture->currenttexmatrix;
1915                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1916                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1917                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
1918                 R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin);
1919                 m.tex3d[2] = R_GetTexture(r_shadow_attenuation3dtexture);
1920 #ifdef USETEXMATRIX
1921                 m.pointer_texcoord3f[2] = rsurface_vertex3f;
1922                 m.texmatrix[2] = r_shadow_entitytoattenuationxyz;
1923 #else
1924                 m.pointer_texcoord3f[2] = varray_texcoord3f[2];
1925                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[2] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
1926 #endif
1927                 R_Mesh_State(&m);
1928                 GL_ColorMask(0,0,0,1);
1929                 GL_BlendFunc(GL_ONE, GL_ZERO);
1930                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
1931                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
1932                 GL_LockArrays(0, 0);
1933
1934                 memset(&m, 0, sizeof(m));
1935                 m.pointer_vertex = rsurface_vertex3f;
1936                 m.tex[0] = R_GetTexture(basetexture);
1937                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
1938                 m.texmatrix[0] = texture->currenttexmatrix;
1939                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
1940                 {
1941                         m.texcubemap[1] = R_GetTexture(r_shadow_rtlight->currentcubemap);
1942 #ifdef USETEXMATRIX
1943                         m.pointer_texcoord3f[1] = rsurface_vertex3f;
1944                         m.texmatrix[1] = r_shadow_entitytolight;
1945 #else
1946                         m.pointer_texcoord3f[1] = varray_texcoord3f[1];
1947                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
1948 #endif
1949                 }
1950                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1951         }
1952         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && r_shadow_rtlight->currentcubemap != r_texture_whitecube)
1953         {
1954                 // 1/2/2 3D combine path (original Radeon)
1955                 memset(&m, 0, sizeof(m));
1956                 m.pointer_vertex = rsurface_vertex3f;
1957                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1958 #ifdef USETEXMATRIX
1959                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
1960                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
1961 #else
1962                 m.pointer_texcoord3f[0] = varray_texcoord3f[0];
1963                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
1964 #endif
1965                 R_Mesh_State(&m);
1966                 GL_ColorMask(0,0,0,1);
1967                 GL_BlendFunc(GL_ONE, GL_ZERO);
1968                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
1969                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
1970                 GL_LockArrays(0, 0);
1971
1972                 memset(&m, 0, sizeof(m));
1973                 m.pointer_vertex = rsurface_vertex3f;
1974                 m.tex[0] = R_GetTexture(normalmaptexture);
1975                 m.texcombinergb[0] = GL_REPLACE;
1976                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
1977                 m.texmatrix[0] = texture->currenttexmatrix;
1978                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1979                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1980                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
1981                 R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin);
1982                 R_Mesh_State(&m);
1983                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1984                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
1985                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
1986                 GL_LockArrays(0, 0);
1987
1988                 memset(&m, 0, sizeof(m));
1989                 m.pointer_vertex = rsurface_vertex3f;
1990                 m.tex[0] = R_GetTexture(basetexture);
1991                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
1992                 m.texmatrix[0] = texture->currenttexmatrix;
1993                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
1994                 {
1995                         m.texcubemap[1] = R_GetTexture(r_shadow_rtlight->currentcubemap);
1996 #ifdef USETEXMATRIX
1997                         m.pointer_texcoord3f[1] = rsurface_vertex3f;
1998                         m.texmatrix[1] = r_shadow_entitytolight;
1999 #else
2000                         m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2001                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
2002 #endif
2003                 }
2004                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2005         }
2006         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && r_shadow_rtlight->currentcubemap == r_texture_whitecube)
2007         {
2008                 // 2/2 3D combine path (original Radeon)
2009                 memset(&m, 0, sizeof(m));
2010                 m.pointer_vertex = rsurface_vertex3f;
2011                 m.tex[0] = R_GetTexture(normalmaptexture);
2012                 m.texcombinergb[0] = GL_REPLACE;
2013                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2014                 m.texmatrix[0] = texture->currenttexmatrix;
2015                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2016                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2017                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2018                 R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin);
2019                 R_Mesh_State(&m);
2020                 GL_ColorMask(0,0,0,1);
2021                 GL_BlendFunc(GL_ONE, GL_ZERO);
2022                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2023                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2024                 GL_LockArrays(0, 0);
2025
2026                 memset(&m, 0, sizeof(m));
2027                 m.pointer_vertex = rsurface_vertex3f;
2028                 m.tex[0] = R_GetTexture(basetexture);
2029                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2030                 m.texmatrix[0] = texture->currenttexmatrix;
2031                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
2032 #ifdef USETEXMATRIX
2033                 m.pointer_texcoord3f[1] = rsurface_vertex3f;
2034                 m.texmatrix[1] = r_shadow_entitytoattenuationxyz;
2035 #else
2036                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2037                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2038 #endif
2039                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2040         }
2041         else if (r_textureunits.integer >= 4)
2042         {
2043                 // 4/2 2D combine path (Geforce3, Radeon 8500)
2044                 memset(&m, 0, sizeof(m));
2045                 m.pointer_vertex = rsurface_vertex3f;
2046                 m.tex[0] = R_GetTexture(normalmaptexture);
2047                 m.texcombinergb[0] = GL_REPLACE;
2048                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2049                 m.texmatrix[0] = texture->currenttexmatrix;
2050                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2051                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2052                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2053                 R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin);
2054                 m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
2055 #ifdef USETEXMATRIX
2056                 m.pointer_texcoord3f[2] = rsurface_vertex3f;
2057                 m.texmatrix[2] = r_shadow_entitytoattenuationxyz;
2058 #else
2059                 m.pointer_texcoord[2] = varray_texcoord2f[2];
2060                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[2] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2061 #endif
2062                 m.tex[3] = R_GetTexture(r_shadow_attenuation2dtexture);
2063 #ifdef USETEXMATRIX
2064                 m.pointer_texcoord3f[3] = rsurface_vertex3f;
2065                 m.texmatrix[3] = r_shadow_entitytoattenuationz;
2066 #else
2067                 m.pointer_texcoord[3] = varray_texcoord2f[3];
2068                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[3] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
2069 #endif
2070                 R_Mesh_State(&m);
2071                 GL_ColorMask(0,0,0,1);
2072                 GL_BlendFunc(GL_ONE, GL_ZERO);
2073                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2074                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2075                 GL_LockArrays(0, 0);
2076
2077                 memset(&m, 0, sizeof(m));
2078                 m.pointer_vertex = rsurface_vertex3f;
2079                 m.tex[0] = R_GetTexture(basetexture);
2080                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2081                 m.texmatrix[0] = texture->currenttexmatrix;
