color r_shownromals white at the tips
[divverent/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "cl_dyntexture.h"
24 #include "r_shadow.h"
25 #include "polygon.h"
26 #include "image.h"
27
28 mempool_t *r_main_mempool;
29 rtexturepool_t *r_main_texturepool;
30
31 //
32 // screen size info
33 //
34 r_refdef_t r_refdef;
35 r_view_t r_view;
36 r_viewcache_t r_viewcache;
37
38 cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "1", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
39 cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" };
40 cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
41 cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
42 cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
43 cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
44 cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
45 cvar_t r_showshadowvolumes = {0, "r_showshadowvolumes", "0", "shows areas shadowed by lights, useful for finding out why some areas of a map render slowly (bright blue = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
46 cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
47 cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
48 cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
49 cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
50 cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
51 cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
52 cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"};
53 cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
54 cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling"};
55 cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
56 cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
57 cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
58 cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"};
59 cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"};
60 cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
61 cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
62 cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this)"};
63 cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
64 cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
65 cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
66 cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "2", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
67
68 cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
69 cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
70 cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
71 cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
72 cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
73 cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
74 cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
75
76 cvar_t r_textureunits = {0, "r_textureunits", "32", "number of hardware texture units reported by driver (note: setting this to 1 turns off gl_combine)"};
77
78 cvar_t r_glsl = {CVAR_SAVE, "r_glsl", "1", "enables use of OpenGL 2.0 pixel shaders for lighting"};
79 cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
80 cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
81 cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
82 cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
83 cvar_t r_glsl_contrastboost = {CVAR_SAVE, "r_glsl_contrastboost", "1", "by how much to multiply the contrast in dark areas (1 is no change)"};
84
85 cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
86 cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
87 cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
88 cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
89 cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
90
91 cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "1", "enables animation smoothing on sprites (requires r_lerpmodels 1)"};
92 cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
93 cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
94 cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
95
96 cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
97 cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"};
98 cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"};
99 cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"};
100 cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
101 cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exagerated the glow is"};
102 cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"};
103
104 cvar_t r_hdr = {CVAR_SAVE, "r_hdr", "0", "enables High Dynamic Range bloom effect (higher quality version of r_bloom)"};
105 cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
106 cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
107 cvar_t r_hdr_range = {CVAR_SAVE, "r_hdr_range", "4", "how much dynamic range to render bloom with (equivilant to multiplying r_bloom_brighten by this value and dividing r_bloom_colorscale by this value)"};
108
109 cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
110
111 cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
112
113 cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers)"};
114
115 cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
116 cvar_t r_batchmode = {0, "r_batchmode", "1", "selects method of rendering multiple surfaces with one driver call (values are 0, 1, 2, etc...)"};
117 cvar_t r_track_sprites = {CVAR_SAVE, "r_track_sprites", "1", "track SPR_LABEL* sprites by putting them as indicator at the screen border to rotate to"};
118 cvar_t r_track_sprites_flags = {CVAR_SAVE, "r_track_sprites_flags", "1", "1: Rotate sprites accodringly, 2: Make it a continuous rotation"};
119 cvar_t r_track_sprites_scalew = {CVAR_SAVE, "r_track_sprites_scalew", "1", "width scaling of tracked sprites"};
120 cvar_t r_track_sprites_scaleh = {CVAR_SAVE, "r_track_sprites_scaleh", "1", "height scaling of tracked sprites"};
121
122 extern qboolean v_flipped_state;
123
124 typedef struct r_glsl_bloomshader_s
125 {
126         int program;
127         int loc_Texture_Bloom;
128 }
129 r_glsl_bloomshader_t;
130
131 static struct r_bloomstate_s
132 {
133         qboolean enabled;
134         qboolean hdr;
135
136         int bloomwidth, bloomheight;
137
138         int screentexturewidth, screentextureheight;
139         rtexture_t *texture_screen;
140
141         int bloomtexturewidth, bloomtextureheight;
142         rtexture_t *texture_bloom;
143
144         r_glsl_bloomshader_t *shader;
145
146         // arrays for rendering the screen passes
147         float screentexcoord2f[8];
148         float bloomtexcoord2f[8];
149         float offsettexcoord2f[8];
150 }
151 r_bloomstate;
152
153 typedef struct r_waterstate_waterplane_s
154 {
155         rtexture_t *texture_refraction;
156         rtexture_t *texture_reflection;
157         mplane_t plane;
158         int materialflags; // combined flags of all water surfaces on this plane
159         unsigned char pvsbits[(32768+7)>>3]; // FIXME: buffer overflow on huge maps
160         qboolean pvsvalid;
161 }
162 r_waterstate_waterplane_t;
163
164 #define MAX_WATERPLANES 16
165
166 static struct r_waterstate_s
167 {
168         qboolean enabled;
169
170         qboolean renderingscene; // true while rendering a refraction or reflection texture, disables water surfaces
171
172         int waterwidth, waterheight;
173         int texturewidth, textureheight;
174
175         int maxwaterplanes; // same as MAX_WATERPLANES
176         int numwaterplanes;
177         r_waterstate_waterplane_t waterplanes[MAX_WATERPLANES];
178
179         float screenscale[2];
180         float screencenter[2];
181 }
182 r_waterstate;
183
184 // shadow volume bsp struct with automatically growing nodes buffer
185 svbsp_t r_svbsp;
186
187 rtexture_t *r_texture_blanknormalmap;
188 rtexture_t *r_texture_white;
189 rtexture_t *r_texture_grey128;
190 rtexture_t *r_texture_black;
191 rtexture_t *r_texture_notexture;
192 rtexture_t *r_texture_whitecube;
193 rtexture_t *r_texture_normalizationcube;
194 rtexture_t *r_texture_fogattenuation;
195 //rtexture_t *r_texture_fogintensity;
196
197 char r_qwskincache[MAX_SCOREBOARD][MAX_QPATH];
198 skinframe_t *r_qwskincache_skinframe[MAX_SCOREBOARD];
199
200 // vertex coordinates for a quad that covers the screen exactly
201 const static float r_screenvertex3f[12] =
202 {
203         0, 0, 0,
204         1, 0, 0,
205         1, 1, 0,
206         0, 1, 0
207 };
208
209 extern void R_DrawModelShadows(void);
210
211 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
212 {
213         int i;
214         for (i = 0;i < verts;i++)
215         {
216                 out[0] = in[0] * r;
217                 out[1] = in[1] * g;
218                 out[2] = in[2] * b;
219                 out[3] = in[3];
220                 in += 4;
221                 out += 4;
222         }
223 }
224
225 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
226 {
227         int i;
228         for (i = 0;i < verts;i++)
229         {
230                 out[0] = r;
231                 out[1] = g;
232                 out[2] = b;
233                 out[3] = a;
234                 out += 4;
235         }
236 }
237
238 // FIXME: move this to client?
239 void FOG_clear(void)
240 {
241         if (gamemode == GAME_NEHAHRA)
242         {
243                 Cvar_Set("gl_fogenable", "0");
244                 Cvar_Set("gl_fogdensity", "0.2");
245                 Cvar_Set("gl_fogred", "0.3");
246                 Cvar_Set("gl_foggreen", "0.3");
247                 Cvar_Set("gl_fogblue", "0.3");
248         }
249         r_refdef.fog_density = r_refdef.fog_red = r_refdef.fog_green = r_refdef.fog_blue = 0.0f;
250 }
251
252 float FogPoint_World(const vec3_t p)
253 {
254         unsigned int fogmasktableindex = (unsigned int)(VectorDistance((p), r_view.origin) * r_refdef.fogmasktabledistmultiplier);
255         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
256 }
257
258 float FogPoint_Model(const vec3_t p)
259 {
260         unsigned int fogmasktableindex = (unsigned int)(VectorDistance((p), rsurface.modelorg) * r_refdef.fogmasktabledistmultiplier);
261         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
262 }
263
264 static void R_BuildBlankTextures(void)
265 {
266         unsigned char data[4];
267         data[2] = 128; // normal X
268         data[1] = 128; // normal Y
269         data[0] = 255; // normal Z
270         data[3] = 128; // height
271         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
272         data[0] = 255;
273         data[1] = 255;
274         data[2] = 255;
275         data[3] = 255;
276         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
277         data[0] = 128;
278         data[1] = 128;
279         data[2] = 128;
280         data[3] = 255;
281         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
282         data[0] = 0;
283         data[1] = 0;
284         data[2] = 0;
285         data[3] = 255;
286         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
287 }
288
289 static void R_BuildNoTexture(void)
290 {
291         int x, y;
292         unsigned char pix[16][16][4];
293         // this makes a light grey/dark grey checkerboard texture
294         for (y = 0;y < 16;y++)
295         {
296                 for (x = 0;x < 16;x++)
297                 {
298                         if ((y < 8) ^ (x < 8))
299                         {
300                                 pix[y][x][0] = 128;
301                                 pix[y][x][1] = 128;
302                                 pix[y][x][2] = 128;
303                                 pix[y][x][3] = 255;
304                         }
305                         else
306                         {
307                                 pix[y][x][0] = 64;
308                                 pix[y][x][1] = 64;
309                                 pix[y][x][2] = 64;
310                                 pix[y][x][3] = 255;
311                         }
312                 }
313         }
314         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, NULL);
315 }
316
317 static void R_BuildWhiteCube(void)
318 {
319         unsigned char data[6*1*1*4];
320         memset(data, 255, sizeof(data));
321         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
322 }
323
324 static void R_BuildNormalizationCube(void)
325 {
326         int x, y, side;
327         vec3_t v;
328         vec_t s, t, intensity;
329 #define NORMSIZE 64
330         unsigned char data[6][NORMSIZE][NORMSIZE][4];
331         for (side = 0;side < 6;side++)
332         {
333                 for (y = 0;y < NORMSIZE;y++)
334                 {
335                         for (x = 0;x < NORMSIZE;x++)
336                         {
337                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
338                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
339                                 switch(side)
340                                 {
341                                 default:
342                                 case 0:
343                                         v[0] = 1;
344                                         v[1] = -t;
345                                         v[2] = -s;
346                                         break;
347                                 case 1:
348                                         v[0] = -1;
349                                         v[1] = -t;
350                                         v[2] = s;
351                                         break;
352                                 case 2:
353                                         v[0] = s;
354                                         v[1] = 1;
355                                         v[2] = t;
356                                         break;
357                                 case 3:
358                                         v[0] = s;
359                                         v[1] = -1;
360                                         v[2] = -t;
361                                         break;
362                                 case 4:
363                                         v[0] = s;
364                                         v[1] = -t;
365                                         v[2] = 1;
366                                         break;
367                                 case 5:
368                                         v[0] = -s;
369                                         v[1] = -t;
370                                         v[2] = -1;
371                                         break;
372                                 }
373                                 intensity = 127.0f / sqrt(DotProduct(v, v));
374                                 data[side][y][x][2] = (unsigned char)(128.0f + intensity * v[0]);
375                                 data[side][y][x][1] = (unsigned char)(128.0f + intensity * v[1]);
376                                 data[side][y][x][0] = (unsigned char)(128.0f + intensity * v[2]);
377                                 data[side][y][x][3] = 255;
378                         }
379                 }
380         }
381         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, &data[0][0][0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
382 }
383
384 static void R_BuildFogTexture(void)
385 {
386         int x, b;
387 #define FOGWIDTH 256
388         unsigned char data1[FOGWIDTH][4];
389         //unsigned char data2[FOGWIDTH][4];
390         for (x = 0;x < FOGWIDTH;x++)
391         {
392                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
393                 data1[x][0] = b;
394                 data1[x][1] = b;
395                 data1[x][2] = b;
396                 data1[x][3] = 255;
397                 //data2[x][0] = 255 - b;
398                 //data2[x][1] = 255 - b;
399                 //data2[x][2] = 255 - b;
400                 //data2[x][3] = 255;
401         }
402         r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
403         //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
404 }
405
406 static const char *builtinshaderstring =
407 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
408 "// written by Forest 'LordHavoc' Hale\n"
409 "\n"
410 "// common definitions between vertex shader and fragment shader:\n"
411 "\n"
412 "#ifdef __GLSL_CG_DATA_TYPES\n"
413 "# define myhalf half\n"
414 "# define myhvec2 hvec2\n"
415 "# define myhvec3 hvec3\n"
416 "# define myhvec4 hvec4\n"
417 "#else\n"
418 "# define myhalf float\n"
419 "# define myhvec2 vec2\n"
420 "# define myhvec3 vec3\n"
421 "# define myhvec4 vec4\n"
422 "#endif\n"
423 "\n"
424 "varying vec2 TexCoord;\n"
425 "varying vec2 TexCoordLightmap;\n"
426 "\n"
427 "//#ifdef MODE_LIGHTSOURCE\n"
428 "varying vec3 CubeVector;\n"
429 "//#endif\n"
430 "\n"
431 "//#ifdef MODE_LIGHTSOURCE\n"
432 "varying vec3 LightVector;\n"
433 "//#else\n"
434 "//# ifdef MODE_LIGHTDIRECTION\n"
435 "//varying vec3 LightVector;\n"
436 "//# endif\n"
437 "//#endif\n"
438 "\n"
439 "varying vec3 EyeVector;\n"
440 "//#ifdef USEFOG\n"
441 "varying vec3 EyeVectorModelSpace;\n"
442 "//#endif\n"
443 "\n"
444 "varying vec3 VectorS; // direction of S texcoord (sometimes crudely called tangent)\n"
445 "varying vec3 VectorT; // direction of T texcoord (sometimes crudely called binormal)\n"
446 "varying vec3 VectorR; // direction of R texcoord (surface normal)\n"
447 "\n"
448 "//#ifdef MODE_WATER\n"
449 "varying vec4 ModelViewProjectionPosition;\n"
450 "//#else\n"
451 "//# ifdef MODE_REFRACTION\n"
452 "//varying vec4 ModelViewProjectionPosition;\n"
453 "//# else\n"
454 "//#  ifdef USEREFLECTION\n"
455 "//varying vec4 ModelViewProjectionPosition;\n"
456 "//#  endif\n"
457 "//# endif\n"
458 "//#endif\n"
459 "\n"
460 "\n"
461 "\n"
462 "\n"
463 "\n"
464 "// vertex shader specific:\n"
465 "#ifdef VERTEX_SHADER\n"
466 "\n"
467 "uniform vec3 LightPosition;\n"
468 "uniform vec3 EyePosition;\n"
469 "uniform vec3 LightDir;\n"
470 "\n"
471 "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3)\n"
472 "\n"
473 "void main(void)\n"
474 "{\n"
475 "       gl_FrontColor = gl_Color;\n"
476 "       // copy the surface texcoord\n"
477 "       TexCoord = vec2(gl_TextureMatrix[0] * gl_MultiTexCoord0);\n"
478 "#ifndef MODE_LIGHTSOURCE\n"
479 "# ifndef MODE_LIGHTDIRECTION\n"
480 "       TexCoordLightmap = vec2(gl_MultiTexCoord4);\n"
481 "# endif\n"
482 "#endif\n"
483 "\n"
484 "#ifdef MODE_LIGHTSOURCE\n"
485 "       // transform vertex position into light attenuation/cubemap space\n"
486 "       // (-1 to +1 across the light box)\n"
487 "       CubeVector = vec3(gl_TextureMatrix[3] * gl_Vertex);\n"
488 "\n"
489 "       // transform unnormalized light direction into tangent space\n"
490 "       // (we use unnormalized to ensure that it interpolates correctly and then\n"
491 "       //  normalize it per pixel)\n"
492 "       vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n"
493 "       LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n"
494 "       LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n"
495 "       LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n"
496 "#endif\n"
497 "\n"
498 "#ifdef MODE_LIGHTDIRECTION\n"
499 "       LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n"
500 "       LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n"
501 "       LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n"
502 "#endif\n"
503 "\n"
504 "       // transform unnormalized eye direction into tangent space\n"
505 "#ifndef USEFOG\n"
506 "       vec3 EyeVectorModelSpace;\n"
507 "#endif\n"
508 "       EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n"
509 "       EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n"
510 "       EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n"
511 "       EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n"
512 "\n"
513 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
514 "       VectorS = gl_MultiTexCoord1.xyz;\n"
515 "       VectorT = gl_MultiTexCoord2.xyz;\n"
516 "       VectorR = gl_MultiTexCoord3.xyz;\n"
517 "#endif\n"
518 "\n"
519 "//#if defined(MODE_WATER) || defined(MODE_REFRACTION) || defined(USEREFLECTION)\n"
520 "//     ModelViewProjectionPosition = gl_Vertex * gl_ModelViewProjectionMatrix;\n"
521 "//     //ModelViewProjectionPosition_svector = (gl_Vertex + vec4(gl_MultiTexCoord1.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
522 "//     //ModelViewProjectionPosition_tvector = (gl_Vertex + vec4(gl_MultiTexCoord2.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
523 "//#endif\n"
524 "\n"
525 "// transform vertex to camera space, using ftransform to match non-VS\n"
526 "       // rendering\n"
527 "       gl_Position = ftransform();\n"
528 "\n"
529 "#ifdef MODE_WATER\n"
530 "       ModelViewProjectionPosition = gl_Position;\n"
531 "#endif\n"
532 "#ifdef MODE_REFRACTION\n"
533 "       ModelViewProjectionPosition = gl_Position;\n"
534 "#endif\n"
535 "#ifdef USEREFLECTION\n"
536 "       ModelViewProjectionPosition = gl_Position;\n"
537 "#endif\n"
538 "}\n"
539 "\n"
540 "#endif // VERTEX_SHADER\n"
541 "\n"
542 "\n"
543 "\n"
544 "\n"
545 "// fragment shader specific:\n"
546 "#ifdef FRAGMENT_SHADER\n"
547 "\n"
548 "// 13 textures, we can only use up to 16 on DX9-class hardware\n"
549 "uniform sampler2D Texture_Normal;\n"
550 "uniform sampler2D Texture_Color;\n"
551 "uniform sampler2D Texture_Gloss;\n"
552 "uniform samplerCube Texture_Cube;\n"
553 "uniform sampler2D Texture_Attenuation;\n"
554 "uniform sampler2D Texture_FogMask;\n"
555 "uniform sampler2D Texture_Pants;\n"
556 "uniform sampler2D Texture_Shirt;\n"
557 "uniform sampler2D Texture_Lightmap;\n"
558 "uniform sampler2D Texture_Deluxemap;\n"
559 "uniform sampler2D Texture_Glow;\n"
560 "uniform sampler2D Texture_Reflection;\n"
561 "uniform sampler2D Texture_Refraction;\n"
562 "\n"
563 "uniform myhvec3 LightColor;\n"
564 "uniform myhvec3 AmbientColor;\n"
565 "uniform myhvec3 DiffuseColor;\n"
566 "uniform myhvec3 SpecularColor;\n"
567 "uniform myhvec3 Color_Pants;\n"
568 "uniform myhvec3 Color_Shirt;\n"
569 "uniform myhvec3 FogColor;\n"
570 "\n"
571 "//#ifdef MODE_WATER\n"
572 "uniform vec4 DistortScaleRefractReflect;\n"
573 "uniform vec4 ScreenScaleRefractReflect;\n"
574 "uniform vec4 ScreenCenterRefractReflect;\n"
575 "uniform myhvec4 RefractColor;\n"
576 "uniform myhvec4 ReflectColor;\n"
577 "uniform myhalf ReflectFactor;\n"
578 "uniform myhalf ReflectOffset;\n"
579 "//#else\n"
580 "//# ifdef MODE_REFRACTION\n"
581 "//uniform vec4 DistortScaleRefractReflect;\n"
582 "//uniform vec4 ScreenScaleRefractReflect;\n"
583 "//uniform vec4 ScreenCenterRefractReflect;\n"
584 "//uniform myhvec4 RefractColor;\n"
585 "//#  ifdef USEREFLECTION\n"
586 "//uniform myhvec4 ReflectColor;\n"
587 "//#  endif\n"
588 "//# else\n"
589 "//#  ifdef USEREFLECTION\n"
590 "//uniform vec4 DistortScaleRefractReflect;\n"
591 "//uniform vec4 ScreenScaleRefractReflect;\n"
592 "//uniform vec4 ScreenCenterRefractReflect;\n"
593 "//uniform myhvec4 ReflectColor;\n"
594 "//#  endif\n"
595 "//# endif\n"
596 "//#endif\n"
597 "\n"
598 "uniform myhalf GlowScale;\n"
599 "uniform myhalf SceneBrightness;\n"
600 "#ifdef USECONTRASTBOOST\n"
601 "uniform myhalf ContrastBoostCoeff;\n"
602 "#endif\n"
603 "\n"
604 "uniform float OffsetMapping_Scale;\n"
605 "uniform float OffsetMapping_Bias;\n"
606 "uniform float FogRangeRecip;\n"
607 "\n"
608 "uniform myhalf AmbientScale;\n"
609 "uniform myhalf DiffuseScale;\n"
610 "uniform myhalf SpecularScale;\n"
611 "uniform myhalf SpecularPower;\n"
612 "\n"
613 "#ifdef USEOFFSETMAPPING\n"
614 "vec2 OffsetMapping(vec2 TexCoord)\n"
615 "{\n"
616 "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n"
617 "       // 14 sample relief mapping: linear search and then binary search\n"
618 "       // this basically steps forward a small amount repeatedly until it finds\n"
619 "       // itself inside solid, then jitters forward and back using decreasing\n"
620 "       // amounts to find the impact\n"
621 "       //vec3 OffsetVector = vec3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1), -1);\n"
622 "       //vec3 OffsetVector = vec3(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
623 "       vec3 OffsetVector = vec3(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
624 "       vec3 RT = vec3(TexCoord, 1);\n"
625 "       OffsetVector *= 0.1;\n"
626 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
627 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
628 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
629 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
630 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
631 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
632 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
633 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
634 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
635 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z)          - 0.5);\n"
636 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.5    - 0.25);\n"
637 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.25   - 0.125);\n"
638 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.125  - 0.0625);\n"
639 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n"
640 "       return RT.xy;\n"
641 "#else\n"
642 "       // 3 sample offset mapping (only 3 samples because of ATI Radeon 9500-9800/X300 limits)\n"
643 "       // this basically moves forward the full distance, and then backs up based\n"
644 "       // on height of samples\n"
645 "       //vec2 OffsetVector = vec2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1));\n"
646 "       //vec2 OffsetVector = vec2(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1));\n"
647 "       vec2 OffsetVector = vec2(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1));\n"
648 "       TexCoord += OffsetVector;\n"
649 "       OffsetVector *= 0.333;\n"
650 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
651 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
652 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
653 "       return TexCoord;\n"
654 "#endif\n"
655 "}\n"
656 "#endif // USEOFFSETMAPPING\n"
657 "\n"
658 "#ifdef MODE_WATER\n"
659 "\n"
660 "// water pass\n"
661 "void main(void)\n"
662 "{\n"
663 "#ifdef USEOFFSETMAPPING\n"
664 "       // apply offsetmapping\n"
665 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
666 "#define TexCoord TexCoordOffset\n"
667 "#endif\n"
668 "\n"
669 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
670 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
671 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec2(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xyxy * DistortScaleRefractReflect;\n"
672 "       float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 5.0) * ReflectFactor + ReflectOffset;\n"
673 "       gl_FragColor = mix(texture2D(Texture_Refraction, ScreenTexCoord.xy) * RefractColor, texture2D(Texture_Reflection, ScreenTexCoord.zw) * ReflectColor, Fresnel);\n"
674 "}\n"
675 "\n"
676 "#else // MODE_WATER\n"
677 "#ifdef MODE_REFRACTION\n"
678 "\n"
679 "// refraction pass\n"
680 "void main(void)\n"
681 "{\n"
682 "#ifdef USEOFFSETMAPPING\n"
683 "       // apply offsetmapping\n"
684 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
685 "#define TexCoord TexCoordOffset\n"
686 "#endif\n"
687 "\n"
688 "       vec2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n"
689 "       //vec2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n"
690 "       vec2 ScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy + vec2(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xy * DistortScaleRefractReflect.xy;\n"
691 "       gl_FragColor = texture2D(Texture_Refraction, ScreenTexCoord) * RefractColor;\n"
692 "}\n"
693 "\n"
694 "#else // MODE_REFRACTION\n"
695 "void main(void)\n"
696 "{\n"
697 "#ifdef USEOFFSETMAPPING\n"
698 "       // apply offsetmapping\n"
699 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
700 "#define TexCoord TexCoordOffset\n"
701 "#endif\n"
702 "\n"
703 "       // combine the diffuse textures (base, pants, shirt)\n"
704 "       myhvec4 color = myhvec4(texture2D(Texture_Color, TexCoord));\n"
705 "#ifdef USECOLORMAPPING\n"
706 "       color.rgb += myhvec3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhvec3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n"
707 "#endif\n"
708 "\n"
709 "\n"
710 "\n"
711 "\n"
712 "#ifdef MODE_LIGHTSOURCE\n"
713 "       // light source\n"
714 "\n"
715 "       // calculate surface normal, light normal, and specular normal\n"
716 "       // compute color intensity for the two textures (colormap and glossmap)\n"
717 "       // scale by light color and attenuation as efficiently as possible\n"
718 "       // (do as much scalar math as possible rather than vector math)\n"
719 "# ifdef USESPECULAR\n"
720 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
721 "       myhvec3 diffusenormal = myhvec3(normalize(LightVector));\n"
722 "       myhvec3 specularnormal = normalize(diffusenormal + myhvec3(normalize(EyeVector)));\n"
723 "\n"
724 "       // calculate directional shading\n"
725 "       color.rgb = LightColor * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (color.rgb * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))) + (SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower)) * myhvec3(texture2D(Texture_Gloss, TexCoord)));\n"
726 "# else\n"
727 "#  ifdef USEDIFFUSE\n"
728 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
729 "       myhvec3 diffusenormal = myhvec3(normalize(LightVector));\n"
730 "\n"
731 "       // calculate directional shading\n"
732 "       color.rgb = color.rgb * LightColor * (myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))));\n"
733 "#  else\n"
734 "       // calculate directionless shading\n"
735 "       color.rgb = color.rgb * LightColor * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n"
736 "#  endif\n"
737 "# endif\n"
738 "\n"
739 "# ifdef USECUBEFILTER\n"
740 "       // apply light cubemap filter\n"
741 "       //color.rgb *= normalize(CubeVector) * 0.5 + 0.5;//vec3(textureCube(Texture_Cube, CubeVector));\n"
742 "       color.rgb *= myhvec3(textureCube(Texture_Cube, CubeVector));\n"
743 "# endif\n"
744 "       color *= myhvec4(gl_Color);\n"
745 "#endif // MODE_LIGHTSOURCE\n"
746 "\n"
747 "\n"
748 "\n"
749 "\n"
750 "#ifdef MODE_LIGHTDIRECTION\n"
751 "       // directional model lighting\n"
752 "# ifdef USESPECULAR\n"
753 "       // get the surface normal and light normal\n"
754 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
755 "       myhvec3 diffusenormal = myhvec3(LightVector);\n"
756 "\n"
757 "       // calculate directional shading\n"
758 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
759 "       myhvec3 specularnormal = normalize(diffusenormal + myhvec3(normalize(EyeVector)));\n"
760 "       color.rgb += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularColor * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
761 "# else\n"
762 "#  ifdef USEDIFFUSE\n"
763 "       // get the surface normal and light normal\n"
764 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
765 "       myhvec3 diffusenormal = myhvec3(LightVector);\n"
766 "\n"
767 "       // calculate directional shading\n"
768 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
769 "#  else\n"
770 "       color.rgb *= AmbientColor;\n"
771 "#  endif\n"
772 "# endif\n"
773 "\n"
774 "       color *= myhvec4(gl_Color);\n"
775 "#endif // MODE_LIGHTDIRECTION\n"
776 "\n"
777 "\n"
778 "\n"
779 "\n"
780 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
781 "       // deluxemap lightmapping using light vectors in modelspace (evil q3map2)\n"
782 "\n"
783 "       // get the surface normal and light normal\n"
784 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
785 "\n"
786 "       myhvec3 diffusenormal_modelspace = myhvec3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhvec3(0.5);\n"
787 "       myhvec3 diffusenormal = normalize(myhvec3(dot(diffusenormal_modelspace, myhvec3(VectorS)), dot(diffusenormal_modelspace, myhvec3(VectorT)), dot(diffusenormal_modelspace, myhvec3(VectorR))));\n"
788 "       // calculate directional shading\n"
789 "       myhvec3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
790 "# ifdef USESPECULAR\n"
791 "       myhvec3 specularnormal = myhvec3(normalize(diffusenormal + myhvec3(normalize(EyeVector))));\n"
792 "       tempcolor += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
793 "# endif\n"
794 "\n"
795 "       // apply lightmap color\n"
796 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhvec3(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec3(gl_Color);\n"
797 "       color.a *= myhalf(gl_Color.a);\n"
798 "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
799 "\n"
800 "\n"
801 "\n"
802 "\n"
803 "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
804 "       // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n"
805 "\n"
806 "       // get the surface normal and light normal\n"
807 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
808 "\n"
809 "       myhvec3 diffusenormal = normalize(myhvec3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhvec3(0.5));\n"
810 "       // calculate directional shading\n"
811 "       myhvec3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
812 "# ifdef USESPECULAR\n"
813 "       myhvec3 specularnormal = myhvec3(normalize(diffusenormal + myhvec3(normalize(EyeVector))));\n"
814 "       tempcolor += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
815 "# endif\n"
816 "\n"
817 "       // apply lightmap color\n"
818 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhvec3(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec3(gl_Color);\n"
819 "       color.a *= myhalf(gl_Color.a);\n"
820 "#endif // MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
821 "\n"
822 "\n"
823 "\n"
824 "\n"
825 "#ifdef MODE_LIGHTMAP\n"
826 "       // apply lightmap color\n"
827 "       color *= myhvec4(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec4(gl_Color) * myhvec4(myhvec3(DiffuseScale), 1) + myhvec4(myhvec3(AmbientScale), 0);\n"
828 "#endif // MODE_LIGHTMAP\n"
829 "\n"
830 "\n"
831 "\n"
832 "\n"
833 "\n"
834 "\n"
835 "\n"
836 "\n"
837 "#ifdef USEGLOW\n"
838 "       color.rgb += myhvec3(texture2D(Texture_Glow, TexCoord)) * GlowScale;\n"
839 "#endif\n"
840 "\n"
841 "#ifndef MODE_LIGHTSOURCE\n"
842 "# ifdef USEREFLECTION\n"
843 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
844 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
845 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec3(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xyxy * DistortScaleRefractReflect;\n"
846 "       color.rgb = mix(color.rgb, myhvec3(texture2D(Texture_Reflection, ScreenTexCoord.zw)) * ReflectColor.rgb, ReflectColor.a);\n"
847 "# endif\n"
848 "#endif\n"
849 "\n"
850 "#ifdef USEFOG\n"
851 "       // apply fog\n"
852 "       color.rgb = mix(FogColor, color.rgb, myhalf(texture2D(Texture_FogMask, myhvec2(length(EyeVectorModelSpace)*FogRangeRecip, 0.0))));\n"
853 "#endif\n"
854 "\n"
855 "#ifdef USECONTRASTBOOST\n"
856 "       color.rgb = color.rgb / (ContrastBoostCoeff * color.rgb + myhvec3(1, 1, 1));\n"
857 "#endif\n"
858 "\n"
859 "       color.rgb *= SceneBrightness;\n"
860 "\n"
861 "       gl_FragColor = vec4(color);\n"
862 "}\n"
863 "#endif // MODE_REFRACTION\n"
864 "#endif // MODE_WATER\n"
865 "\n"
866 "#endif // FRAGMENT_SHADER\n"
867 ;
868
869 #define SHADERPERMUTATION_COLORMAPPING (1<<0) // indicates this is a colormapped skin
870 #define SHADERPERMUTATION_CONTRASTBOOST (1<<1) // r_glsl_contrastboost boosts the contrast at low color levels (similar to gamma)
871 #define SHADERPERMUTATION_FOG (1<<2) // tint the color by fog color or black if using additive blend mode
872 #define SHADERPERMUTATION_CUBEFILTER (1<<3) // (lightsource) use cubemap light filter
873 #define SHADERPERMUTATION_GLOW (1<<4) // (lightmap) blend in an additive glow texture
874 #define SHADERPERMUTATION_DIFFUSE (1<<5) // (lightsource) whether to use directional shading
875 #define SHADERPERMUTATION_SPECULAR (1<<6) // (lightsource or deluxemapping) render specular effects
876 #define SHADERPERMUTATION_REFLECTION (1<<7) // normalmap-perturbed reflection of the scene infront of the surface, preformed as an overlay on the surface
877 #define SHADERPERMUTATION_OFFSETMAPPING (1<<8) // adjust texcoords to roughly simulate a displacement mapped surface
878 #define SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING (1<<9) // adjust texcoords to accurately simulate a displacement mapped surface (requires OFFSETMAPPING to also be set!)