2082                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
2083                 {
2084                         m.texcubemap[1] = R_GetTexture(r_shadow_rtlight->currentcubemap);
2085 #ifdef USETEXMATRIX
2086                         m.pointer_texcoord3f[1] = rsurface_vertex3f;
2087                         m.texmatrix[1] = r_shadow_entitytolight;
2088 #else
2089                         m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2090                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
2091 #endif
2092                 }
2093                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2094         }
2095         else
2096         {
2097                 // 2/2/2 2D combine path (any dot3 card)
2098                 memset(&m, 0, sizeof(m));
2099                 m.pointer_vertex = rsurface_vertex3f;
2100                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
2101 #ifdef USETEXMATRIX
2102                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
2103                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
2104 #else
2105                 m.pointer_texcoord[0] = varray_texcoord2f[0];
2106                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2107 #endif
2108                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2109 #ifdef USETEXMATRIX
2110                 m.pointer_texcoord3f[1] = rsurface_vertex3f;
2111                 m.texmatrix[1] = r_shadow_entitytoattenuationz;
2112 #else
2113                 m.pointer_texcoord[1] = varray_texcoord2f[1];
2114                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
2115 #endif
2116                 R_Mesh_State(&m);
2117                 GL_ColorMask(0,0,0,1);
2118                 GL_BlendFunc(GL_ONE, GL_ZERO);
2119                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2120                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2121                 GL_LockArrays(0, 0);
2122
2123                 memset(&m, 0, sizeof(m));
2124                 m.pointer_vertex = rsurface_vertex3f;
2125                 m.tex[0] = R_GetTexture(normalmaptexture);
2126                 m.texcombinergb[0] = GL_REPLACE;
2127                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2128                 m.texmatrix[0] = texture->currenttexmatrix;
2129                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2130                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2131                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2132                 R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin);
2133                 R_Mesh_State(&m);
2134                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
2135                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2136                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2137                 GL_LockArrays(0, 0);
2138
2139                 memset(&m, 0, sizeof(m));
2140                 m.pointer_vertex = rsurface_vertex3f;
2141                 m.tex[0] = R_GetTexture(basetexture);
2142                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2143                 m.texmatrix[0] = texture->currenttexmatrix;
2144                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
2145                 {
2146                         m.texcubemap[1] = R_GetTexture(r_shadow_rtlight->currentcubemap);
2147 #ifdef USETEXMATRIX
2148                         m.pointer_texcoord3f[1] = rsurface_vertex3f;
2149                         m.texmatrix[1] = r_shadow_entitytolight;
2150 #else
2151                         m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2152                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
2153 #endif
2154                 }
2155                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2156         }
2157         // this final code is shared
2158         R_Mesh_State(&m);
2159         GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 0);
2160         VectorScale(lightcolorbase, colorscale, color2);
2161         GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2162         for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--)
2163         {
2164                 GL_Color(bound(0, color2[0], 1), bound(0, color2[1], 1), bound(0, color2[2], 1), 1);
2165                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2166         }
2167         GL_LockArrays(0, 0);
2168 }
2169
2170 static void R_Shadow_RenderSurfacesLighting_Light_Dot3_SpecularPass(const entity_render_t *ent, const texture_t *texture, const msurface_t *surface, const vec3_t lightcolorbase, rtexture_t *glosstexture, rtexture_t *normalmaptexture, float colorscale)
2171 {
2172         int renders;
2173         float color2[3];
2174         rmeshstate_t m;
2175         const int *elements = surface->groupmesh->data_element3i + surface->num_firsttriangle * 3;
2176         // FIXME: detect blendsquare!
2177         //if (!gl_support_blendsquare)
2178         //      return;
2179         GL_Color(1,1,1,1);
2180         if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && r_shadow_rtlight->currentcubemap != r_texture_whitecube /* && gl_support_blendsquare*/) // FIXME: detect blendsquare!
2181         {
2182                 // 2/0/0/1/2 3D combine blendsquare path
2183                 memset(&m, 0, sizeof(m));
2184                 m.pointer_vertex = rsurface_vertex3f;
2185                 m.tex[0] = R_GetTexture(normalmaptexture);
2186                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2187                 m.texmatrix[0] = texture->currenttexmatrix;
2188                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2189                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2190                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2191                 R_Shadow_GenTexCoords_Specular_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin, r_shadow_entityeyeorigin);
2192                 R_Mesh_State(&m);
2193                 GL_ColorMask(0,0,0,1);
2194                 // this squares the result
2195                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
2196                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2197                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2198                 GL_LockArrays(0, 0);
2199
2200                 memset(&m, 0, sizeof(m));
2201                 m.pointer_vertex = rsurface_vertex3f;
2202                 R_Mesh_State(&m);
2203                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2204                 // square alpha in framebuffer a few times to make it shiny
2205                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2206                 // these comments are a test run through this math for intensity 0.5
2207                 // 0.5 * 0.5 = 0.25 (done by the BlendFunc earlier)
2208                 // 0.25 * 0.25 = 0.0625 (this is another pass)
2209                 // 0.0625 * 0.0625 = 0.00390625 (this is another pass)
2210                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2211                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2212                 GL_LockArrays(0, 0);
2213
2214                 memset(&m, 0, sizeof(m));
2215                 m.pointer_vertex = rsurface_vertex3f;
2216                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
2217 #ifdef USETEXMATRIX
2218                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
2219                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
2220 #else
2221                 m.pointer_texcoord3f[0] = varray_texcoord3f[0];
2222                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2223 #endif
2224                 R_Mesh_State(&m);
2225                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
2226                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2227                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2228                 GL_LockArrays(0, 0);
2229
2230                 memset(&m, 0, sizeof(m));
2231                 m.pointer_vertex = rsurface_vertex3f;
2232                 m.tex[0] = R_GetTexture(glosstexture);
2233                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2234                 m.texmatrix[0] = texture->currenttexmatrix;
2235                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
2236                 {
2237                         m.texcubemap[1] = R_GetTexture(r_shadow_rtlight->currentcubemap);
2238 #ifdef USETEXMATRIX
2239                         m.pointer_texcoord3f[1] = rsurface_vertex3f;
2240                         m.texmatrix[1] = r_shadow_entitytolight;
2241 #else
2242                         m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2243                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
2244 #endif
2245                 }
2246                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2247         }
2248         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && r_shadow_rtlight->currentcubemap == r_texture_whitecube /* && gl_support_blendsquare*/) // FIXME: detect blendsquare!