879 #define SHADERPERMUTATION_MODEBASE (1<<10) // multiplier for the SHADERMODE_ values to get a valid index
880
881 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
882 const char *shaderpermutationinfo[][2] =
883 {
884         {"#define USECOLORMAPPING\n", " colormapping"},
885         {"#define USECONTRASTBOOST\n", " contrastboost"},
886         {"#define USEFOG\n", " fog"},
887         {"#define USECUBEFILTER\n", " cubefilter"},
888         {"#define USEGLOW\n", " glow"},
889         {"#define USEDIFFUSE\n", " diffuse"},
890         {"#define USESPECULAR\n", " specular"},
891         {"#define USEREFLECTION\n", " reflection"},
892         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
893         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
894         {NULL, NULL}
895 };
896
897 // this enum is multiplied by SHADERPERMUTATION_MODEBASE
898 typedef enum shadermode_e
899 {
900         SHADERMODE_LIGHTMAP, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
901         SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE, // (lightmap) use directional pixel shading from texture containing modelspace light directions (deluxemap)
902         SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE, // (lightmap) use directional pixel shading from texture containing tangentspace light directions (deluxemap)
903         SHADERMODE_LIGHTDIRECTION, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
904         SHADERMODE_LIGHTSOURCE, // (lightsource) use directional pixel shading from light source (rtlight)
905         SHADERMODE_REFRACTION, // refract background (the material is rendered normally after this pass)
906         SHADERMODE_WATER, // refract background and reflection (the material is rendered normally after this pass)
907         SHADERMODE_COUNT
908 }
909 shadermode_t;
910
911 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
912 const char *shadermodeinfo[][2] =
913 {
914         {"#define MODE_LIGHTMAP\n", " lightmap"},
915         {"#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
916         {"#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
917         {"#define MODE_LIGHTDIRECTION\n", " lightdirection"},
918         {"#define MODE_LIGHTSOURCE\n", " lightsource"},
919         {"#define MODE_REFRACTION\n", " refraction"},
920         {"#define MODE_WATER\n", " water"},
921         {NULL, NULL}
922 };
923
924 #define SHADERPERMUTATION_INDICES (SHADERPERMUTATION_MODEBASE * SHADERMODE_COUNT)
925
926 typedef struct r_glsl_permutation_s
927 {
928         // indicates if we have tried compiling this permutation already
929         qboolean compiled;
930         // 0 if compilation failed
931         int program;
932         // locations of detected uniforms in program object, or -1 if not found
933         int loc_Texture_Normal;
934         int loc_Texture_Color;
935         int loc_Texture_Gloss;
936         int loc_Texture_Cube;
937         int loc_Texture_Attenuation;
938         int loc_Texture_FogMask;
939         int loc_Texture_Pants;
940         int loc_Texture_Shirt;
941         int loc_Texture_Lightmap;
942         int loc_Texture_Deluxemap;
943         int loc_Texture_Glow;
944         int loc_Texture_Refraction;
945         int loc_Texture_Reflection;
946         int loc_FogColor;
947         int loc_LightPosition;
948         int loc_EyePosition;
949         int loc_LightColor;
950         int loc_Color_Pants;
951         int loc_Color_Shirt;
952         int loc_FogRangeRecip;
953         int loc_AmbientScale;
954         int loc_DiffuseScale;
955         int loc_SpecularScale;
956         int loc_SpecularPower;
957         int loc_GlowScale;
958         int loc_SceneBrightness; // or: Scenebrightness * ContrastBoost
959         int loc_OffsetMapping_Scale;
960         int loc_AmbientColor;
961         int loc_DiffuseColor;
962         int loc_SpecularColor;
963         int loc_LightDir;
964         int loc_ContrastBoostCoeff; // 1 - 1/ContrastBoost
965         int loc_DistortScaleRefractReflect;
966         int loc_ScreenScaleRefractReflect;
967         int loc_ScreenCenterRefractReflect;
968         int loc_RefractColor;
969         int loc_ReflectColor;
970         int loc_ReflectFactor;
971         int loc_ReflectOffset;
972 }
973 r_glsl_permutation_t;
974
975 // information about each possible shader permutation
976 r_glsl_permutation_t r_glsl_permutations[SHADERPERMUTATION_INDICES];
977 // currently selected permutation
978 r_glsl_permutation_t *r_glsl_permutation;
979
980 // these are additional flags used only by R_GLSL_CompilePermutation
981 #define SHADERTYPE_USES_VERTEXSHADER (1<<0)
982 #define SHADERTYPE_USES_GEOMETRYSHADER (1<<1)
983 #define SHADERTYPE_USES_FRAGMENTSHADER (1<<2)
984
985 static void R_GLSL_CompilePermutation(const char *filename, int permutation, int shadertype)
986 {
987         int i;
988         qboolean shaderfound;
989         r_glsl_permutation_t *p = r_glsl_permutations + permutation;
990         int vertstrings_count;
991         int geomstrings_count;
992         int fragstrings_count;
993         char *shaderstring;
994         const char *vertstrings_list[32+1];
995         const char *geomstrings_list[32+1];
996         const char *fragstrings_list[32+1];
997         char permutationname[256];
998         if (p->compiled)
999                 return;
1000         p->compiled = true;
1001         p->program = 0;
1002         vertstrings_list[0] = "#define VERTEX_SHADER\n";
1003         geomstrings_list[0] = "#define GEOMETRY_SHADER\n";
1004         fragstrings_list[0] = "#define FRAGMENT_SHADER\n";
1005         vertstrings_count = 1;
1006         geomstrings_count = 1;
1007         fragstrings_count = 1;
1008         permutationname[0] = 0;
1009         i = permutation / SHADERPERMUTATION_MODEBASE;
1010         vertstrings_list[vertstrings_count++] = shadermodeinfo[i][0];
1011         geomstrings_list[geomstrings_count++] = shadermodeinfo[i][0];
1012         fragstrings_list[fragstrings_count++] = shadermodeinfo[i][0];
1013         strlcat(permutationname, shadermodeinfo[i][1], sizeof(permutationname));
1014         for (i = 0;shaderpermutationinfo[i][0];i++)
1015         {
1016                 if (permutation & (1<<i))
1017                 {
1018                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i][0];
1019                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i][0];
1020                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i][0];
1021                         strlcat(permutationname, shaderpermutationinfo[i][1], sizeof(permutationname));
1022                 }
1023                 else
1024                 {
1025                         // keep line numbers correct
1026                         vertstrings_list[vertstrings_count++] = "\n";
1027                         geomstrings_list[geomstrings_count++] = "\n";
1028                         fragstrings_list[fragstrings_count++] = "\n";
1029                 }
1030         }
1031         shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL);
1032         shaderfound = false;
1033         if (shaderstring)
1034         {
1035                 Con_DPrint("from disk... ");
1036                 vertstrings_list[vertstrings_count++] = shaderstring;
1037                 geomstrings_list[geomstrings_count++] = shaderstring;
1038                 fragstrings_list[fragstrings_count++] = shaderstring;
1039                 shaderfound = true;
1040         }
1041         else if (!strcmp(filename, "glsl/default.glsl"))
1042         {
1043                 vertstrings_list[vertstrings_count++] = builtinshaderstring;
1044                 geomstrings_list[geomstrings_count++] = builtinshaderstring;
1045                 fragstrings_list[fragstrings_count++] = builtinshaderstring;
1046                 shaderfound = true;
1047         }
1048         // clear any lists that are not needed by this shader
1049         if (!(shadertype & SHADERTYPE_USES_VERTEXSHADER))
1050                 vertstrings_count = 0;
1051         if (!(shadertype & SHADERTYPE_USES_GEOMETRYSHADER))
1052                 geomstrings_count = 0;
1053         if (!(shadertype & SHADERTYPE_USES_FRAGMENTSHADER))
1054                 fragstrings_count = 0;
1055         // compile the shader program
1056         if (shaderfound && vertstrings_count + geomstrings_count + fragstrings_count)
1057                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1058         if (p->program)
1059         {
1060                 CHECKGLERROR
1061                 qglUseProgramObjectARB(p->program);CHECKGLERROR
1062                 // look up all the uniform variable names we care about, so we don't
1063                 // have to look them up every time we set them
1064                 p->loc_Texture_Normal      = qglGetUniformLocationARB(p->program, "Texture_Normal");
1065                 p->loc_Texture_Color       = qglGetUniformLocationARB(p->program, "Texture_Color");
1066                 p->loc_Texture_Gloss       = qglGetUniformLocationARB(p->program, "Texture_Gloss");
1067                 p->loc_Texture_Cube        = qglGetUniformLocationARB(p->program, "Texture_Cube");
1068                 p->loc_Texture_Attenuation = qglGetUniformLocationARB(p->program, "Texture_Attenuation");
1069                 p->loc_Texture_FogMask     = qglGetUniformLocationARB(p->program, "Texture_FogMask");
1070                 p->loc_Texture_Pants       = qglGetUniformLocationARB(p->program, "Texture_Pants");
1071                 p->loc_Texture_Shirt       = qglGetUniformLocationARB(p->program, "Texture_Shirt");
1072                 p->loc_Texture_Lightmap    = qglGetUniformLocationARB(p->program, "Texture_Lightmap");
1073                 p->loc_Texture_Deluxemap   = qglGetUniformLocationARB(p->program, "Texture_Deluxemap");
1074                 p->loc_Texture_Glow        = qglGetUniformLocationARB(p->program, "Texture_Glow");
1075                 p->loc_Texture_Refraction  = qglGetUniformLocationARB(p->program, "Texture_Refraction");
1076                 p->loc_Texture_Reflection  = qglGetUniformLocationARB(p->program, "Texture_Reflection");
1077                 p->loc_FogColor            = qglGetUniformLocationARB(p->program, "FogColor");
1078                 p->loc_LightPosition       = qglGetUniformLocationARB(p->program, "LightPosition");
1079                 p->loc_EyePosition         = qglGetUniformLocationARB(p->program, "EyePosition");
1080                 p->loc_LightColor          = qglGetUniformLocationARB(p->program, "LightColor");
1081                 p->loc_Color_Pants         = qglGetUniformLocationARB(p->program, "Color_Pants");
1082                 p->loc_Color_Shirt         = qglGetUniformLocationARB(p->program, "Color_Shirt");
1083                 p->loc_FogRangeRecip       = qglGetUniformLocationARB(p->program, "FogRangeRecip");
1084                 p->loc_AmbientScale        = qglGetUniformLocationARB(p->program, "AmbientScale");
1085                 p->loc_DiffuseScale        = qglGetUniformLocationARB(p->program, "DiffuseScale");
1086                 p->loc_SpecularPower       = qglGetUniformLocationARB(p->program, "SpecularPower");
1087                 p->loc_SpecularScale       = qglGetUniformLocationARB(p->program, "SpecularScale");
1088                 p->loc_GlowScale           = qglGetUniformLocationARB(p->program, "GlowScale");
1089                 p->loc_SceneBrightness     = qglGetUniformLocationARB(p->program, "SceneBrightness");
1090                 p->loc_OffsetMapping_Scale = qglGetUniformLocationARB(p->program, "OffsetMapping_Scale");
1091                 p->loc_AmbientColor        = qglGetUniformLocationARB(p->program, "AmbientColor");
1092                 p->loc_DiffuseColor        = qglGetUniformLocationARB(p->program, "DiffuseColor");
1093                 p->loc_SpecularColor       = qglGetUniformLocationARB(p->program, "SpecularColor");
1094                 p->loc_LightDir            = qglGetUniformLocationARB(p->program, "LightDir");
1095                 p->loc_ContrastBoostCoeff  = qglGetUniformLocationARB(p->program, "ContrastBoostCoeff");
1096                 p->loc_DistortScaleRefractReflect = qglGetUniformLocationARB(p->program, "DistortScaleRefractReflect");
1097                 p->loc_ScreenScaleRefractReflect = qglGetUniformLocationARB(p->program, "ScreenScaleRefractReflect");
1098                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocationARB(p->program, "ScreenCenterRefractReflect");
1099                 p->loc_RefractColor        = qglGetUniformLocationARB(p->program, "RefractColor");
1100                 p->loc_ReflectColor        = qglGetUniformLocationARB(p->program, "ReflectColor");
1101                 p->loc_ReflectFactor       = qglGetUniformLocationARB(p->program, "ReflectFactor");
1102                 p->loc_ReflectOffset       = qglGetUniformLocationARB(p->program, "ReflectOffset");
1103                 // initialize the samplers to refer to the texture units we use
1104                 if (p->loc_Texture_Normal >= 0)    qglUniform1iARB(p->loc_Texture_Normal, 0);
1105                 if (p->loc_Texture_Color >= 0)     qglUniform1iARB(p->loc_Texture_Color, 1);
1106                 if (p->loc_Texture_Gloss >= 0)     qglUniform1iARB(p->loc_Texture_Gloss, 2);
1107                 if (p->loc_Texture_Cube >= 0)      qglUniform1iARB(p->loc_Texture_Cube, 3);
1108                 if (p->loc_Texture_FogMask >= 0)   qglUniform1iARB(p->loc_Texture_FogMask, 4);
1109                 if (p->loc_Texture_Pants >= 0)     qglUniform1iARB(p->loc_Texture_Pants, 5);
1110                 if (p->loc_Texture_Shirt >= 0)     qglUniform1iARB(p->loc_Texture_Shirt, 6);
1111                 if (p->loc_Texture_Lightmap >= 0)  qglUniform1iARB(p->loc_Texture_Lightmap, 7);
1112                 if (p->loc_Texture_Deluxemap >= 0) qglUniform1iARB(p->loc_Texture_Deluxemap, 8);
1113                 if (p->loc_Texture_Glow >= 0)      qglUniform1iARB(p->loc_Texture_Glow, 9);
1114                 if (p->loc_Texture_Attenuation >= 0) qglUniform1iARB(p->loc_Texture_Attenuation, 10);
1115                 if (p->loc_Texture_Refraction >= 0) qglUniform1iARB(p->loc_Texture_Refraction, 11);
1116                 if (p->loc_Texture_Reflection >= 0) qglUniform1iARB(p->loc_Texture_Reflection, 12);
1117                 CHECKGLERROR
1118                 qglUseProgramObjectARB(0);CHECKGLERROR
1119                 if (developer.integer)
1120                         Con_Printf("GLSL shader %s :%s compiled.\n", filename, permutationname);
1121         }
1122         else
1123         {
1124                 if (developer.integer)
1125                         Con_Printf("GLSL shader %s :%s failed!  source code line offset for above errors is %i.\n", permutationname, filename, -(vertstrings_count - 1));
1126                 else
1127                         Con_Printf("GLSL shader %s :%s failed!  some features may not work properly.\n", permutationname, filename);
1128         }
1129         if (shaderstring)
1130                 Mem_Free(shaderstring);
1131 }
1132
1133 void R_GLSL_Restart_f(void)
1134 {
1135         int i;
1136         for (i = 0;i < SHADERPERMUTATION_INDICES;i++)
1137                 if (r_glsl_permutations[i].program)
1138                         GL_Backend_FreeProgram(r_glsl_permutations[i].program);
1139         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1140 }
1141
1142 void R_GLSL_DumpShader_f(void)
1143 {
1144         int i;
1145
1146         qfile_t *file = FS_Open("glsl/default.glsl", "w", false, false);
1147         if(!file)
1148         {
1149                 Con_Printf("failed to write to glsl/default.glsl\n");
1150                 return;
1151         }
1152
1153         FS_Print(file, "// The engine may define the following macros:\n");
1154         FS_Print(file, "// #define VERTEX_SHADER\n// #define GEOMETRY_SHADER\n// #define FRAGMENT_SHADER\n");
1155         for (i = 0;shadermodeinfo[i][0];i++)
1156                 FS_Printf(file, "// %s", shadermodeinfo[i][0]);
1157         for (i = 0;shaderpermutationinfo[i][0];i++)
1158                 FS_Printf(file, "// %s", shaderpermutationinfo[i][0]);
1159         FS_Print(file, "\n");
1160         FS_Print(file, builtinshaderstring);
1161         FS_Close(file);
1162
1163         Con_Printf("glsl/default.glsl written\n");
1164 }
1165
1166 extern rtexture_t *r_shadow_attenuationgradienttexture;
1167 extern rtexture_t *r_shadow_attenuation2dtexture;
1168 extern rtexture_t *r_shadow_attenuation3dtexture;
1169 int R_SetupSurfaceShader(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass)
1170 {
1171         // select a permutation of the lighting shader appropriate to this
1172         // combination of texture, entity, light source, and fogging, only use the
1173         // minimum features necessary to avoid wasting rendering time in the
1174         // fragment shader on features that are not being used
1175         const char *shaderfilename = NULL;
1176         unsigned int permutation = 0;
1177         unsigned int shadertype = 0;
1178         shadermode_t mode = 0;
1179         r_glsl_permutation = NULL;
1180         shaderfilename = "glsl/default.glsl";
1181         shadertype = SHADERTYPE_USES_VERTEXSHADER | SHADERTYPE_USES_FRAGMENTSHADER;
1182         // TODO: implement geometry-shader based shadow volumes someday
1183         if (r_glsl_offsetmapping.integer)
1184         {
1185                 permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1186                 if (r_glsl_offsetmapping_reliefmapping.integer)
1187                         permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1188         }
1189         if (rsurfacepass == RSURFPASS_BACKGROUND)
1190         {
1191                 // distorted background
1192                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1193                         mode = SHADERMODE_WATER;
1194                 else
1195                         mode = SHADERMODE_REFRACTION;
1196         }
1197         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1198         {
1199                 // light source
1200                 mode = SHADERMODE_LIGHTSOURCE;
1201                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1202                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1203                 if (diffusescale > 0)
1204                         permutation |= SHADERPERMUTATION_DIFFUSE;
1205                 if (specularscale > 0)
1206                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1207                 if (r_refdef.fogenabled)
1208                         permutation |= SHADERPERMUTATION_FOG;