2249         {
2250                 // 2/0/0/2 3D combine blendsquare path
2251                 memset(&m, 0, sizeof(m));
2252                 m.pointer_vertex = rsurface_vertex3f;
2253                 m.tex[0] = R_GetTexture(normalmaptexture);
2254                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2255                 m.texmatrix[0] = texture->currenttexmatrix;
2256                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2257                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2258                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2259                 R_Shadow_GenTexCoords_Specular_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin, r_shadow_entityeyeorigin);
2260                 R_Mesh_State(&m);
2261                 GL_ColorMask(0,0,0,1);
2262                 // this squares the result
2263                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
2264                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2265                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2266                 GL_LockArrays(0, 0);
2267
2268                 memset(&m, 0, sizeof(m));
2269                 m.pointer_vertex = rsurface_vertex3f;
2270                 R_Mesh_State(&m);
2271                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2272                 // square alpha in framebuffer a few times to make it shiny
2273                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2274                 // these comments are a test run through this math for intensity 0.5
2275                 // 0.5 * 0.5 = 0.25 (done by the BlendFunc earlier)
2276                 // 0.25 * 0.25 = 0.0625 (this is another pass)
2277                 // 0.0625 * 0.0625 = 0.00390625 (this is another pass)
2278                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2279                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2280                 GL_LockArrays(0, 0);
2281
2282                 memset(&m, 0, sizeof(m));
2283                 m.pointer_vertex = rsurface_vertex3f;
2284                 m.tex[0] = R_GetTexture(glosstexture);
2285                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2286                 m.texmatrix[0] = texture->currenttexmatrix;
2287                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
2288 #ifdef USETEXMATRIX
2289                 m.pointer_texcoord3f[1] = rsurface_vertex3f;
2290                 m.texmatrix[1] = r_shadow_entitytoattenuationxyz;
2291 #else
2292                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2293                 R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2294 #endif
2295                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2296         }
2297         else
2298         {
2299                 // 2/0/0/2/2 2D combine blendsquare path
2300                 memset(&m, 0, sizeof(m));
2301                 m.pointer_vertex = rsurface_vertex3f;
2302                 m.tex[0] = R_GetTexture(normalmaptexture);
2303                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2304                 m.texmatrix[0] = texture->currenttexmatrix;
2305                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2306                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2307                 m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2308                 R_Shadow_GenTexCoords_Specular_NormalCubeMap(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, rsurface_svector3f + 3 * surface->num_firstvertex, rsurface_tvector3f + 3 * surface->num_firstvertex, rsurface_normal3f + 3 * surface->num_firstvertex, r_shadow_entitylightorigin, r_shadow_entityeyeorigin);
2309                 R_Mesh_State(&m);
2310                 GL_ColorMask(0,0,0,1);
2311                 // this squares the result
2312                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
2313                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2314                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2315                 GL_LockArrays(0, 0);
2316
2317                 memset(&m, 0, sizeof(m));
2318                 m.pointer_vertex = rsurface_vertex3f;
2319                 R_Mesh_State(&m);
2320                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2321                 // square alpha in framebuffer a few times to make it shiny
2322                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2323                 // these comments are a test run through this math for intensity 0.5
2324                 // 0.5 * 0.5 = 0.25 (done by the BlendFunc earlier)
2325                 // 0.25 * 0.25 = 0.0625 (this is another pass)
2326                 // 0.0625 * 0.0625 = 0.00390625 (this is another pass)
2327                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2328                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2329                 GL_LockArrays(0, 0);
2330
2331                 memset(&m, 0, sizeof(m));
2332                 m.pointer_vertex = rsurface_vertex3f;
2333                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
2334 #ifdef USETEXMATRIX
2335                 m.pointer_texcoord3f[0] = rsurface_vertex3f;
2336                 m.texmatrix[0] = r_shadow_entitytoattenuationxyz;
2337 #else
2338                 m.pointer_texcoord[0] = varray_texcoord2f[0];
2339                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[0] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2340 #endif
2341                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2342 #ifdef USETEXMATRIX
2343                 m.pointer_texcoord3f[1] = rsurface_vertex3f;
2344                 m.texmatrix[1] = r_shadow_entitytoattenuationz;
2345 #else
2346                 m.pointer_texcoord[1] = varray_texcoord2f[1];
2347                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
2348 #endif
2349                 R_Mesh_State(&m);
2350                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
2351                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2352                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2353                 GL_LockArrays(0, 0);
2354
2355                 memset(&m, 0, sizeof(m));
2356                 m.pointer_vertex = rsurface_vertex3f;
2357                 m.tex[0] = R_GetTexture(glosstexture);
2358                 m.pointer_texcoord[0] = surface->groupmesh->data_texcoordtexture2f;
2359                 m.texmatrix[0] = texture->currenttexmatrix;
2360                 if (r_shadow_rtlight->currentcubemap != r_texture_whitecube)
2361                 {
2362                         m.texcubemap[1] = R_GetTexture(r_shadow_rtlight->currentcubemap);
2363 #ifdef USETEXMATRIX
2364                         m.pointer_texcoord3f[1] = rsurface_vertex3f;
2365                         m.texmatrix[1] = r_shadow_entitytolight;
2366 #else
2367                         m.pointer_texcoord3f[1] = varray_texcoord3f[1];
2368                         R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytolight);
2369 #endif
2370                 }
2371                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2372         }
2373         R_Mesh_State(&m);
2374         GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 0);
2375         VectorScale(lightcolorbase, colorscale, color2);
2376         GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2377         for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--)
2378         {
2379                 GL_Color(bound(0, color2[0], 1), bound(0, color2[1], 1), bound(0, color2[2], 1), 1);
2380                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2381         }
2382         GL_LockArrays(0, 0);
2383 }
2384
2385 static void R_Shadow_RenderSurfacesLighting_Light_Dot3(const entity_render_t *ent, const texture_t *texture, int numsurfaces, msurface_t **surfacelist, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float specularscale, qboolean dopants, qboolean doshirt)
2386 {
2387         // ARB path (any Geforce, any Radeon)
2388         int surfacelistindex;
2389         qboolean doambient = r_shadow_rtlight->ambientscale > 0;
2390         qboolean dodiffuse = r_shadow_rtlight->diffusescale > 0;
2391         qboolean dospecular = specularscale > 0;
2392         if (!doambient && !dodiffuse && !dospecular)
2393                 return;
2394         for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
2395         {
2396                 const msurface_t *surface = surfacelist[surfacelistindex];
2397                 RSurf_SetVertexPointer(ent, texture, surface, r_shadow_entityeyeorigin, false, true);
2398                 if (doambient)
2399                         R_Shadow_RenderSurfacesLighting_Light_Dot3_AmbientPass(ent, texture, surface, lightcolorbase, basetexture, r_shadow_rtlight->ambientscale);
2400                 if (dodiffuse)
2401                         R_Shadow_RenderSurfacesLighting_Light_Dot3_DiffusePass(ent, texture, surface, lightcolorbase, basetexture, normalmaptexture, r_shadow_rtlight->diffusescale);
2402                 if (dopants)
2403                 {
2404                         if (doambient)
2405                                 R_Shadow_RenderSurfacesLighting_Light_Dot3_AmbientPass(ent, texture, surface, lightcolorpants, pantstexture, r_shadow_rtlight->ambientscale);
2406                         if (dodiffuse)
2407                                 R_Shadow_RenderSurfacesLighting_Light_Dot3_DiffusePass(ent, texture, surface, lightcolorpants, pantstexture, normalmaptexture, r_shadow_rtlight->diffusescale);
2408                 }
2409                 if (doshirt)
2410                 {
2411                         if (doambient)
2412                                 R_Shadow_RenderSurfacesLighting_Light_Dot3_AmbientPass(ent, texture, surface, lightcolorshirt, shirttexture, r_shadow_rtlight->ambientscale);
2413                         if (dodiffuse)
2414                                 R_Shadow_RenderSurfacesLighting_Light_Dot3_DiffusePass(ent, texture, surface, lightcolorshirt, shirttexture, normalmaptexture, r_shadow_rtlight->diffusescale);
2415                 }
2416                 if (dospecular)
2417                         R_Shadow_RenderSurfacesLighting_Light_Dot3_SpecularPass(ent, texture, surface, lightcolorbase, glosstexture, normalmaptexture, specularscale);
2418         }
2419 }
2420
2421 void R_Shadow_RenderSurfacesLighting_Light_Vertex_Pass(const msurface_t *surface, vec3_t diffusecolor2, vec3_t ambientcolor2)
2422 {
2423         int renders;
2424         const int *elements = surface->groupmesh->data_element3i + surface->num_firsttriangle * 3;
2425         R_Shadow_RenderSurfacesLighting_Light_Vertex_Shading(surface, diffusecolor2, ambientcolor2);
2426         for (renders = 0;renders < 64 && (ambientcolor2[0] > renders || ambientcolor2[1] > renders || ambientcolor2[2] > renders || diffusecolor2[0] > renders || diffusecolor2[1] > renders || diffusecolor2[2] > renders);renders++)
2427         {
2428                 int i;
2429                 float *c;
2430 #if 1
2431                 // due to low fillrate on the cards this vertex lighting path is
2432                 // designed for, we manually cull all triangles that do not
2433                 // contain a lit vertex
2434                 int draw;
2435                 const int *e;
2436                 int newnumtriangles;
2437                 int *newe;
2438                 int newelements[3072];
2439                 draw = false;
2440                 newnumtriangles = 0;
2441                 newe = newelements;
2442                 for (i = 0, e = elements;i < surface->num_triangles;i++, e += 3)
2443                 {
2444                         if (newnumtriangles >= 1024)
2445                         {
2446                                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2447                                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, newnumtriangles, newelements);
2448                                 GL_LockArrays(0, 0);
2449                                 newnumtriangles = 0;
2450                                 newe = newelements;
2451                         }
2452                         if (VectorLength2(varray_color4f + e[0] * 4) + VectorLength2(varray_color4f + e[1] * 4) + VectorLength2(varray_color4f + e[2] * 4) >= 0.01)
2453                         {
2454                                 newe[0] = e[0];
2455                                 newe[1] = e[1];
2456                                 newe[2] = e[2];
2457                                 newnumtriangles++;
2458                                 newe += 3;
2459                                 draw = true;
2460                         }
2461                 }
2462                 if (newnumtriangles >= 1)
2463                 {
2464                         GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2465                         R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, newnumtriangles, newelements);
2466                         GL_LockArrays(0, 0);
2467                         draw = true;
2468                 }
2469                 if (!draw)
2470                         break;
2471 #else
2472                 for (i = 0, c = varray_color4f + 4 * surface->num_firstvertex;i < surface->num_vertices;i++, c += 4)
2473                         if (VectorLength2(c))
2474                                 goto goodpass;
2475                 break;
2476 goodpass:
2477                 GL_LockArrays(surface->num_firstvertex, surface->num_vertices);
2478                 R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, elements);
2479                 GL_LockArrays(0, 0);
2480 #endif
2481                 // now reduce the intensity for the next overbright pass
2482                 for (i = 0, c = varray_color4f + 4 * surface->num_firstvertex;i < surface->num_vertices;i++, c += 4)
2483                 {
2484                         c[0] = max(0, c[0] - 1);
2485                         c[1] = max(0, c[1] - 1);
2486                         c[2] = max(0, c[2] - 1);
2487                 }
2488         }
2489 }
2490
2491 static void R_Shadow_RenderSurfacesLighting_Light_Vertex(const entity_render_t *ent, const texture_t *texture, int numsurfaces, msurface_t **surfacelist, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float specularscale, qboolean dopants, qboolean doshirt)
2492 {
2493         int surfacelistindex;
2494         float ambientcolorbase[3], diffusecolorbase[3];
2495         float ambientcolorpants[3], diffusecolorpants[3];
2496         float ambientcolorshirt[3], diffusecolorshirt[3];
2497         rmeshstate_t m;
2498         VectorScale(lightcolorbase, r_shadow_rtlight->ambientscale * 2, ambientcolorbase);
2499         VectorScale(lightcolorbase, r_shadow_rtlight->diffusescale * 2, diffusecolorbase);
2500         VectorScale(lightcolorpants, r_shadow_rtlight->ambientscale * 2, ambientcolorpants);
2501         VectorScale(lightcolorpants, r_shadow_rtlight->diffusescale * 2, diffusecolorpants);
2502         VectorScale(lightcolorshirt, r_shadow_rtlight->ambientscale * 2, ambientcolorshirt);
2503         VectorScale(lightcolorshirt, r_shadow_rtlight->diffusescale * 2, diffusecolorshirt);
2504         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2505         memset(&m, 0, sizeof(m));
2506         m.tex[0] = R_GetTexture(basetexture);
2507         if (r_textureunits.integer >= 2)
2508         {
2509                 // voodoo2
2510                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2511 #ifdef USETEXMATRIX
2512                 m.texmatrix[1] = r_shadow_entitytoattenuationxyz;
2513 #else
2514                 m.pointer_texcoord[1] = varray_texcoord2f[1];
2515                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2516 #endif
2517                 if (r_textureunits.integer >= 3)
2518                 {
2519                         // Geforce3/Radeon class but not using dot3
2520                         m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
2521 #ifdef USETEXMATRIX
2522                         m.texmatrix[2] = r_shadow_entitytoattenuationz;
2523 #else
2524                         m.pointer_texcoord[2] = varray_texcoord2f[2];
2525                         R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[2] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
2526 #endif
2527                 }
2528         }
2529         m.pointer_color = varray_color4f;
2530         R_Mesh_State(&m);
2531         for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
2532         {
2533                 const msurface_t *surface = surfacelist[surfacelistindex];