1209                 if (rsurface.texture->colormapping)
1210                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1211                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1212                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1213                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1214                         permutation |= SHADERPERMUTATION_REFLECTION;
1215         }
1216         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)
1217         {
1218                 // unshaded geometry (fullbright or ambient model lighting)
1219                 mode = SHADERMODE_LIGHTMAP;
1220                 if (rsurface.texture->currentskinframe->glow)
1221                         permutation |= SHADERPERMUTATION_GLOW;
1222                 if (r_refdef.fogenabled)
1223                         permutation |= SHADERPERMUTATION_FOG;
1224                 if (rsurface.texture->colormapping)
1225                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1226                 if (r_glsl_offsetmapping.integer)
1227                 {
1228                         permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1229                         if (r_glsl_offsetmapping_reliefmapping.integer)
1230                                 permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1231                 }
1232                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1233                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1234                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1235                         permutation |= SHADERPERMUTATION_REFLECTION;
1236         }
1237         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT_DIRECTIONAL)
1238         {
1239                 // directional model lighting
1240                 mode = SHADERMODE_LIGHTDIRECTION;
1241                 if (rsurface.texture->currentskinframe->glow)
1242                         permutation |= SHADERPERMUTATION_GLOW;
1243                 permutation |= SHADERPERMUTATION_DIFFUSE;
1244                 if (specularscale > 0)
1245                         permutation |= SHADERPERMUTATION_SPECULAR;
1246                 if (r_refdef.fogenabled)
1247                         permutation |= SHADERPERMUTATION_FOG;
1248                 if (rsurface.texture->colormapping)
1249                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1250                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1251                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1252                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1253                         permutation |= SHADERPERMUTATION_REFLECTION;
1254         }
1255         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1256         {
1257                 // ambient model lighting
1258                 mode = SHADERMODE_LIGHTDIRECTION;
1259                 if (rsurface.texture->currentskinframe->glow)
1260                         permutation |= SHADERPERMUTATION_GLOW;
1261                 if (r_refdef.fogenabled)
1262                         permutation |= SHADERPERMUTATION_FOG;
1263                 if (rsurface.texture->colormapping)
1264                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1265                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1266                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1267                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1268                         permutation |= SHADERPERMUTATION_REFLECTION;
1269         }
1270         else
1271         {
1272                 // lightmapped wall
1273                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.worldmodel && r_refdef.worldmodel->brushq3.deluxemapping)
1274                 {
1275                         // deluxemapping (light direction texture)
1276                         if (rsurface.uselightmaptexture && r_refdef.worldmodel && r_refdef.worldmodel->brushq3.deluxemapping && r_refdef.worldmodel->brushq3.deluxemapping_modelspace)
1277                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1278                         else
1279                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1280                         if (specularscale > 0)
1281                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1282                 }
1283                 else if (r_glsl_deluxemapping.integer >= 2)
1284                 {
1285                         // fake deluxemapping (uniform light direction in tangentspace)
1286                         mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1287                         if (specularscale > 0)
1288                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1289                 }
1290                 else
1291                 {
1292                         // ordinary lightmapping
1293                         mode = SHADERMODE_LIGHTMAP;
1294                 }
1295                 if (rsurface.texture->currentskinframe->glow)
1296                         permutation |= SHADERPERMUTATION_GLOW;
1297                 if (r_refdef.fogenabled)
1298                         permutation |= SHADERPERMUTATION_FOG;
1299                 if (rsurface.texture->colormapping)
1300                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1301                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1302                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1303                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1304                         permutation |= SHADERPERMUTATION_REFLECTION;
1305         }
1306         permutation |= mode * SHADERPERMUTATION_MODEBASE;
1307         if (!r_glsl_permutations[permutation].program)
1308         {
1309                 if (!r_glsl_permutations[permutation].compiled)
1310                         R_GLSL_CompilePermutation(shaderfilename, permutation, shadertype);
1311                 if (!r_glsl_permutations[permutation].program)
1312                 {
1313                         // remove features until we find a valid permutation
1314                         unsigned int i;
1315                         for (i = (SHADERPERMUTATION_MODEBASE >> 1);;i>>=1)
1316                         {
1317                                 if (!i)
1318                                 {
1319                                         Con_Printf("OpenGL 2.0 shaders disabled - unable to find a working shader permutation fallback on this driver (set r_glsl 1 if you want to try again)\n");
1320                                         Cvar_SetValueQuick(&r_glsl, 0);
1321                                         return 0; // no bit left to clear
1322                                 }
1323                                 // reduce i more quickly whenever it would not remove any bits
1324                                 if (!(permutation & i))
1325                                         continue;
1326                                 permutation &= ~i;
1327                                 if (!r_glsl_permutations[permutation].compiled)
1328                                         R_GLSL_CompilePermutation(shaderfilename, permutation, shadertype);
1329                                 if (r_glsl_permutations[permutation].program)
1330                                         break;
1331                         }
1332                 }
1333         }
1334         r_glsl_permutation = r_glsl_permutations + permutation;
1335         CHECKGLERROR
1336         qglUseProgramObjectARB(r_glsl_permutation->program);CHECKGLERROR
1337         if (mode == SHADERMODE_LIGHTSOURCE)
1338         {
1339                 if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1340                 if (permutation & SHADERPERMUTATION_DIFFUSE)
1341                 {
1342                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2]);
1343                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, ambientscale);
1344                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, diffusescale);
1345                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, specularscale);
1346                 }
1347                 else
1348                 {
1349                         // ambient only is simpler
1350                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, lightcolorbase[0] * ambientscale, lightcolorbase[1] * ambientscale, lightcolorbase[2] * ambientscale);
1351                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, 1);
1352                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, 0);
1353                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, 0);
1354                 }
1355         }
1356         else if (mode == SHADERMODE_LIGHTDIRECTION)
1357         {
1358                 if (r_glsl_permutation->loc_AmbientColor >= 0)
1359                         qglUniform3fARB(r_glsl_permutation->loc_AmbientColor, rsurface.modellight_ambient[0] * ambientscale, rsurface.modellight_ambient[1] * ambientscale, rsurface.modellight_ambient[2] * ambientscale);
1360                 if (r_glsl_permutation->loc_DiffuseColor >= 0)
1361                         qglUniform3fARB(r_glsl_permutation->loc_DiffuseColor, rsurface.modellight_diffuse[0] * diffusescale, rsurface.modellight_diffuse[1] * diffusescale, rsurface.modellight_diffuse[2] * diffusescale);
1362                 if (r_glsl_permutation->loc_SpecularColor >= 0)
1363                         qglUniform3fARB(r_glsl_permutation->loc_SpecularColor, rsurface.modellight_diffuse[0] * specularscale, rsurface.modellight_diffuse[1] * specularscale, rsurface.modellight_diffuse[2] * specularscale);
1364                 if (r_glsl_permutation->loc_LightDir >= 0)
1365                         qglUniform3fARB(r_glsl_permutation->loc_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);
1366         }
1367         else
1368         {
1369                 if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, r_ambient.value * 2.0f / 128.0f);
1370                 if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, r_refdef.lightmapintensity * 2.0f);
1371                 if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, r_refdef.lightmapintensity * specularscale * 2.0f);
1372         }
1373         if (r_glsl_permutation->loc_GlowScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_GlowScale, r_hdr_glowintensity.value);
1374         if (r_glsl_permutation->loc_ContrastBoostCoeff >= 0)
1375         {
1376                 // The formula used is actually:
1377                 //   color.rgb *= SceneBrightness;
1378                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1379                 // I simplify that to
1380                 //   color.rgb *= [[SceneBrightness * ContrastBoost]];
1381                 //   color.rgb /= [[(ContrastBoost - 1) / ContrastBoost]] * color.rgb + 1;
1382                 // and Black:
1383                 //   color.rgb = [[SceneBrightness * ContrastBoost]] * color.rgb / ([[(ContrastBoost - 1) * SceneBrightness]] * color.rgb + 1);
1384                 // and do [[calculations]] here in the engine
1385                 qglUniform1fARB(r_glsl_permutation->loc_ContrastBoostCoeff, (r_glsl_contrastboost.value - 1) * r_view.colorscale);
1386                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_view.colorscale * r_glsl_contrastboost.value);
1387         }
1388         else
1389                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_view.colorscale);
1390         if (r_glsl_permutation->loc_FogColor >= 0)
1391         {
1392                 // additive passes are only darkened by fog, not tinted
1393                 if (rsurface.rtlight || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD))
1394                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1395                 else
1396                 /*
1397                 {
1398                         vec3_t fogvec;
1399                         //   color.rgb *= SceneBrightness;
1400                         VectorScale(r_refdef.fogcolor, r_view.colorscale, fogvec);
1401                         if(r_glsl_permutation->loc_ContrastBoostCoeff >= 0) // need to support contrast boost
1402                         {
1403                                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1404                                 fogvec[0] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[0] + 1);
1405                                 fogvec[1] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[1] + 1);
1406                                 fogvec[2] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[2] + 1);
1407                         }
1408                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, fogvec[0], fogvec[1], fogvec[2]);
1409                 }
1410                 */
1411                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1412         }
1413         if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_EyePosition, rsurface.modelorg[0], rsurface.modelorg[1], rsurface.modelorg[2]);
1414         if (r_glsl_permutation->loc_Color_Pants >= 0)
1415         {
1416                 if (rsurface.texture->currentskinframe->pants)
1417                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]);
1418                 else
1419                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1420         }
1421         if (r_glsl_permutation->loc_Color_Shirt >= 0)
1422         {
1423                 if (rsurface.texture->currentskinframe->shirt)
1424                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]);
1425                 else
1426                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
1427         }
1428         if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogRangeRecip, r_refdef.fograngerecip);
1429         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower);
1430         if (r_glsl_permutation->loc_OffsetMapping_Scale >= 0) qglUniform1fARB(r_glsl_permutation->loc_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value);
1431         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor);
1432         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]);
1433         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]);
1434         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_RefractColor, 1, rsurface.texture->refractcolor4f);
1435         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_ReflectColor, 1, rsurface.texture->reflectcolor4f);
1436         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin);
1437         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectOffset, rsurface.texture->reflectmin);
1438         CHECKGLERROR
1439         return permutation;
1440 }
1441
1442 #define SKINFRAME_HASH 1024
1443
1444 struct
1445 {
1446         int loadsequence; // incremented each level change
1447         memexpandablearray_t array;
1448         skinframe_t *hash[SKINFRAME_HASH];
1449 }
1450 r_skinframe;
1451
1452 void R_SkinFrame_PrepareForPurge(void)
1453 {
1454         r_skinframe.loadsequence++;
1455         // wrap it without hitting zero
1456         if (r_skinframe.loadsequence >= 200)
1457                 r_skinframe.loadsequence = 1;
1458 }
1459
1460 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
1461 {
1462         if (!skinframe)
1463                 return;
1464         // mark the skinframe as used for the purging code
1465         skinframe->loadsequence = r_skinframe.loadsequence;
1466 }
1467
1468 void R_SkinFrame_Purge(void)
1469 {
1470         int i;
1471         skinframe_t *s;
1472         for (i = 0;i < SKINFRAME_HASH;i++)
1473         {
1474                 for (s = r_skinframe.hash[i];s;s = s->next)
1475                 {
1476                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
1477                         {
1478                                 if (s->merged == s->base)
1479                                         s->merged = NULL;
1480                                 // FIXME: maybe pass a pointer to the pointer to R_PurgeTexture and reset it to NULL inside? [11/29/2007 Black]
1481                                 R_PurgeTexture(s->stain );s->stain  = NULL;
1482                                 R_PurgeTexture(s->merged);s->merged = NULL;
1483                                 R_PurgeTexture(s->base  );s->base   = NULL;
1484                                 R_PurgeTexture(s->pants );s->pants  = NULL;
1485                                 R_PurgeTexture(s->shirt );s->shirt  = NULL;
1486                                 R_PurgeTexture(s->nmap  );s->nmap   = NULL;
1487                                 R_PurgeTexture(s->gloss );s->gloss  = NULL;
1488                                 R_PurgeTexture(s->glow  );s->glow   = NULL;
1489                                 R_PurgeTexture(s->fog   );s->fog    = NULL;
1490                                 s->loadsequence = 0;
1491                         }
1492                 }
1493         }
1494 }
1495
1496 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
1497         skinframe_t *item;
1498         char basename[MAX_QPATH];
1499
1500         Image_StripImageExtension(name, basename, sizeof(basename));
1501
1502         if( last == NULL ) {
1503                 int hashindex;
1504                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1505                 item = r_skinframe.hash[hashindex];
1506         } else {
1507                 item = last->next;
1508         }
1509
1510         // linearly search through the hash bucket
1511         for( ; item ; item = item->next ) {
1512                 if( !strcmp( item->basename, basename ) ) {
1513                         return item;
1514                 }
1515         }
1516         return NULL;
1517 }
1518
1519 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add)
1520 {
1521         skinframe_t *item;
1522         int hashindex;
1523         char basename[MAX_QPATH];
1524         
1525         Image_StripImageExtension(name, basename, sizeof(basename));
1526
1527         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1528         for (item = r_skinframe.hash[hashindex];item;item = item->next)
1529                 if (!strcmp(item->basename, basename) && item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc)
1530                         break;
1531
1532         if (!item) {
1533                 rtexture_t *dyntexture;
1534                 // check whether its a dynamic texture
1535                 dyntexture = CL_GetDynTexture( basename );
1536                 if (!add && !dyntexture)
1537                         return NULL;
1538                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
1539                 memset(item, 0, sizeof(*item));
1540                 strlcpy(item->basename, basename, sizeof(item->basename));
1541                 item->base = dyntexture; // either NULL or dyntexture handle
1542                 item->textureflags = textureflags;
1543                 item->comparewidth = comparewidth;
1544                 item->compareheight = compareheight;
1545                 item->comparecrc = comparecrc;
1546                 item->next = r_skinframe.hash[hashindex];       
1547                 r_skinframe.hash[hashindex] = item;
1548         }
1549         else if( item->base == NULL )
1550         {
1551                 rtexture_t *dyntexture;
1552                 // check whether its a dynamic texture
1553                 // this only needs to be done because Purge doesnt delete skinframes - only sets the texture pointers to NULL and we need to restore it before returing.. [11/29/2007 Black]
1554                 dyntexture = CL_GetDynTexture( basename );
1555                 item->base = dyntexture; // either NULL or dyntexture handle
1556         }
1557
1558         R_SkinFrame_MarkUsed(item);
1559         return item;
1560 }
1561
1562 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain)
1563 {
1564         // FIXME: it should be possible to disable loading various layers using
1565         // cvars, to prevent wasted loading time and memory usage if the user does
1566         // not want them
1567         qboolean loadnormalmap = true;
1568         qboolean loadgloss = true;
1569         qboolean loadpantsandshirt = true;
1570         qboolean loadglow = true;
1571         int j;
1572         unsigned char *pixels;
1573         unsigned char *bumppixels;
1574         unsigned char *basepixels = NULL;
1575         int basepixels_width;
1576         int basepixels_height;
1577         skinframe_t *skinframe;
1578
1579         if (cls.state == ca_dedicated)
1580                 return NULL;
1581
1582         // return an existing skinframe if already loaded
1583         // if loading of the first image fails, don't make a new skinframe as it
1584         // would cause all future lookups of this to be missing
1585         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
1586         if (skinframe && skinframe->base)
1587                 return skinframe;
1588
1589         basepixels = loadimagepixelsbgra(name, complain, true);
1590         if (basepixels == NULL)
1591                 return NULL;
1592
1593         // we've got some pixels to store, so really allocate this new texture now
1594         if (!skinframe)
1595                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
1596         skinframe->stain = NULL;
1597         skinframe->merged = NULL;
1598         skinframe->base = r_texture_notexture;
1599         skinframe->pants = NULL;
1600         skinframe->shirt = NULL;
1601         skinframe->nmap = r_texture_blanknormalmap;
1602         skinframe->gloss = NULL;
1603         skinframe->glow = NULL;
1604         skinframe->fog = NULL;
1605
1606         basepixels_width = image_width;
1607         basepixels_height = image_height;
1608         skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1609
1610         if (textureflags & TEXF_ALPHA)
1611         {
1612                 for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
1613                         if (basepixels[j] < 255)
1614                                 break;
1615                 if (j < basepixels_width * basepixels_height * 4)
1616                 {
1617                         // has transparent pixels
1618                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1619                         for (j = 0;j < image_width * image_height * 4;j += 4)
1620                         {
1621                                 pixels[j+0] = 255;
1622                                 pixels[j+1] = 255;
1623                                 pixels[j+2] = 255;
1624                                 pixels[j+3] = basepixels[j+3];
1625                         }
1626                         skinframe->fog = R_LoadTexture2D (r_main_texturepool, va("%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1627                         Mem_Free(pixels);
1628                 }
1629         }
1630
1631         // _norm is the name used by tenebrae and has been adopted as standard
1632         if (loadnormalmap)
1633         {
1634                 if ((pixels = loadimagepixelsbgra(va("%s_norm", skinframe->basename), false, false)) != NULL)
1635                 {
1636                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1637                         Mem_Free(pixels);
1638                         pixels = NULL;
1639                 }
1640                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va("%s_bump", skinframe->basename), false, false)) != NULL)
1641                 {
1642                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1643                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
1644                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1645                         Mem_Free(pixels);
1646                         Mem_Free(bumppixels);
1647                 }
1648                 else if (r_shadow_bumpscale_basetexture.value > 0)
1649                 {
1650                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
1651                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
1652                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1653                         Mem_Free(pixels);
1654                 }
1655         }
1656         // _luma is supported for tenebrae compatibility
1657         // (I think it's a very stupid name, but oh well)
1658         // _glow is the preferred name
1659         if (loadglow          && ((pixels = loadimagepixelsbgra(va("%s_glow", skinframe->basename), false, false)) != NULL || (pixels = loadimagepixelsbgra(va("%s_luma", skinframe->basename), false, false)) != NULL)) {skinframe->glow = R_LoadTexture2D (r_main_texturepool, va("%s_glow", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_glow.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1660         if (loadgloss         && (pixels = loadimagepixelsbgra(va("%s_gloss", skinframe->basename), false, false)) != NULL) {skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va("%s_gloss", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_gloss.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1661         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_pants", skinframe->basename), false, false)) != NULL) {skinframe->pants = R_LoadTexture2D (r_main_texturepool, va("%s_pants", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1662         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_shirt", skinframe->basename), false, false)) != NULL) {skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va("%s_shirt", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1663
1664         if (basepixels)
1665                 Mem_Free(basepixels);
1666
1667         return skinframe;
1668 }
1669
1670 static rtexture_t *R_SkinFrame_TextureForSkinLayer(const unsigned char *in, int width, int height, const char *name, const unsigned int *palette, int textureflags, qboolean force)
1671 {
1672         int i;
1673         if (!force)
1674         {
1675                 for (i = 0;i < width*height;i++)
1676                         if (((unsigned char *)&palette[in[i]])[3] > 0)
1677                                 break;
1678                 if (i == width*height)
1679                         return NULL;
1680         }
1681         return R_LoadTexture2D (r_main_texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette);
1682 }
1683
1684 // this is only used by .spr32 sprites, HL .spr files, HL .bsp files
1685 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height)
1686 {
1687         int i;
1688         unsigned char *temp1, *temp2;
1689         skinframe_t *skinframe;
1690
1691         if (cls.state == ca_dedicated)
1692                 return NULL;
1693
1694         // if already loaded just return it, otherwise make a new skinframe
1695         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height*4) : 0, true);
1696         if (skinframe && skinframe->base)
1697                 return skinframe;
1698
1699         skinframe->stain = NULL;
1700         skinframe->merged = NULL;
1701         skinframe->base = r_texture_notexture;
1702         skinframe->pants = NULL;
1703         skinframe->shirt = NULL;
1704         skinframe->nmap = r_texture_blanknormalmap;
1705         skinframe->gloss = NULL;
1706         skinframe->glow = NULL;
1707         skinframe->fog = NULL;
1708
1709         // if no data was provided, then clearly the caller wanted to get a blank skinframe
1710         if (!skindata)
1711                 return NULL;
1712
1713         if (r_shadow_bumpscale_basetexture.value > 0)
1714         {
1715                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
1716                 temp2 = temp1 + width * height * 4;
1717                 Image_HeightmapToNormalmap_BGRA(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
1718                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
1719                 Mem_Free(temp1);
1720         }
1721         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_BGRA, skinframe->textureflags, NULL);
1722         if (textureflags & TEXF_ALPHA)
1723         {
1724                 for (i = 3;i < width * height * 4;i += 4)
1725                         if (skindata[i] < 255)
1726                                 break;
1727                 if (i < width * height * 4)
1728                 {
1729                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
1730                         memcpy(fogpixels, skindata, width * height * 4);
1731                         for (i = 0;i < width * height * 4;i += 4)
1732                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
1733                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, skinframe->textureflags, NULL);
1734                         Mem_Free(fogpixels);
1735                 }
1736         }
1737
1738         return skinframe;
1739 }
1740
1741 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
1742 {
1743         int i;
1744         unsigned char *temp1, *temp2;
1745         skinframe_t *skinframe;
1746
1747         if (cls.state == ca_dedicated)
1748                 return NULL;
1749
1750         // if already loaded just return it, otherwise make a new skinframe
1751         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
1752         if (skinframe && skinframe->base)
1753                 return skinframe;
1754
1755         skinframe->stain = NULL;
1756         skinframe->merged = NULL;
1757         skinframe->base = r_texture_notexture;
1758         skinframe->pants = NULL;
1759         skinframe->shirt = NULL;
1760         skinframe->nmap = r_texture_blanknormalmap;
1761         skinframe->gloss = NULL;
1762         skinframe->glow = NULL;
1763         skinframe->fog = NULL;
1764
1765         // if no data was provided, then clearly the caller wanted to get a blank skinframe
1766         if (!skindata)
1767                 return NULL;
1768
1769         if (r_shadow_bumpscale_basetexture.value > 0)
1770         {
1771                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
1772                 temp2 = temp1 + width * height * 4;
1773                 // use either a custom palette or the quake palette
1774                 Image_Copy8bitBGRA(skindata, temp1, width * height, palette_bgra_complete);
1775                 Image_HeightmapToNormalmap_BGRA(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
1776                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
1777                 Mem_Free(temp1);
1778         }
1779         // use either a custom palette, or the quake palette
1780         skinframe->base = skinframe->merged = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_merged", skinframe->basename), (loadglowtexture ? palette_bgra_nofullbrights : ((skinframe->textureflags & TEXF_ALPHA) ? palette_bgra_transparent : palette_bgra_complete)), skinframe->textureflags, true); // all
1781         if (loadglowtexture)
1782                 skinframe->glow = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_glow", skinframe->basename), palette_bgra_onlyfullbrights, skinframe->textureflags, false); // glow
1783         if (loadpantsandshirt)
1784         {
1785                 skinframe->pants = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_pants", skinframe->basename), palette_bgra_pantsaswhite, skinframe->textureflags, false); // pants
1786                 skinframe->shirt = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_shirt", skinframe->basename), palette_bgra_shirtaswhite, skinframe->textureflags, false); // shirt
1787         }
1788         if (skinframe->pants || skinframe->shirt)
1789                 skinframe->base = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", skinframe->basename), loadglowtexture ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap, skinframe->textureflags, false); // no special colors
1790         if (textureflags & TEXF_ALPHA)
1791         {
1792                 for (i = 0;i < width * height;i++)
1793                         if (((unsigned char *)palette_bgra_alpha)[skindata[i]*4+3] < 255)
1794                                 break;
1795                 if (i < width * height)
1796                         skinframe->fog = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_fog", skinframe->basename), palette_bgra_alpha, skinframe->textureflags, true); // fog mask
1797         }
1798
1799         return skinframe;
1800 }
1801
1802 skinframe_t *R_SkinFrame_LoadMissing(void)
1803 {
1804         skinframe_t *skinframe;
1805
1806         if (cls.state == ca_dedicated)
1807                 return NULL;
1808
1809         skinframe = R_SkinFrame_Find("missing", TEXF_PRECACHE, 0, 0, 0, true);
1810         skinframe->stain = NULL;
1811         skinframe->merged = NULL;
1812         skinframe->base = r_texture_notexture;
1813         skinframe->pants = NULL;
1814         skinframe->shirt = NULL;
1815         skinframe->nmap = r_texture_blanknormalmap;
1816         skinframe->gloss = NULL;
1817         skinframe->glow = NULL;
1818         skinframe->fog = NULL;
1819
1820         return skinframe;
1821 }
1822
1823 void gl_main_start(void)
1824 {
1825         int x;
1826         double r, alpha;
1827
1828         r = -16.0 / (1.0 * FOGMASKTABLEWIDTH * FOGMASKTABLEWIDTH);
1829         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
1830         {
1831                 alpha = exp(r * ((double)x*(double)x));
1832                 if (x == FOGMASKTABLEWIDTH - 1)
1833                         alpha = 0;
1834                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
1835         }
1836
1837         memset(r_qwskincache, 0, sizeof(r_qwskincache));
1838         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
1839
1840         // set up r_skinframe loading system for textures
1841         memset(&r_skinframe, 0, sizeof(r_skinframe));
1842         r_skinframe.loadsequence = 1;
1843         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
1844
1845         r_main_texturepool = R_AllocTexturePool();
1846         R_BuildBlankTextures();
1847         R_BuildNoTexture();
1848         if (gl_texturecubemap)
1849         {
1850                 R_BuildWhiteCube();
1851                 R_BuildNormalizationCube();
1852         }
1853         R_BuildFogTexture();
1854         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
1855         memset(&r_waterstate, 0, sizeof(r_waterstate));
1856         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1857         memset(&r_svbsp, 0, sizeof (r_svbsp));
1858 }
1859
1860 void gl_main_shutdown(void)
1861 {
1862         memset(r_qwskincache, 0, sizeof(r_qwskincache));
1863         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
1864
1865         // clear out the r_skinframe state
1866         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
1867         memset(&r_skinframe, 0, sizeof(r_skinframe));
1868
1869         if (r_svbsp.nodes)
1870                 Mem_Free(r_svbsp.nodes);
1871         memset(&r_svbsp, 0, sizeof (r_svbsp));
1872         R_FreeTexturePool(&r_main_texturepool);
1873         r_texture_blanknormalmap = NULL;
1874         r_texture_white = NULL;
1875         r_texture_grey128 = NULL;
1876         r_texture_black = NULL;
1877         r_texture_whitecube = NULL;
1878         r_texture_normalizationcube = NULL;
1879         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
1880         memset(&r_waterstate, 0, sizeof(r_waterstate));
1881         R_GLSL_Restart_f();
1882 }
1883
1884 extern void CL_ParseEntityLump(char *entitystring);
1885 void gl_main_newmap(void)
1886 {
1887         // FIXME: move this code to client
1888         int l;
1889         char *entities, entname[MAX_QPATH];
1890         if (cl.worldmodel)
1891         {
1892                 strlcpy(entname, cl.worldmodel->name, sizeof(entname));
1893                 l = (int)strlen(entname) - 4;
1894                 if (l >= 0 && !strcmp(entname + l, ".bsp"))
1895                 {
1896                         memcpy(entname + l, ".ent", 5);
1897                         if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
1898                         {
1899                                 CL_ParseEntityLump(entities);
1900                                 Mem_Free(entities);
1901                                 return;
1902                         }
1903                 }
1904                 if (cl.worldmodel->brush.entities)
1905                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
1906         }
1907 }
1908
1909 void GL_Main_Init(void)
1910 {
1911         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
1912
1913         Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
1914         Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
1915         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
1916         if (gamemode == GAME_NEHAHRA)
1917         {
1918                 Cvar_RegisterVariable (&gl_fogenable);