2534                 RSurf_SetVertexPointer(ent, texture, surface, r_shadow_entityeyeorigin, true, false);
2535                 // OpenGL 1.1 path (anything)
2536                 R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f);
2537                 R_Mesh_TexMatrix(0, &texture->currenttexmatrix);
2538                 if (r_textureunits.integer >= 2)
2539                 {
2540                         // voodoo2 or TNT
2541 #ifdef USETEXMATRIX
2542                         R_Mesh_TexCoordPointer(1, 3, rsurface_vertex3f);
2543 #else
2544                         R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[1] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationxyz);
2545 #endif
2546                         if (r_textureunits.integer >= 3)
2547                         {
2548                                 // Voodoo4 or Kyro (or Geforce3/Radeon with gl_combine off)
2549 #ifdef USETEXMATRIX
2550                                 R_Mesh_TexCoordPointer(2, 3, rsurface_vertex3f);
2551 #else
2552                                 R_Shadow_Transform_Vertex3f_Texcoord2f(varray_texcoord2f[2] + 3 * surface->num_firstvertex, surface->num_vertices, rsurface_vertex3f + 3 * surface->num_firstvertex, &r_shadow_entitytoattenuationz);
2553 #endif
2554                         }
2555                 }
2556                 R_Mesh_TexBind(0, R_GetTexture(basetexture));
2557                 R_Shadow_RenderSurfacesLighting_Light_Vertex_Pass(surface, diffusecolorbase, ambientcolorbase);
2558                 if (dopants)
2559                 {
2560                         R_Mesh_TexBind(0, R_GetTexture(pantstexture));
2561                         R_Shadow_RenderSurfacesLighting_Light_Vertex_Pass(surface, diffusecolorpants, ambientcolorpants);
2562                 }
2563                 if (doshirt)
2564                 {
2565                         R_Mesh_TexBind(0, R_GetTexture(shirttexture));
2566                         R_Shadow_RenderSurfacesLighting_Light_Vertex_Pass(surface, diffusecolorshirt, ambientcolorshirt);
2567                 }
2568         }
2569 }
2570
2571 void R_Shadow_RenderSurfacesLighting(const entity_render_t *ent, const texture_t *texture, int numsurfaces, msurface_t **surfacelist)
2572 {
2573         // FIXME: support MATERIALFLAG_NODEPTHTEST
2574         vec3_t lightcolorbase, lightcolorpants, lightcolorshirt;
2575         rtexture_t *basetexture;
2576         rtexture_t *pantstexture;
2577         rtexture_t *shirttexture;
2578         rtexture_t *glosstexture;
2579         float specularscale;
2580         qboolean dopants, doshirt;
2581         glosstexture = r_texture_black;
2582         specularscale = 0;
2583         if (r_shadow_gloss.integer > 0)
2584         {
2585                 if (texture->skin.gloss)
2586                 {
2587                         if (r_shadow_glossintensity.value > 0 && r_shadow_rtlight->specularscale > 0)
2588                         {
2589                                 glosstexture = texture->skin.gloss;
2590                                 specularscale = r_shadow_rtlight->specularscale * r_shadow_glossintensity.value;
2591                         }
2592                 }
2593                 else
2594                 {
2595                         if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0 && r_shadow_glossintensity.value > 0 && r_shadow_rtlight->specularscale > 0)
2596                         {
2597                                 glosstexture = r_texture_white;
2598                                 specularscale = r_shadow_rtlight->specularscale * r_shadow_gloss2intensity.value;
2599                         }
2600                 }
2601         }
2602         // calculate colors to render this texture with
2603         lightcolorbase[0] = r_shadow_rtlight->currentcolor[0] * ent->colormod[0] * texture->currentalpha;
2604         lightcolorbase[1] = r_shadow_rtlight->currentcolor[1] * ent->colormod[1] * texture->currentalpha;
2605         lightcolorbase[2] = r_shadow_rtlight->currentcolor[2] * ent->colormod[2] * texture->currentalpha;
2606         if ((r_shadow_rtlight->ambientscale + r_shadow_rtlight->diffusescale) * VectorLength2(lightcolorbase) + specularscale * VectorLength2(lightcolorbase) < (1.0f / 1048576.0f))
2607                 return;
2608         if ((texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) || (ent->flags & RENDER_NOCULLFACE))
2609                 qglDisable(GL_CULL_FACE);
2610         else
2611                 qglEnable(GL_CULL_FACE);
2612         dopants = texture->skin.pants != NULL && VectorLength2(ent->colormap_pantscolor) >= (1.0f / 1048576.0f);
2613         doshirt = texture->skin.shirt != NULL && VectorLength2(ent->colormap_shirtcolor) >= (1.0f / 1048576.0f);
2614         if (dopants + doshirt)
2615         {
2616                 if (dopants)
2617                 {
2618                         lightcolorpants[0] = lightcolorbase[0] * ent->colormap_pantscolor[0];
2619                         lightcolorpants[1] = lightcolorbase[1] * ent->colormap_pantscolor[1];
2620                         lightcolorpants[2] = lightcolorbase[2] * ent->colormap_pantscolor[2];
2621                 }
2622                 else
2623                 {
2624                         pantstexture = r_texture_black;
2625                         VectorClear(lightcolorpants);
2626                 }
2627                 if (doshirt)
2628                 {
2629                         shirttexture = texture->skin.shirt;
2630                         lightcolorshirt[0] = lightcolorbase[0] * ent->colormap_shirtcolor[0];
2631                         lightcolorshirt[1] = lightcolorbase[1] * ent->colormap_shirtcolor[1];
2632                         lightcolorshirt[2] = lightcolorbase[2] * ent->colormap_shirtcolor[2];
2633                 }
2634                 else
2635                 {
2636                         shirttexture = r_texture_black;
2637                         VectorClear(lightcolorshirt);
2638                 }
2639                 switch (r_shadow_rendermode)
2640                 {
2641                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2642                         R_Shadow_RenderSurfacesLighting_VisibleLighting(ent, texture, numsurfaces, surfacelist, lightcolorbase, lightcolorpants, lightcolorshirt, texture->skin.base, texture->skin.pants, texture->skin.shirt, texture->skin.nmap, glosstexture, specularscale, dopants, doshirt);
2643                         break;
2644                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2645                         R_Shadow_RenderSurfacesLighting_Light_GLSL(ent, texture, numsurfaces, surfacelist, lightcolorbase, lightcolorpants, lightcolorshirt, texture->skin.base, texture->skin.pants, texture->skin.shirt, texture->skin.nmap, glosstexture, specularscale, dopants, doshirt);
2646                         break;
2647                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2648                         R_Shadow_RenderSurfacesLighting_Light_Dot3(ent, texture, numsurfaces, surfacelist, lightcolorbase, lightcolorpants, lightcolorshirt, texture->skin.base, texture->skin.pants, texture->skin.shirt, texture->skin.nmap, glosstexture, specularscale, dopants, doshirt);
2649                         break;
2650                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2651                         R_Shadow_RenderSurfacesLighting_Light_Vertex(ent, texture, numsurfaces, surfacelist, lightcolorbase, lightcolorpants, lightcolorshirt, texture->skin.base, texture->skin.pants, texture->skin.shirt, texture->skin.nmap, glosstexture, specularscale, dopants, doshirt);
2652                         break;
2653                 default:
2654                         Con_Printf("R_Shadow_RenderSurfacesLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2655                         break;
2656                 }
2657         }
2658         else
2659         {
2660                 basetexture = texture->skin.merged ? texture->skin.merged : texture->skin.base;
2661                 switch (r_shadow_rendermode)
2662                 {
2663                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2664                         R_Shadow_RenderSurfacesLighting_VisibleLighting(ent, texture, numsurfaces, surfacelist, lightcolorbase, vec3_origin, vec3_origin, basetexture, r_texture_black, r_texture_black, texture->skin.nmap, glosstexture, specularscale, false, false);
2665                         break;