1919                 Cvar_RegisterVariable (&gl_fogdensity);
1920                 Cvar_RegisterVariable (&gl_fogred);
1921                 Cvar_RegisterVariable (&gl_foggreen);
1922                 Cvar_RegisterVariable (&gl_fogblue);
1923                 Cvar_RegisterVariable (&gl_fogstart);
1924                 Cvar_RegisterVariable (&gl_fogend);
1925         }
1926         Cvar_RegisterVariable(&r_depthfirst);
1927         Cvar_RegisterVariable(&r_nearclip);
1928         Cvar_RegisterVariable(&r_showbboxes);
1929         Cvar_RegisterVariable(&r_showsurfaces);
1930         Cvar_RegisterVariable(&r_showtris);
1931         Cvar_RegisterVariable(&r_shownormals);
1932         Cvar_RegisterVariable(&r_showlighting);
1933         Cvar_RegisterVariable(&r_showshadowvolumes);
1934         Cvar_RegisterVariable(&r_showcollisionbrushes);
1935         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
1936         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
1937         Cvar_RegisterVariable(&r_showdisabledepthtest);
1938         Cvar_RegisterVariable(&r_drawportals);
1939         Cvar_RegisterVariable(&r_drawentities);
1940         Cvar_RegisterVariable(&r_cullentities_trace);
1941         Cvar_RegisterVariable(&r_cullentities_trace_samples);
1942         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
1943         Cvar_RegisterVariable(&r_cullentities_trace_delay);
1944         Cvar_RegisterVariable(&r_drawviewmodel);
1945         Cvar_RegisterVariable(&r_speeds);
1946         Cvar_RegisterVariable(&r_fullbrights);
1947         Cvar_RegisterVariable(&r_wateralpha);
1948         Cvar_RegisterVariable(&r_dynamic);
1949         Cvar_RegisterVariable(&r_fullbright);
1950         Cvar_RegisterVariable(&r_shadows);
1951         Cvar_RegisterVariable(&r_shadows_throwdistance);
1952         Cvar_RegisterVariable(&r_q1bsp_skymasking);
1953         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
1954         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
1955         Cvar_RegisterVariable(&r_textureunits);
1956         Cvar_RegisterVariable(&r_glsl);
1957         Cvar_RegisterVariable(&r_glsl_offsetmapping);
1958         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
1959         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
1960         Cvar_RegisterVariable(&r_glsl_deluxemapping);
1961         Cvar_RegisterVariable(&r_water);
1962         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
1963         Cvar_RegisterVariable(&r_water_clippingplanebias);
1964         Cvar_RegisterVariable(&r_water_refractdistort);
1965         Cvar_RegisterVariable(&r_water_reflectdistort);
1966         Cvar_RegisterVariable(&r_lerpsprites);
1967         Cvar_RegisterVariable(&r_lerpmodels);
1968         Cvar_RegisterVariable(&r_lerplightstyles);
1969         Cvar_RegisterVariable(&r_waterscroll);
1970         Cvar_RegisterVariable(&r_bloom);
1971         Cvar_RegisterVariable(&r_bloom_colorscale);
1972         Cvar_RegisterVariable(&r_bloom_brighten);
1973         Cvar_RegisterVariable(&r_bloom_blur);
1974         Cvar_RegisterVariable(&r_bloom_resolution);
1975         Cvar_RegisterVariable(&r_bloom_colorexponent);
1976         Cvar_RegisterVariable(&r_bloom_colorsubtract);
1977         Cvar_RegisterVariable(&r_hdr);
1978         Cvar_RegisterVariable(&r_hdr_scenebrightness);
1979         Cvar_RegisterVariable(&r_glsl_contrastboost);
1980         Cvar_RegisterVariable(&r_hdr_glowintensity);
1981         Cvar_RegisterVariable(&r_hdr_range);
1982         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
1983         Cvar_RegisterVariable(&developer_texturelogging);
1984         Cvar_RegisterVariable(&gl_lightmaps);
1985         Cvar_RegisterVariable(&r_test);
1986         Cvar_RegisterVariable(&r_batchmode);
1987         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
1988                 Cvar_SetValue("r_fullbrights", 0);
1989         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap);
1990
1991         Cvar_RegisterVariable(&r_track_sprites);
1992         Cvar_RegisterVariable(&r_track_sprites_flags);
1993         Cvar_RegisterVariable(&r_track_sprites_scalew);
1994         Cvar_RegisterVariable(&r_track_sprites_scaleh);
1995 }
1996
1997 extern void R_Textures_Init(void);
1998 extern void GL_Draw_Init(void);
1999 extern void GL_Main_Init(void);
2000 extern void R_Shadow_Init(void);
2001 extern void R_Sky_Init(void);
2002 extern void GL_Surf_Init(void);
2003 extern void R_Particles_Init(void);
2004 extern void R_Explosion_Init(void);
2005 extern void gl_backend_init(void);
2006 extern void Sbar_Init(void);
2007 extern void R_LightningBeams_Init(void);
2008 extern void Mod_RenderInit(void);
2009
2010 void Render_Init(void)
2011 {
2012         gl_backend_init();
2013         R_Textures_Init();
2014         GL_Main_Init();
2015         GL_Draw_Init();
2016         R_Shadow_Init();
2017         R_Sky_Init();
2018         GL_Surf_Init();
2019         Sbar_Init();
2020         R_Particles_Init();
2021         R_Explosion_Init();
2022         R_LightningBeams_Init();
2023         Mod_RenderInit();
2024 }
2025
2026 /*
2027 ===============
2028 GL_Init
2029 ===============
2030 */
2031 extern char *ENGINE_EXTENSIONS;
2032 void GL_Init (void)
2033 {
2034         VID_CheckExtensions();
2035
2036         // LordHavoc: report supported extensions
2037         Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions );
2038
2039         // clear to black (loading plaque will be seen over this)
2040         CHECKGLERROR
2041         qglClearColor(0,0,0,1);CHECKGLERROR
2042         qglClear(GL_COLOR_BUFFER_BIT);CHECKGLERROR
2043 }
2044
2045 int R_CullBox(const vec3_t mins, const vec3_t maxs)
2046 {
2047         int i;
2048         mplane_t *p;
2049         for (i = 0;i < r_view.numfrustumplanes;i++)
2050         {
2051                 // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
2052                 if (i == 4)
2053                         continue;
2054                 p = r_view.frustum + i;
2055                 switch(p->signbits)
2056                 {
2057                 default:
2058                 case 0:
2059                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2060                                 return true;
2061                         break;
2062                 case 1:
2063                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2064                                 return true;
2065                         break;
2066                 case 2:
2067                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2068                                 return true;
2069                         break;
2070                 case 3:
2071                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2072                                 return true;
2073                         break;
2074                 case 4:
2075                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2076                                 return true;
2077                         break;
2078                 case 5:
2079                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2080                                 return true;
2081                         break;
2082                 case 6:
2083                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2084                                 return true;
2085                         break;
2086                 case 7:
2087                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2088                                 return true;
2089                         break;
2090                 }
2091         }
2092         return false;
2093 }
2094
2095 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
2096 {
2097         int i;
2098         const mplane_t *p;
2099         for (i = 0;i < numplanes;i++)
2100         {
2101                 p = planes + i;
2102                 switch(p->signbits)
2103                 {
2104                 default:
2105                 case 0:
2106                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2107                                 return true;
2108                         break;
2109                 case 1:
2110                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2111                                 return true;
2112                         break;
2113                 case 2:
2114                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2115                                 return true;
2116                         break;
2117                 case 3:
2118                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2119                                 return true;
2120                         break;
2121                 case 4:
2122                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2123                                 return true;
2124                         break;
2125                 case 5:
2126                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2127                                 return true;
2128                         break;
2129                 case 6:
2130                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2131                                 return true;
2132                         break;
2133                 case 7:
2134                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2135                                 return true;
2136                         break;
2137                 }
2138         }
2139         return false;
2140 }
2141
2142 //==================================================================================
2143
2144 static void R_UpdateEntityLighting(entity_render_t *ent)
2145 {
2146         vec3_t tempdiffusenormal;
2147
2148         // fetch the lighting from the worldmodel data
2149         VectorSet(ent->modellight_ambient, r_ambient.value * (2.0f / 128.0f), r_ambient.value * (2.0f / 128.0f), r_ambient.value * (2.0f / 128.0f));
2150         VectorClear(ent->modellight_diffuse);
2151         VectorClear(tempdiffusenormal);
2152         if ((ent->flags & RENDER_LIGHT) && r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint)
2153         {
2154                 vec3_t org;
2155                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
2156                 r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, org, ent->modellight_ambient, ent->modellight_diffuse, tempdiffusenormal);
2157         }
2158         else // highly rare
2159                 VectorSet(ent->modellight_ambient, 1, 1, 1);
2160
2161         // move the light direction into modelspace coordinates for lighting code
2162         Matrix4x4_Transform3x3(&ent->inversematrix, tempdiffusenormal, ent->modellight_lightdir);
2163         if(VectorLength2(ent->modellight_lightdir) > 0)
2164         {
2165                 VectorNormalize(ent->modellight_lightdir);
2166         }
2167         else
2168         {
2169                 VectorSet(ent->modellight_lightdir, 0, 0, 1); // have to set SOME valid vector here
2170         }
2171
2172         // scale ambient and directional light contributions according to rendering variables
2173         ent->modellight_ambient[0] *= ent->colormod[0] * r_refdef.lightmapintensity;
2174         ent->modellight_ambient[1] *= ent->colormod[1] * r_refdef.lightmapintensity;
2175         ent->modellight_ambient[2] *= ent->colormod[2] * r_refdef.lightmapintensity;
2176         ent->modellight_diffuse[0] *= ent->colormod[0] * r_refdef.lightmapintensity;
2177         ent->modellight_diffuse[1] *= ent->colormod[1] * r_refdef.lightmapintensity;
2178         ent->modellight_diffuse[2] *= ent->colormod[2] * r_refdef.lightmapintensity;
2179 }
2180
2181 static void R_View_UpdateEntityVisible (void)
2182 {
2183         int i, renderimask;
2184         entity_render_t *ent;
2185
2186         if (!r_drawentities.integer)
2187                 return;
2188
2189         renderimask = r_refdef.envmap ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : ((chase_active.integer || r_waterstate.renderingscene) ? RENDER_VIEWMODEL : RENDER_EXTERIORMODEL);
2190         if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingVisibleLeafs)
2191         {
2192                 // worldmodel can check visibility
2193                 for (i = 0;i < r_refdef.numentities;i++)
2194                 {
2195                         ent = r_refdef.entities[i];
2196                         r_viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs)) && ((ent->effects & EF_NODEPTHTEST) || (ent->flags & RENDER_VIEWMODEL) || r_refdef.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.worldmodel, r_viewcache.world_leafvisible, ent->mins, ent->maxs));
2197
2198                 }
2199                 if(r_cullentities_trace.integer)
2200                 {
2201                         for (i = 0;i < r_refdef.numentities;i++)
2202                         {
2203                                 ent = r_refdef.entities[i];
2204                                 if(r_viewcache.entityvisible[i] && !(ent->effects & EF_NODEPTHTEST) && !(ent->flags & RENDER_VIEWMODEL) && !(ent->model && (ent->model->name[0] == '*')))
2205                                 {
2206                                         if(Mod_CanSeeBox_Trace(r_cullentities_trace_samples.integer, r_cullentities_trace_enlarge.value, r_refdef.worldmodel, r_view.origin, ent->mins, ent->maxs))
2207                                                 ent->last_trace_visibility = realtime;
2208                                         if(ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value)
2209                                                 r_viewcache.entityvisible[i] = 0;
2210                                 }
2211                         }
2212                 }
2213         }
2214         else
2215         {
2216                 // no worldmodel or it can't check visibility
2217                 for (i = 0;i < r_refdef.numentities;i++)
2218                 {
2219                         ent = r_refdef.entities[i];
2220                         r_viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs));
2221                 }
2222         }
2223
2224         // update entity lighting (even on hidden entities for r_shadows)
2225         for (i = 0;i < r_refdef.numentities;i++)
2226                 R_UpdateEntityLighting(r_refdef.entities[i]);
2227 }
2228
2229 // only used if skyrendermasked, and normally returns false
2230 int R_DrawBrushModelsSky (void)
2231 {
2232         int i, sky;
2233         entity_render_t *ent;
2234
2235         if (!r_drawentities.integer)
2236                 return false;
2237
2238         sky = false;
2239         for (i = 0;i < r_refdef.numentities;i++)
2240         {
2241                 if (!r_viewcache.entityvisible[i])
2242                         continue;
2243                 ent = r_refdef.entities[i];
2244                 if (!ent->model || !ent->model->DrawSky)
2245                         continue;
2246                 ent->model->DrawSky(ent);
2247                 sky = true;
2248         }
2249         return sky;
2250 }
2251
2252 static void R_DrawNoModel(entity_render_t *ent);
2253 static void R_DrawModels(void)
2254 {
2255         int i;
2256         entity_render_t *ent;
2257
2258         if (!r_drawentities.integer)
2259                 return;
2260
2261         for (i = 0;i < r_refdef.numentities;i++)
2262         {
2263                 if (!r_viewcache.entityvisible[i])
2264                         continue;
2265                 ent = r_refdef.entities[i];
2266                 r_refdef.stats.entities++;
2267                 if (ent->model && ent->model->Draw != NULL)
2268                         ent->model->Draw(ent);
2269                 else
2270                         R_DrawNoModel(ent);
2271         }
2272 }
2273
2274 static void R_DrawModelsDepth(void)
2275 {
2276         int i;
2277         entity_render_t *ent;
2278
2279         if (!r_drawentities.integer)
2280                 return;
2281
2282         for (i = 0;i < r_refdef.numentities;i++)
2283         {
2284                 if (!r_viewcache.entityvisible[i])
2285                         continue;
2286                 ent = r_refdef.entities[i];
2287                 if (ent->model && ent->model->DrawDepth != NULL)
2288                         ent->model->DrawDepth(ent);
2289         }
2290 }
2291
2292 static void R_DrawModelsDebug(void)
2293 {
2294         int i;
2295         entity_render_t *ent;
2296
2297         if (!r_drawentities.integer)
2298                 return;
2299
2300         for (i = 0;i < r_refdef.numentities;i++)
2301         {
2302                 if (!r_viewcache.entityvisible[i])
2303                         continue;
2304                 ent = r_refdef.entities[i];
2305                 if (ent->model && ent->model->DrawDebug != NULL)
2306                         ent->model->DrawDebug(ent);
2307         }
2308 }
2309
2310 static void R_DrawModelsAddWaterPlanes(void)
2311 {
2312         int i;
2313         entity_render_t *ent;
2314
2315         if (!r_drawentities.integer)
2316                 return;
2317
2318         for (i = 0;i < r_refdef.numentities;i++)
2319         {
2320                 if (!r_viewcache.entityvisible[i])
2321                         continue;
2322                 ent = r_refdef.entities[i];
2323                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
2324                         ent->model->DrawAddWaterPlanes(ent);
2325         }
2326 }
2327
2328 static void R_View_SetFrustum(void)
2329 {
2330         int i;
2331         double slopex, slopey;
2332
2333         // break apart the view matrix into vectors for various purposes
2334         Matrix4x4_ToVectors(&r_view.matrix, r_view.forward, r_view.left, r_view.up, r_view.origin);
2335         VectorNegate(r_view.left, r_view.right);
2336
2337 #if 0
2338         r_view.frustum[0].normal[0] = 0 - 1.0 / r_view.frustum_x;
2339         r_view.frustum[0].normal[1] = 0 - 0;
2340         r_view.frustum[0].normal[2] = -1 - 0;
2341         r_view.frustum[1].normal[0] = 0 + 1.0 / r_view.frustum_x;
2342         r_view.frustum[1].normal[1] = 0 + 0;
2343         r_view.frustum[1].normal[2] = -1 + 0;
2344         r_view.frustum[2].normal[0] = 0 - 0;
2345         r_view.frustum[2].normal[1] = 0 - 1.0 / r_view.frustum_y;
2346         r_view.frustum[2].normal[2] = -1 - 0;
2347         r_view.frustum[3].normal[0] = 0 + 0;
2348         r_view.frustum[3].normal[1] = 0 + 1.0 / r_view.frustum_y;
2349         r_view.frustum[3].normal[2] = -1 + 0;
2350 #endif
2351
2352 #if 0
2353         zNear = r_refdef.nearclip;