2666                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2667                         R_Shadow_RenderSurfacesLighting_Light_GLSL(ent, texture, numsurfaces, surfacelist, lightcolorbase, vec3_origin, vec3_origin, basetexture, r_texture_black, r_texture_black, texture->skin.nmap, glosstexture, specularscale, false, false);
2668                         break;
2669                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2670                         R_Shadow_RenderSurfacesLighting_Light_Dot3(ent, texture, numsurfaces, surfacelist, lightcolorbase, vec3_origin, vec3_origin, basetexture, r_texture_black, r_texture_black, texture->skin.nmap, glosstexture, specularscale, false, false);
2671                         break;
2672                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2673                         R_Shadow_RenderSurfacesLighting_Light_Vertex(ent, texture, numsurfaces, surfacelist, lightcolorbase, vec3_origin, vec3_origin, basetexture, r_texture_black, r_texture_black, texture->skin.nmap, glosstexture, specularscale, false, false);
2674                         break;
2675                 default:
2676                         Con_Printf("R_Shadow_RenderSurfacesLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2677                         break;
2678                 }
2679         }
2680 }
2681
2682 void R_RTLight_Update(dlight_t *light, int isstatic)
2683 {
2684         int j, k;
2685         float scale;
2686         rtlight_t *rtlight = &light->rtlight;
2687         R_RTLight_Uncompile(rtlight);
2688         memset(rtlight, 0, sizeof(*rtlight));
2689
2690         VectorCopy(light->origin, rtlight->shadoworigin);
2691         VectorCopy(light->color, rtlight->color);
2692         rtlight->radius = light->radius;
2693         //rtlight->cullradius = rtlight->radius;
2694         //rtlight->cullradius2 = rtlight->radius * rtlight->radius;
2695         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2696         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2697         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2698         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2699         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2700         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2701         rtlight->cubemapname[0] = 0;
2702         if (light->cubemapname[0])
2703                 strcpy(rtlight->cubemapname, light->cubemapname);
2704         else if (light->cubemapnum > 0)
2705                 sprintf(rtlight->cubemapname, "cubemaps/%i", light->cubemapnum);
2706         rtlight->shadow = light->shadow;
2707         rtlight->corona = light->corona;
2708         rtlight->style = light->style;
2709         rtlight->isstatic = isstatic;
2710         rtlight->coronasizescale = light->coronasizescale;
2711         rtlight->ambientscale = light->ambientscale;
2712         rtlight->diffusescale = light->diffusescale;
2713         rtlight->specularscale = light->specularscale;
2714         rtlight->flags = light->flags;
2715         Matrix4x4_Invert_Simple(&rtlight->matrix_worldtolight, &light->matrix);
2716         // ConcatScale won't work here because this needs to scale rotate and
2717         // translate, not just rotate
2718         scale = 1.0f / rtlight->radius;
2719         for (k = 0;k < 3;k++)
2720                 for (j = 0;j < 4;j++)
2721                         rtlight->matrix_worldtolight.m[k][j] *= scale;
2722
2723         rtlight->lightmap_cullradius = bound(0, rtlight->radius, 2048.0f);
2724         rtlight->lightmap_cullradius2 = rtlight->lightmap_cullradius * rtlight->lightmap_cullradius;
2725         VectorScale(rtlight->color, rtlight->radius * (rtlight->style >= 0 ? r_refdef.lightstylevalue[rtlight->style] : 128) * 0.125f, rtlight->lightmap_light);
2726         rtlight->lightmap_subtract = 1.0f / rtlight->lightmap_cullradius2;
2727 }
2728
2729 // compiles rtlight geometry
2730 // (undone by R_FreeCompiledRTLight, which R_UpdateLight calls)
2731 void R_RTLight_Compile(rtlight_t *rtlight)
2732 {
2733         int shadowmeshes, shadowtris, numleafs, numleafpvsbytes, numsurfaces;
2734         entity_render_t *ent = r_refdef.worldentity;
2735         model_t *model = r_refdef.worldmodel;
2736         unsigned char *data;
2737
2738         // compile the light
2739         rtlight->compiled = true;
2740         rtlight->static_numleafs = 0;
2741         rtlight->static_numleafpvsbytes = 0;
2742         rtlight->static_leaflist = NULL;
2743         rtlight->static_leafpvs = NULL;
2744         rtlight->static_numsurfaces = 0;
2745         rtlight->static_surfacelist = NULL;
2746         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2747         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2748         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2749         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2750         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2751         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2752
2753         if (model && model->GetLightInfo)
2754         {
2755                 // this variable must be set for the CompileShadowVolume code
2756                 r_shadow_compilingrtlight = rtlight;
2757                 R_Shadow_EnlargeLeafSurfaceBuffer(model->brush.num_leafs, model->num_surfaces);
2758                 model->GetLightInfo(ent, rtlight->shadoworigin, rtlight->radius, rtlight->cullmins, rtlight->cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces);
2759                 numleafpvsbytes = (model->brush.num_leafs + 7) >> 3;
2760                 data = (unsigned char *)Mem_Alloc(r_shadow_mempool, sizeof(int) * numleafs + numleafpvsbytes + sizeof(int) * numsurfaces);
2761                 rtlight->static_numleafs = numleafs;
2762                 rtlight->static_numleafpvsbytes = numleafpvsbytes;
2763                 rtlight->static_leaflist = (int *)data;data += sizeof(int) * numleafs;
2764                 rtlight->static_leafpvs = (unsigned char *)data;data += numleafpvsbytes;
2765                 rtlight->static_numsurfaces = numsurfaces;
2766                 rtlight->static_surfacelist = (int *)data;data += sizeof(int) * numsurfaces;
2767                 if (numleafs)
2768                         memcpy(rtlight->static_leaflist, r_shadow_buffer_leaflist, rtlight->static_numleafs * sizeof(*rtlight->static_leaflist));
2769                 if (numleafpvsbytes)
2770                         memcpy(rtlight->static_leafpvs, r_shadow_buffer_leafpvs, rtlight->static_numleafpvsbytes);
2771                 if (numsurfaces)
2772                         memcpy(rtlight->static_surfacelist, r_shadow_buffer_surfacelist, rtlight->static_numsurfaces * sizeof(*rtlight->static_surfacelist));
2773                 if (model->CompileShadowVolume && rtlight->shadow)
2774                         model->CompileShadowVolume(ent, rtlight->shadoworigin, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
2775                 // now we're done compiling the rtlight
2776                 r_shadow_compilingrtlight = NULL;
2777         }
2778
2779
2780         // use smallest available cullradius - box radius or light radius
2781         //rtlight->cullradius = RadiusFromBoundsAndOrigin(rtlight->cullmins, rtlight->cullmaxs, rtlight->shadoworigin);
2782         //rtlight->cullradius = min(rtlight->cullradius, rtlight->radius);
2783
2784         shadowmeshes = 0;
2785         shadowtris = 0;
2786         if (rtlight->static_meshchain_shadow)
2787         {
2788                 shadowmesh_t *mesh;
2789                 for (mesh = rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2790                 {
2791                         shadowmeshes++;
2792                         shadowtris += mesh->numtriangles;
2793                 }
2794         }
2795
2796         Con_DPrintf("static light built: %f %f %f : %f %f %f box, %i shadow volume triangles (in %i meshes)\n", rtlight->cullmins[0], rtlight->cullmins[1], rtlight->cullmins[2], rtlight->cullmaxs[0], rtlight->cullmaxs[1], rtlight->cullmaxs[2], shadowtris, shadowmeshes);
2797 }
2798
2799 void R_RTLight_Uncompile(rtlight_t *rtlight)
2800 {
2801         if (rtlight->compiled)
2802         {
2803                 if (rtlight->static_meshchain_shadow)
2804                         Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow);
2805                 rtlight->static_meshchain_shadow = NULL;