2354         nudge = 1.0 - 1.0 / (1<<23);
2355         r_view.frustum[4].normal[0] = 0 - 0;
2356         r_view.frustum[4].normal[1] = 0 - 0;
2357         r_view.frustum[4].normal[2] = -1 - -nudge;
2358         r_view.frustum[4].dist = 0 - -2 * zNear * nudge;
2359         r_view.frustum[5].normal[0] = 0 + 0;
2360         r_view.frustum[5].normal[1] = 0 + 0;
2361         r_view.frustum[5].normal[2] = -1 + -nudge;
2362         r_view.frustum[5].dist = 0 + -2 * zNear * nudge;
2363 #endif
2364
2365
2366
2367 #if 0
2368         r_view.frustum[0].normal[0] = m[3] - m[0];
2369         r_view.frustum[0].normal[1] = m[7] - m[4];
2370         r_view.frustum[0].normal[2] = m[11] - m[8];
2371         r_view.frustum[0].dist = m[15] - m[12];
2372
2373         r_view.frustum[1].normal[0] = m[3] + m[0];
2374         r_view.frustum[1].normal[1] = m[7] + m[4];
2375         r_view.frustum[1].normal[2] = m[11] + m[8];
2376         r_view.frustum[1].dist = m[15] + m[12];
2377
2378         r_view.frustum[2].normal[0] = m[3] - m[1];
2379         r_view.frustum[2].normal[1] = m[7] - m[5];
2380         r_view.frustum[2].normal[2] = m[11] - m[9];
2381         r_view.frustum[2].dist = m[15] - m[13];
2382
2383         r_view.frustum[3].normal[0] = m[3] + m[1];
2384         r_view.frustum[3].normal[1] = m[7] + m[5];
2385         r_view.frustum[3].normal[2] = m[11] + m[9];
2386         r_view.frustum[3].dist = m[15] + m[13];
2387
2388         r_view.frustum[4].normal[0] = m[3] - m[2];
2389         r_view.frustum[4].normal[1] = m[7] - m[6];
2390         r_view.frustum[4].normal[2] = m[11] - m[10];
2391         r_view.frustum[4].dist = m[15] - m[14];
2392
2393         r_view.frustum[5].normal[0] = m[3] + m[2];
2394         r_view.frustum[5].normal[1] = m[7] + m[6];
2395         r_view.frustum[5].normal[2] = m[11] + m[10];
2396         r_view.frustum[5].dist = m[15] + m[14];
2397 #endif
2398
2399         if (r_view.useperspective)
2400         {
2401                 slopex = 1.0 / r_view.frustum_x;
2402                 slopey = 1.0 / r_view.frustum_y;
2403                 VectorMA(r_view.forward, -slopex, r_view.left, r_view.frustum[0].normal);
2404                 VectorMA(r_view.forward,  slopex, r_view.left, r_view.frustum[1].normal);
2405                 VectorMA(r_view.forward, -slopey, r_view.up  , r_view.frustum[2].normal);
2406                 VectorMA(r_view.forward,  slopey, r_view.up  , r_view.frustum[3].normal);
2407                 VectorCopy(r_view.forward, r_view.frustum[4].normal);
2408                 
2409                 // Leaving those out was a mistake, those were in the old code, and they
2410                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
2411                 // I couldn't reproduce it after adding those normalizations. --blub
2412                 VectorNormalize(r_view.frustum[0].normal);
2413                 VectorNormalize(r_view.frustum[1].normal);
2414                 VectorNormalize(r_view.frustum[2].normal);
2415                 VectorNormalize(r_view.frustum[3].normal);
2416
2417                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
2418                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward, -1024 * slopex, r_view.left, -1024 * slopey, r_view.up, r_view.frustumcorner[0]);
2419                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward,  1024 * slopex, r_view.left, -1024 * slopey, r_view.up, r_view.frustumcorner[1]);
2420                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward, -1024 * slopex, r_view.left,  1024 * slopey, r_view.up, r_view.frustumcorner[2]);
2421                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward,  1024 * slopex, r_view.left,  1024 * slopey, r_view.up, r_view.frustumcorner[3]);
2422
2423                 r_view.frustum[0].dist = DotProduct (r_view.origin, r_view.frustum[0].normal);
2424                 r_view.frustum[1].dist = DotProduct (r_view.origin, r_view.frustum[1].normal);
2425                 r_view.frustum[2].dist = DotProduct (r_view.origin, r_view.frustum[2].normal);
2426                 r_view.frustum[3].dist = DotProduct (r_view.origin, r_view.frustum[3].normal);
2427                 r_view.frustum[4].dist = DotProduct (r_view.origin, r_view.frustum[4].normal) + r_refdef.nearclip;
2428         }
2429         else
2430         {
2431                 VectorScale(r_view.left, -r_view.ortho_x, r_view.frustum[0].normal);
2432                 VectorScale(r_view.left,  r_view.ortho_x, r_view.frustum[1].normal);
2433                 VectorScale(r_view.up, -r_view.ortho_y, r_view.frustum[2].normal);
2434                 VectorScale(r_view.up,  r_view.ortho_y, r_view.frustum[3].normal);
2435                 VectorCopy(r_view.forward, r_view.frustum[4].normal);
2436                 r_view.frustum[0].dist = DotProduct (r_view.origin, r_view.frustum[0].normal) + r_view.ortho_x;
2437                 r_view.frustum[1].dist = DotProduct (r_view.origin, r_view.frustum[1].normal) + r_view.ortho_x;
2438                 r_view.frustum[2].dist = DotProduct (r_view.origin, r_view.frustum[2].normal) + r_view.ortho_y;
2439                 r_view.frustum[3].dist = DotProduct (r_view.origin, r_view.frustum[3].normal) + r_view.ortho_y;
2440                 r_view.frustum[4].dist = DotProduct (r_view.origin, r_view.frustum[4].normal) + r_refdef.nearclip;
2441         }
2442         r_view.numfrustumplanes = 5;
2443
2444         if (r_view.useclipplane)
2445         {
2446                 r_view.numfrustumplanes = 6;
2447                 r_view.frustum[5] = r_view.clipplane;
2448         }
2449
2450         for (i = 0;i < r_view.numfrustumplanes;i++)
2451                 PlaneClassify(r_view.frustum + i);
2452
2453         // LordHavoc: note to all quake engine coders, Quake had a special case
2454         // for 90 degrees which assumed a square view (wrong), so I removed it,
2455         // Quake2 has it disabled as well.
2456
2457         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
2458         //RotatePointAroundVector( r_view.frustum[0].normal, r_view.up, r_view.forward, -(90 - r_refdef.fov_x / 2));
2459         //r_view.frustum[0].dist = DotProduct (r_view.origin, frustum[0].normal);
2460         //PlaneClassify(&frustum[0]);
2461
2462         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
2463         //RotatePointAroundVector( r_view.frustum[1].normal, r_view.up, r_view.forward, (90 - r_refdef.fov_x / 2));
2464         //r_view.frustum[1].dist = DotProduct (r_view.origin, frustum[1].normal);
2465         //PlaneClassify(&frustum[1]);
2466
2467         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
2468         //RotatePointAroundVector( r_view.frustum[2].normal, r_view.left, r_view.forward, -(90 - r_refdef.fov_y / 2));
2469         //r_view.frustum[2].dist = DotProduct (r_view.origin, frustum[2].normal);
2470         //PlaneClassify(&frustum[2]);
2471
2472         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
2473         //RotatePointAroundVector( r_view.frustum[3].normal, r_view.left, r_view.forward, (90 - r_refdef.fov_y / 2));
2474         //r_view.frustum[3].dist = DotProduct (r_view.origin, frustum[3].normal);
2475         //PlaneClassify(&frustum[3]);
2476
2477         // nearclip plane
2478         //VectorCopy(r_view.forward, r_view.frustum[4].normal);
2479         //r_view.frustum[4].dist = DotProduct (r_view.origin, frustum[4].normal) + r_nearclip.value;
2480         //PlaneClassify(&frustum[4]);
2481 }
2482
2483 void R_View_Update(void)
2484 {
2485         R_View_SetFrustum();
2486         R_View_WorldVisibility(r_view.useclipplane);
2487         R_View_UpdateEntityVisible();
2488 }
2489
2490 void R_SetupView(void)
2491 {
2492         if (!r_view.useperspective)
2493                 GL_SetupView_Mode_Ortho(-r_view.ortho_x, -r_view.ortho_y, r_view.ortho_x, r_view.ortho_y, -r_refdef.farclip, r_refdef.farclip);
2494         else if (r_refdef.rtworldshadows || r_refdef.rtdlightshadows)
2495                 GL_SetupView_Mode_PerspectiveInfiniteFarClip(r_view.frustum_x, r_view.frustum_y, r_refdef.nearclip);
2496         else
2497                 GL_SetupView_Mode_Perspective(r_view.frustum_x, r_view.frustum_y, r_refdef.nearclip, r_refdef.farclip);
2498
2499         GL_SetupView_Orientation_FromEntity(&r_view.matrix);
2500
2501         if (r_view.useclipplane)
2502         {
2503                 // LordHavoc: couldn't figure out how to make this approach the
2504                 vec_t dist = r_view.clipplane.dist - r_water_clippingplanebias.value;
2505                 vec_t viewdist = DotProduct(r_view.origin, r_view.clipplane.normal);
2506                 if (viewdist < r_view.clipplane.dist + r_water_clippingplanebias.value)
2507                         dist = r_view.clipplane.dist;
2508                 GL_SetupView_ApplyCustomNearClipPlane(r_view.clipplane.normal[0], r_view.clipplane.normal[1], r_view.clipplane.normal[2], dist);
2509         }
2510 }
2511
2512 void R_ResetViewRendering2D(void)
2513 {
2514         if (gl_support_fragment_shader)
2515         {
2516                 qglUseProgramObjectARB(0);CHECKGLERROR
2517         }
2518
2519         DrawQ_Finish();
2520
2521         // GL is weird because it's bottom to top, r_view.y is top to bottom
2522         qglViewport(r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2523         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
2524         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
2525         GL_Color(1, 1, 1, 1);
2526         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
2527         GL_BlendFunc(GL_ONE, GL_ZERO);
2528         GL_AlphaTest(false);
2529         GL_ScissorTest(false);
2530         GL_DepthMask(false);
2531         GL_DepthRange(0, 1);
2532         GL_DepthTest(false);
2533         R_Mesh_Matrix(&identitymatrix);
2534         R_Mesh_ResetTextureState();
2535         GL_PolygonOffset(0, 0);
2536         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2537         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2538         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2539         qglStencilMask(~0);CHECKGLERROR
2540         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2541         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2542         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2543 }
2544
2545 void R_ResetViewRendering3D(void)
2546 {
2547         if (gl_support_fragment_shader)
2548         {
2549                 qglUseProgramObjectARB(0);CHECKGLERROR
2550         }
2551
2552         DrawQ_Finish();
2553
2554         // GL is weird because it's bottom to top, r_view.y is top to bottom
2555         qglViewport(r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2556         R_SetupView();
2557         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
2558         GL_Color(1, 1, 1, 1);
2559         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
2560         GL_BlendFunc(GL_ONE, GL_ZERO);
2561         GL_AlphaTest(false);
2562         GL_ScissorTest(true);
2563         GL_DepthMask(true);
2564         GL_DepthRange(0, 1);
2565         GL_DepthTest(true);
2566         R_Mesh_Matrix(&identitymatrix);
2567         R_Mesh_ResetTextureState();
2568         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
2569         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2570         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2571         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2572         qglStencilMask(~0);CHECKGLERROR
2573         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2574         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2575         GL_CullFace(r_view.cullface_back);
2576 }
2577
2578 /*
2579         R_Bloom_SetupShader(
2580 "// bloom shader\n"
2581 "// written by Forest 'LordHavoc' Hale\n"
2582 "\n"
2583 "// common definitions between vertex shader and fragment shader:\n"
2584 "\n"
2585 "#ifdef __GLSL_CG_DATA_TYPES\n"
2586 "#define myhalf half\n"
2587 "#define myhvec2 hvec2\n"
2588 "#define myhvec3 hvec3\n"
2589 "#define myhvec4 hvec4\n"
2590 "#else\n"
2591 "#define myhalf float\n"
2592 "#define myhvec2 vec2\n"
2593 "#define myhvec3 vec3\n"
2594 "#define myhvec4 vec4\n"
2595 "#endif\n"
2596 "\n"
2597 "varying vec2 ScreenTexCoord;\n"
2598 "varying vec2 BloomTexCoord;\n"
2599 "\n"
2600 "\n"
2601 "\n"
2602 "\n"
2603 "// vertex shader specific:\n"
2604 "#ifdef VERTEX_SHADER\n"
2605 "\n"
2606 "void main(void)\n"
2607 "{\n"
2608 "       ScreenTexCoord = vec2(gl_MultiTexCoord0);\n"
2609 "       BloomTexCoord = vec2(gl_MultiTexCoord1);\n"
2610 "       // transform vertex to camera space, using ftransform to match non-VS\n"
2611 "       // rendering\n"
2612 "       gl_Position = ftransform();\n"
2613 "}\n"
2614 "\n"
2615 "#endif // VERTEX_SHADER\n"
2616 "\n"
2617 "\n"
2618 "\n"
2619 "\n"
2620 "// fragment shader specific:\n"
2621 "#ifdef FRAGMENT_SHADER\n"
2622 "\n"
2623 "void main(void)\n"
2624 "{\n"
2625 "       int x, y;
2626 "       myhvec3 color = myhvec3(texture2D(Texture_Screen, ScreenTexCoord));\n"
2627 "       for (x = -BLUR_X;x <= BLUR_X;x++)
2628 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2629 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2630 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2631 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2632
2633 "       gl_FragColor = vec4(color);\n"
2634 "}\n"
2635 "\n"
2636 "#endif // FRAGMENT_SHADER\n"
2637 */
2638
2639 void R_RenderScene(qboolean addwaterplanes);
2640
2641 static void R_Water_StartFrame(void)
2642 {
2643         int i;
2644         int waterwidth, waterheight, texturewidth, textureheight;
2645         r_waterstate_waterplane_t *p;
2646
2647         // set waterwidth and waterheight to the water resolution that will be
2648         // used (often less than the screen resolution for faster rendering)
2649         waterwidth = (int)bound(1, r_view.width * r_water_resolutionmultiplier.value, r_view.width);
2650         waterheight = (int)bound(1, r_view.height * r_water_resolutionmultiplier.value, r_view.height);
2651
2652         // calculate desired texture sizes
2653         // can't use water if the card does not support the texture size
2654         if (!r_water.integer || !r_glsl.integer || !gl_support_fragment_shader || waterwidth > gl_max_texture_size || waterheight > gl_max_texture_size)
2655                 texturewidth = textureheight = waterwidth = waterheight = 0;
2656         else if (gl_support_arb_texture_non_power_of_two)
2657         {
2658                 texturewidth = waterwidth;
2659                 textureheight = waterheight;
2660         }
2661         else
2662         {
2663                 for (texturewidth   = 1;texturewidth   < waterwidth ;texturewidth   *= 2);
2664                 for (textureheight  = 1;textureheight  < waterheight;textureheight  *= 2);
2665         }
2666
2667         // allocate textures as needed
2668         if (r_waterstate.waterwidth != waterwidth || r_waterstate.waterheight != waterheight || r_waterstate.texturewidth != texturewidth || r_waterstate.textureheight != textureheight)
2669         {
2670                 r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2671                 for (i = 0, p = r_waterstate.waterplanes;i < r_waterstate.maxwaterplanes;i++, p++)
2672                 {
2673                         if (p->texture_refraction)
2674                                 R_FreeTexture(p->texture_refraction);
2675                         p->texture_refraction = NULL;
2676                         if (p->texture_reflection)
2677                                 R_FreeTexture(p->texture_reflection);
2678                         p->texture_reflection = NULL;
2679                 }
2680                 memset(&r_waterstate, 0, sizeof(r_waterstate));
2681                 r_waterstate.waterwidth = waterwidth;
2682                 r_waterstate.waterheight = waterheight;
2683                 r_waterstate.texturewidth = texturewidth;
2684                 r_waterstate.textureheight = textureheight;
2685         }
2686
2687         if (r_waterstate.waterwidth)
2688         {
2689                 r_waterstate.enabled = true;
2690
2691                 // set up variables that will be used in shader setup
2692                 r_waterstate.screenscale[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2693                 r_waterstate.screenscale[1] = 0.5f * (float)waterheight / (float)textureheight;
2694                 r_waterstate.screencenter[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2695                 r_waterstate.screencenter[1] = 0.5f * (float)waterheight / (float)textureheight;
2696         }
2697
2698         r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2699         r_waterstate.numwaterplanes = 0;
2700 }
2701
2702 static void R_Water_AddWaterPlane(msurface_t *surface)
2703 {
2704         int triangleindex, planeindex;
2705         const int *e;
2706         vec3_t vert[3];
2707         vec3_t normal;
2708         vec3_t center;
2709         r_waterstate_waterplane_t *p;
2710         // just use the first triangle with a valid normal for any decisions
2711         VectorClear(normal);
2712         for (triangleindex = 0, e = rsurface.modelelement3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
2713         {
2714                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[0]*3, vert[0]);
2715                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[1]*3, vert[1]);
2716                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[2]*3, vert[2]);
2717                 TriangleNormal(vert[0], vert[1], vert[2], normal);
2718                 if (VectorLength2(normal) >= 0.001)
2719                         break;
2720         }
2721
2722         // find a matching plane if there is one
2723         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2724                 if (fabs(PlaneDiff(vert[0], &p->plane)) < 1 && fabs(PlaneDiff(vert[1], &p->plane)) < 1 && fabs(PlaneDiff(vert[2], &p->plane)) < 1)
2725                         break;
2726         if (planeindex >= r_waterstate.maxwaterplanes)
2727                 return; // nothing we can do, out of planes
2728
2729         // if this triangle does not fit any known plane rendered this frame, add one
2730         if (planeindex >= r_waterstate.numwaterplanes)
2731         {
2732                 // store the new plane
2733                 r_waterstate.numwaterplanes++;
2734                 VectorCopy(normal, p->plane.normal);
2735                 VectorNormalize(p->plane.normal);