2806                 // these allocations are grouped
2807                 if (rtlight->static_leaflist)
2808                         Mem_Free(rtlight->static_leaflist);
2809                 rtlight->static_numleafs = 0;
2810                 rtlight->static_numleafpvsbytes = 0;
2811                 rtlight->static_leaflist = NULL;
2812                 rtlight->static_leafpvs = NULL;
2813                 rtlight->static_numsurfaces = 0;
2814                 rtlight->static_surfacelist = NULL;
2815                 rtlight->compiled = false;
2816         }
2817 }
2818
2819 void R_Shadow_UncompileWorldLights(void)
2820 {
2821         dlight_t *light;
2822         for (light = r_shadow_worldlightchain;light;light = light->next)
2823                 R_RTLight_Uncompile(&light->rtlight);
2824 }
2825
2826 void R_Shadow_DrawEntityShadow(entity_render_t *ent, int numsurfaces, int *surfacelist)
2827 {
2828         vec3_t relativeshadoworigin, relativeshadowmins, relativeshadowmaxs;
2829         vec_t relativeshadowradius;
2830         if (ent == r_refdef.worldentity)
2831         {
2832                 if (r_shadow_rtlight->compiled && r_shadow_realtime_world_compile.integer && r_shadow_realtime_world_compileshadow.integer)
2833                 {
2834                         shadowmesh_t *mesh;
2835                         R_Mesh_Matrix(&ent->matrix);
2836                         for (mesh = r_shadow_rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2837                         {
2838                                 renderstats.lights_shadowtriangles += mesh->numtriangles;
2839                                 R_Mesh_VertexPointer(mesh->vertex3f);
2840                                 GL_LockArrays(0, mesh->numverts);
2841                                 if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
2842                                 {
2843                                         // decrement stencil if backface is behind depthbuffer
2844                                         qglCullFace(GL_BACK); // quake is backwards, this culls front faces
2845                                         qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);
2846                                         R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i);
2847                                         // increment stencil if frontface is behind depthbuffer
2848                                         qglCullFace(GL_FRONT); // quake is backwards, this culls back faces
2849                                         qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);
2850                                 }
2851                                 R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i);
2852                                 GL_LockArrays(0, 0);
2853                         }
2854                 }
2855                 else if (numsurfaces)
2856                 {
2857                         R_Mesh_Matrix(&ent->matrix);
2858                         ent->model->DrawShadowVolume(ent, r_shadow_rtlight->shadoworigin, r_shadow_rtlight->radius, numsurfaces, surfacelist, r_shadow_rtlight->cullmins, r_shadow_rtlight->cullmaxs);
2859                 }
2860         }
2861         else
2862         {
2863                 Matrix4x4_Transform(&ent->inversematrix, r_shadow_rtlight->shadoworigin, relativeshadoworigin);
2864                 relativeshadowradius = r_shadow_rtlight->radius / ent->scale;
2865                 relativeshadowmins[0] = relativeshadoworigin[0] - relativeshadowradius;
2866                 relativeshadowmins[1] = relativeshadoworigin[1] - relativeshadowradius;
2867                 relativeshadowmins[2] = relativeshadoworigin[2] - relativeshadowradius;
2868                 relativeshadowmaxs[0] = relativeshadoworigin[0] + relativeshadowradius;
2869                 relativeshadowmaxs[1] = relativeshadoworigin[1] + relativeshadowradius;
2870                 relativeshadowmaxs[2] = relativeshadoworigin[2] + relativeshadowradius;
2871                 R_Mesh_Matrix(&ent->matrix);
2872                 ent->model->DrawShadowVolume(ent, relativeshadoworigin, relativeshadowradius, ent->model->nummodelsurfaces, ent->model->surfacelist, relativeshadowmins, relativeshadowmaxs);
2873         }
2874 }
2875
2876 void R_Shadow_SetupEntityLight(const entity_render_t *ent)
2877 {
2878         // set up properties for rendering light onto this entity
2879         Matrix4x4_Concat(&r_shadow_entitytolight, &r_shadow_rtlight->matrix_worldtolight, &ent->matrix);
2880         Matrix4x4_Concat(&r_shadow_entitytoattenuationxyz, &matrix_attenuationxyz, &r_shadow_entitytolight);
2881         Matrix4x4_Concat(&r_shadow_entitytoattenuationz, &matrix_attenuationz, &r_shadow_entitytolight);
2882         Matrix4x4_Transform(&ent->inversematrix, r_shadow_rtlight->shadoworigin, r_shadow_entitylightorigin);
2883         Matrix4x4_Transform(&ent->inversematrix, r_vieworigin, r_shadow_entityeyeorigin);
2884         R_Mesh_Matrix(&ent->matrix);
2885 }
2886
2887 void R_Shadow_DrawEntityLight(entity_render_t *ent, int numsurfaces, int *surfacelist)
2888 {
2889         R_Shadow_SetupEntityLight(ent);
2890         if (ent == r_refdef.worldentity)
2891                 ent->model->DrawLight(ent, numsurfaces, surfacelist);
2892         else
2893                 ent->model->DrawLight(ent, ent->model->nummodelsurfaces, ent->model->surfacelist);
2894 }
2895
2896 void R_DrawRTLight(rtlight_t *rtlight, qboolean visible)
2897 {
2898         int i, usestencil;
2899         float f;
2900         int numleafs, numsurfaces;
2901         int *leaflist, *surfacelist;
2902         unsigned char *leafpvs;
2903         int numlightentities;
2904         int numshadowentities;
2905         entity_render_t *lightentities[MAX_EDICTS];
2906         entity_render_t *shadowentities[MAX_EDICTS];
2907
2908         // skip lights that don't light because of ambientscale+diffusescale+specularscale being 0 (corona only lights)
2909         // skip lights that are basically invisible (color 0 0 0)
2910         if (VectorLength2(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale) < (1.0f / 1048576.0f))
2911                 return;
2912
2913         // loading is done before visibility checks because loading should happen
2914         // all at once at the start of a level, not when it stalls gameplay.
2915         // (especially important to benchmarks)
2916         // compile light
2917         if (rtlight->isstatic && !rtlight->compiled && r_shadow_realtime_world_compile.integer)
2918                 R_RTLight_Compile(rtlight);
2919         // load cubemap
2920         rtlight->currentcubemap = rtlight->cubemapname[0] ? R_Shadow_Cubemap(rtlight->cubemapname) : r_texture_whitecube;
2921
2922         // look up the light style value at this time
2923         f = (rtlight->style >= 0 ? r_refdef.lightstylevalue[rtlight->style] : 128) * (1.0f / 256.0f) * r_shadow_lightintensityscale.value;
2924         VectorScale(rtlight->color, f, rtlight->currentcolor);
2925         /*
2926         if (rtlight->selected)
2927         {
2928                 f = 2 + sin(realtime * M_PI * 4.0);
2929                 VectorScale(rtlight->currentcolor, f, rtlight->currentcolor);
2930         }
2931         */
2932
2933         // if lightstyle is currently off, don't draw the light
2934         if (VectorLength2(rtlight->currentcolor) < (1.0f / 1048576.0f))
2935                 return;
2936
2937         // if the light box is offscreen, skip it
2938         if (R_CullBox(rtlight->cullmins, rtlight->cullmaxs))
2939                 return;
2940
2941         if (rtlight->compiled && r_shadow_realtime_world_compile.integer)
2942         {
2943                 // compiled light, world available and can receive realtime lighting
2944                 // retrieve leaf information
2945                 numleafs = rtlight->static_numleafs;
2946                 leaflist = rtlight->static_leaflist;
2947                 leafpvs = rtlight->static_leafpvs;
2948                 numsurfaces = rtlight->static_numsurfaces;
2949                 surfacelist = rtlight->static_surfacelist;
2950         }
2951         else if (r_refdef.worldmodel && r_refdef.worldmodel->GetLightInfo)
2952         {
2953                 // dynamic light, world available and can receive realtime lighting
2954                 // calculate lit surfaces and leafs
2955                 R_Shadow_EnlargeLeafSurfaceBuffer(r_refdef.worldmodel->brush.num_leafs, r_refdef.worldmodel->num_surfaces);
2956                 r_refdef.worldmodel->GetLightInfo(r_refdef.worldentity, rtlight->shadoworigin, rtlight->radius, rtlight->cullmins, rtlight->cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces);
2957                 leaflist = r_shadow_buffer_leaflist;
2958                 leafpvs = r_shadow_buffer_leafpvs;
2959                 surfacelist = r_shadow_buffer_surfacelist;
2960                 // if the reduced leaf bounds are offscreen, skip it
2961                 if (R_CullBox(rtlight->cullmins, rtlight->cullmaxs))
2962                         return;
2963         }
2964         else
2965         {
2966                 // no world
2967                 numleafs = 0;
2968                 leaflist = NULL;
2969                 leafpvs = NULL;
2970                 numsurfaces = 0;
2971                 surfacelist = NULL;
2972         }
2973         // check if light is illuminating any visible leafs
2974         if (numleafs)
2975         {
2976                 for (i = 0;i < numleafs;i++)
2977                         if (r_worldleafvisible[leaflist[i]])
2978                                 break;
2979                 if (i == numleafs)
2980                         return;
2981         }
2982         // set up a scissor rectangle for this light
2983         if (R_Shadow_ScissorForBBox(rtlight->cullmins, rtlight->cullmaxs))
2984                 return;
2985
2986         // make a list of lit entities and shadow casting entities
2987         numlightentities = 0;
2988         numshadowentities = 0;
2989         // don't count the world unless some surfaces are actually lit
2990         if (numsurfaces)
2991         {
2992                 lightentities[numlightentities++] = r_refdef.worldentity;
2993                 shadowentities[numshadowentities++] = r_refdef.worldentity;
2994         }
2995         // add dynamic entities that are lit by the light
2996         if (r_drawentities.integer)
2997         {
2998                 for (i = 0;i < r_refdef.numentities;i++)
2999                 {
3000                         entity_render_t *ent = r_refdef.entities[i];
3001                         if (BoxesOverlap(ent->mins, ent->maxs, rtlight->cullmins, rtlight->cullmaxs)
3002                          && ent->model
3003                          && !(ent->flags & RENDER_TRANSPARENT)
3004                          && (r_refdef.worldmodel == NULL || r_refdef.worldmodel->brush.BoxTouchingLeafPVS == NULL || r_refdef.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.worldmodel, leafpvs, ent->mins, ent->maxs)))
3005                         {
3006                                 // about the VectorDistance2 - light emitting entities should not cast their own shadow
3007                                 if ((ent->flags & RENDER_SHADOW) && ent->model->DrawShadowVolume && VectorDistance2(ent->origin, rtlight->shadoworigin) > 0.1)
3008                                         shadowentities[numshadowentities++] = ent;
3009                                 if (ent->visframe == r_framecount && (ent->flags & RENDER_LIGHT) && ent->model->DrawLight)
3010                                         lightentities[numlightentities++] = ent;
3011                         }
3012                 }
3013         }
3014
3015         // return if there's nothing at all to light
3016         if (!numlightentities)
3017                 return;
3018
3019         // don't let sound skip if going slow
3020         if (r_refdef.extraupdate)
3021                 S_ExtraUpdate ();
3022
3023         // make this the active rtlight for rendering purposes
3024         R_Shadow_RenderMode_ActiveLight(rtlight);
3025         // count this light in the r_speeds
3026         renderstats.lights++;
3027
3028         usestencil = false;
3029         if (numshadowentities && rtlight->shadow && (rtlight->isstatic ? r_rtworldshadows : r_rtdlightshadows))
3030         {
3031                 // draw stencil shadow volumes to mask off pixels that are in shadow
3032                 // so that they won't receive lighting
3033                 if (gl_stencil)
3034                 {
3035                         usestencil = true;
3036                         R_Shadow_RenderMode_StencilShadowVolumes();
3037                         for (i = 0;i < numshadowentities;i++)
3038                                 R_Shadow_DrawEntityShadow(shadowentities[i], numsurfaces, surfacelist);
3039                 }
3040
3041                 // optionally draw visible shape of the shadow volumes
3042                 // for performance analysis by level designers
3043                 if (r_showshadowvolumes.integer)
3044                 {
3045                         R_Shadow_RenderMode_VisibleShadowVolumes();
3046                         for (i = 0;i < numshadowentities;i++)
3047                                 R_Shadow_DrawEntityShadow(shadowentities[i], numsurfaces, surfacelist);
3048                 }
3049         }
3050
3051         if (numlightentities)
3052         {
3053                 // draw lighting in the unmasked areas
3054                 R_Shadow_RenderMode_Lighting(usestencil, false);
3055                 for (i = 0;i < numlightentities;i++)
3056                         R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
3057
3058                 // optionally draw the illuminated areas
3059                 // for performance analysis by level designers
3060                 if (r_showlighting.integer)
3061                 {
3062                         R_Shadow_RenderMode_VisibleLighting(usestencil && !r_showdisabledepthtest.integer, false);
3063                         for (i = 0;i < numlightentities;i++)
3064                                 R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
3065                 }
3066         }
3067 }
3068
3069 void R_ShadowVolumeLighting(qboolean visible)
3070 {
3071         int lnum, flag;
3072         dlight_t *light;
3073
3074         if (r_refdef.worldmodel && strncmp(r_refdef.worldmodel->name, r_shadow_mapname, sizeof(r_shadow_mapname)))
3075                 R_Shadow_EditLights_Reload_f();
3076
3077         R_Shadow_RenderMode_Begin();
3078
3079         flag = r_rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
3080         if (r_shadow_debuglight.integer >= 0)
3081         {
3082                 for (lnum = 0, light = r_shadow_worldlightchain;light;lnum++, light = light->next)
3083                         if (lnum == r_shadow_debuglight.integer && (light->flags & flag))
3084                                 R_DrawRTLight(&light->rtlight, visible);
3085         }
3086         else
3087                 for (lnum = 0, light = r_shadow_worldlightchain;light;lnum++, light = light->next)
3088                         if (light->flags & flag)
3089                                 R_DrawRTLight(&light->rtlight, visible);
3090         if (r_rtdlight)
3091                 for (lnum = 0;lnum < r_refdef.numlights;lnum++)
3092                         R_DrawRTLight(&r_refdef.lights[lnum]->rtlight, visible);
3093
3094         R_Shadow_RenderMode_End();
3095 }
3096
3097 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
3098 typedef struct suffixinfo_s
3099 {
3100         char *suffix;
3101         qboolean flipx, flipy, flipdiagonal;
3102 }
3103 suffixinfo_t;
3104 static suffixinfo_t suffix[3][6] =
3105 {
3106         {
3107                 {"px",   false, false, false},
3108                 {"nx",   false, false, false},
3109                 {"py",   false, false, false},
3110                 {"ny",   false, false, false},
3111                 {"pz",   false, false, false},
3112                 {"nz",   false, false, false}
3113         },
3114         {
3115                 {"posx", false, false, false},
3116                 {"negx", false, false, false},
3117                 {"posy", false, false, false},
3118                 {"negy", false, false, false},
3119                 {"posz", false, false, false},
3120                 {"negz", false, false, false}
3121         },
3122         {
3123                 {"rt",    true, false,  true},
3124                 {"lf",   false,  true,  true},
3125                 {"ft",    true,  true, false},
3126                 {"bk",   false, false, false},
3127                 {"up",    true, false,  true},
3128                 {"dn",    true, false,  true}
3129         }
3130 };
3131