2736                 p->plane.dist = DotProduct(vert[0], p->plane.normal);
2737                 PlaneClassify(&p->plane);
2738                 // flip the plane if it does not face the viewer
2739                 if (PlaneDiff(r_view.origin, &p->plane) < 0)
2740                 {
2741                         VectorNegate(p->plane.normal, p->plane.normal);
2742                         p->plane.dist *= -1;
2743                         PlaneClassify(&p->plane);
2744                 }
2745                 // clear materialflags and pvs
2746                 p->materialflags = 0;
2747                 p->pvsvalid = false;
2748         }
2749         // merge this surface's materialflags into the waterplane
2750         p->materialflags |= surface->texture->currentframe->currentmaterialflags;
2751         // merge this surface's PVS into the waterplane
2752         VectorMAM(0.5f, surface->mins, 0.5f, surface->maxs, center);
2753         if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.worldmodel && r_refdef.worldmodel->brush.FatPVS
2754          && r_refdef.worldmodel->brush.PointInLeaf && r_refdef.worldmodel->brush.PointInLeaf(r_refdef.worldmodel, center)->clusterindex >= 0)
2755         {
2756                 r_refdef.worldmodel->brush.FatPVS(r_refdef.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
2757                 p->pvsvalid = true;
2758         }
2759 }
2760
2761 static void R_Water_ProcessPlanes(void)
2762 {
2763         r_view_t originalview;
2764         int planeindex;
2765         r_waterstate_waterplane_t *p;
2766
2767         originalview = r_view;
2768
2769         // make sure enough textures are allocated
2770         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2771         {
2772                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2773                 {
2774                         if (!p->texture_refraction)
2775                                 p->texture_refraction = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_refraction", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2776                         if (!p->texture_refraction)
2777                                 goto error;
2778                 }
2779
2780                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2781                 {
2782                         if (!p->texture_reflection)
2783                                 p->texture_reflection = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_reflection", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2784                         if (!p->texture_reflection)
2785                                 goto error;
2786                 }
2787         }
2788
2789         // render views
2790         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2791         {
2792                 r_view.showdebug = false;
2793                 r_view.width = r_waterstate.waterwidth;
2794                 r_view.height = r_waterstate.waterheight;
2795                 r_view.useclipplane = true;
2796                 r_waterstate.renderingscene = true;
2797
2798                 // render the normal view scene and copy into texture
2799                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
2800                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2801                 {
2802                         r_view.clipplane = p->plane;
2803                         VectorNegate(r_view.clipplane.normal, r_view.clipplane.normal);
2804                         r_view.clipplane.dist = -r_view.clipplane.dist;
2805                         PlaneClassify(&r_view.clipplane);
2806
2807                         R_RenderScene(false);
2808
2809                         // copy view into the screen texture
2810                         R_Mesh_TexBind(0, R_GetTexture(p->texture_refraction));
2811                         GL_ActiveTexture(0);
2812                         CHECKGLERROR
2813                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2814                 }
2815
2816                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2817                 {
2818                         // render reflected scene and copy into texture
2819                         Matrix4x4_Reflect(&r_view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
2820                         r_view.clipplane = p->plane;
2821                         // reverse the cullface settings for this render
2822                         r_view.cullface_front = GL_FRONT;
2823                         r_view.cullface_back = GL_BACK;
2824                         if (r_refdef.worldmodel && r_refdef.worldmodel->brush.num_pvsclusterbytes)
2825                         {
2826                                 r_view.usecustompvs = true;
2827                                 if (p->pvsvalid)
2828                                         memcpy(r_viewcache.world_pvsbits, p->pvsbits, r_refdef.worldmodel->brush.num_pvsclusterbytes);
2829                                 else
2830                                         memset(r_viewcache.world_pvsbits, 0xFF, r_refdef.worldmodel->brush.num_pvsclusterbytes);
2831                         }
2832
2833                         R_ResetViewRendering3D();
2834                         R_ClearScreen();
2835                         if (r_timereport_active)
2836                                 R_TimeReport("viewclear");
2837
2838                         R_RenderScene(false);
2839
2840                         R_Mesh_TexBind(0, R_GetTexture(p->texture_reflection));
2841                         GL_ActiveTexture(0);
2842                         CHECKGLERROR
2843                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2844
2845                         R_ResetViewRendering3D();
2846                         R_ClearScreen();
2847                         if (r_timereport_active)
2848                                 R_TimeReport("viewclear");
2849                 }
2850
2851                 r_view = originalview;
2852                 r_view.clear = true;
2853                 r_waterstate.renderingscene = false;
2854         }
2855         return;
2856 error:
2857         r_view = originalview;
2858         r_waterstate.renderingscene = false;
2859         Cvar_SetValueQuick(&r_water, 0);
2860         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
2861         return;
2862 }
2863
2864 void R_Bloom_StartFrame(void)
2865 {
2866         int bloomtexturewidth, bloomtextureheight, screentexturewidth, screentextureheight;
2867
2868         // set bloomwidth and bloomheight to the bloom resolution that will be
2869         // used (often less than the screen resolution for faster rendering)
2870         r_bloomstate.bloomwidth = bound(1, r_bloom_resolution.integer, r_view.width);
2871         r_bloomstate.bloomheight = r_bloomstate.bloomwidth * r_view.height / r_view.width;
2872         r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, r_view.height);
2873
2874         // calculate desired texture sizes
2875         if (gl_support_arb_texture_non_power_of_two)
2876         {
2877                 screentexturewidth = r_view.width;
2878                 screentextureheight = r_view.height;
2879                 bloomtexturewidth = r_bloomstate.bloomwidth;
2880                 bloomtextureheight = r_bloomstate.bloomheight;
2881         }
2882         else
2883         {
2884                 for (screentexturewidth  = 1;screentexturewidth  < vid.width               ;screentexturewidth  *= 2);
2885                 for (screentextureheight = 1;screentextureheight < vid.height              ;screentextureheight *= 2);
2886                 for (bloomtexturewidth   = 1;bloomtexturewidth   < r_bloomstate.bloomwidth ;bloomtexturewidth   *= 2);
2887                 for (bloomtextureheight  = 1;bloomtextureheight  < r_bloomstate.bloomheight;bloomtextureheight  *= 2);
2888         }
2889
2890         if (r_hdr.integer)
2891         {
2892                 screentexturewidth = screentextureheight = 0;
2893         }
2894         else if (r_bloom.integer)
2895         {
2896         }
2897         else
2898         {
2899                 screentexturewidth = screentextureheight = 0;
2900                 bloomtexturewidth = bloomtextureheight = 0;
2901         }
2902
2903         if ((!bloomtexturewidth && !bloomtextureheight) || r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512 || screentexturewidth > gl_max_texture_size || screentextureheight > gl_max_texture_size || bloomtexturewidth > gl_max_texture_size || bloomtextureheight > gl_max_texture_size)
2904         {
2905                 // can't use bloom if the parameters are too weird
2906                 // can't use bloom if the card does not support the texture size
2907                 if (r_bloomstate.texture_screen)
2908                         R_FreeTexture(r_bloomstate.texture_screen);
2909                 if (r_bloomstate.texture_bloom)
2910                         R_FreeTexture(r_bloomstate.texture_bloom);
2911                 memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2912                 return;
2913         }
2914
2915         r_bloomstate.enabled = true;
2916         r_bloomstate.hdr = r_hdr.integer != 0;
2917
2918         // allocate textures as needed
2919         if (r_bloomstate.screentexturewidth != screentexturewidth || r_bloomstate.screentextureheight != screentextureheight)
2920         {
2921                 if (r_bloomstate.texture_screen)
2922                         R_FreeTexture(r_bloomstate.texture_screen);
2923                 r_bloomstate.texture_screen = NULL;
2924                 r_bloomstate.screentexturewidth = screentexturewidth;
2925                 r_bloomstate.screentextureheight = screentextureheight;
2926                 if (r_bloomstate.screentexturewidth && r_bloomstate.screentextureheight)
2927                         r_bloomstate.texture_screen = R_LoadTexture2D(r_main_texturepool, "screen", r_bloomstate.screentexturewidth, r_bloomstate.screentextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2928         }
2929         if (r_bloomstate.bloomtexturewidth != bloomtexturewidth || r_bloomstate.bloomtextureheight != bloomtextureheight)
2930         {
2931                 if (r_bloomstate.texture_bloom)
2932                         R_FreeTexture(r_bloomstate.texture_bloom);
2933                 r_bloomstate.texture_bloom = NULL;
2934                 r_bloomstate.bloomtexturewidth = bloomtexturewidth;
2935                 r_bloomstate.bloomtextureheight = bloomtextureheight;
2936                 if (r_bloomstate.bloomtexturewidth && r_bloomstate.bloomtextureheight)
2937                         r_bloomstate.texture_bloom = R_LoadTexture2D(r_main_texturepool, "bloom", r_bloomstate.bloomtexturewidth, r_bloomstate.bloomtextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2938         }
2939
2940         // set up a texcoord array for the full resolution screen image
2941         // (we have to keep this around to copy back during final render)
2942         r_bloomstate.screentexcoord2f[0] = 0;
2943         r_bloomstate.screentexcoord2f[1] = (float)r_view.height / (float)r_bloomstate.screentextureheight;
2944         r_bloomstate.screentexcoord2f[2] = (float)r_view.width / (float)r_bloomstate.screentexturewidth;
2945         r_bloomstate.screentexcoord2f[3] = (float)r_view.height / (float)r_bloomstate.screentextureheight;
2946         r_bloomstate.screentexcoord2f[4] = (float)r_view.width / (float)r_bloomstate.screentexturewidth;
2947         r_bloomstate.screentexcoord2f[5] = 0;
2948         r_bloomstate.screentexcoord2f[6] = 0;
2949         r_bloomstate.screentexcoord2f[7] = 0;
2950
2951         // set up a texcoord array for the reduced resolution bloom image
2952         // (which will be additive blended over the screen image)
2953         r_bloomstate.bloomtexcoord2f[0] = 0;
2954         r_bloomstate.bloomtexcoord2f[1] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
2955         r_bloomstate.bloomtexcoord2f[2] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
2956         r_bloomstate.bloomtexcoord2f[3] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
2957         r_bloomstate.bloomtexcoord2f[4] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
2958         r_bloomstate.bloomtexcoord2f[5] = 0;
2959         r_bloomstate.bloomtexcoord2f[6] = 0;
2960         r_bloomstate.bloomtexcoord2f[7] = 0;
2961 }
2962
2963 void R_Bloom_CopyScreenTexture(float colorscale)
2964 {
2965         r_refdef.stats.bloom++;
2966
2967         R_ResetViewRendering2D();
2968         R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
2969         R_Mesh_ColorPointer(NULL, 0, 0);
2970         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
2971         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
2972
2973         // copy view into the screen texture
2974         GL_ActiveTexture(0);
2975         CHECKGLERROR
2976         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2977         r_refdef.stats.bloom_copypixels += r_view.width * r_view.height;
2978
2979         // now scale it down to the bloom texture size
2980         CHECKGLERROR
2981         qglViewport(r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2982         GL_BlendFunc(GL_ONE, GL_ZERO);
2983         GL_Color(colorscale, colorscale, colorscale, 1);
2984         // TODO: optimize with multitexture or GLSL
2985         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
2986         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2987
2988         // we now have a bloom image in the framebuffer
2989         // copy it into the bloom image texture for later processing
2990         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
2991         GL_ActiveTexture(0);
2992         CHECKGLERROR
2993         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2994         r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2995 }
2996
2997 void R_Bloom_CopyHDRTexture(void)
2998 {
2999         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3000         GL_ActiveTexture(0);
3001         CHECKGLERROR
3002         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
3003         r_refdef.stats.bloom_copypixels += r_view.width * r_view.height;
3004 }
3005
3006 void R_Bloom_MakeTexture(void)
3007 {
3008         int x, range, dir;
3009         float xoffset, yoffset, r, brighten;
3010
3011         r_refdef.stats.bloom++;
3012
3013         R_ResetViewRendering2D();
3014         R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3015         R_Mesh_ColorPointer(NULL, 0, 0);
3016
3017         // we have a bloom image in the framebuffer
3018         CHECKGLERROR
3019         qglViewport(r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3020
3021         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
3022         {
3023                 x *= 2;
3024                 r = bound(0, r_bloom_colorexponent.value / x, 1);
3025                 GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR);
3026                 GL_Color(r, r, r, 1);
3027                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3028                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3029                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3030                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3031
3032                 // copy the vertically blurred bloom view to a texture
3033                 GL_ActiveTexture(0);
3034                 CHECKGLERROR
3035                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3036                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3037         }
3038
3039         range = r_bloom_blur.integer * r_bloomstate.bloomwidth / 320;
3040         brighten = r_bloom_brighten.value;
3041         if (r_hdr.integer)
3042                 brighten *= r_hdr_range.value;
3043         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3044         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.offsettexcoord2f, 0, 0);
3045
3046         for (dir = 0;dir < 2;dir++)
3047         {
3048                 // blend on at multiple vertical offsets to achieve a vertical blur
3049                 // TODO: do offset blends using GLSL
3050                 GL_BlendFunc(GL_ONE, GL_ZERO);
3051                 for (x = -range;x <= range;x++)
3052                 {
3053                         if (!dir){xoffset = 0;yoffset = x;}
3054                         else {xoffset = x;yoffset = 0;}
3055                         xoffset /= (float)r_bloomstate.bloomtexturewidth;
3056                         yoffset /= (float)r_bloomstate.bloomtextureheight;
3057                         // compute a texcoord array with the specified x and y offset
3058                         r_bloomstate.offsettexcoord2f[0] = xoffset+0;
3059                         r_bloomstate.offsettexcoord2f[1] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3060                         r_bloomstate.offsettexcoord2f[2] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3061                         r_bloomstate.offsettexcoord2f[3] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3062                         r_bloomstate.offsettexcoord2f[4] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3063                         r_bloomstate.offsettexcoord2f[5] = yoffset+0;
3064                         r_bloomstate.offsettexcoord2f[6] = xoffset+0;
3065                         r_bloomstate.offsettexcoord2f[7] = yoffset+0;
3066                         // this r value looks like a 'dot' particle, fading sharply to
3067                         // black at the edges
3068                         // (probably not realistic but looks good enough)
3069                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
3070                         //r = (dir ? 1.0f : brighten)/(range*2+1);
3071                         r = (dir ? 1.0f : brighten)/(range*2+1)*(1 - x*x/(float)(range*range));
3072                         GL_Color(r, r, r, 1);
3073                         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3074                         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3075                         GL_BlendFunc(GL_ONE, GL_ONE);
3076                 }
3077
3078                 // copy the vertically blurred bloom view to a texture
3079                 GL_ActiveTexture(0);
3080                 CHECKGLERROR
3081                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3082                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3083         }
3084
3085         // apply subtract last
3086         // (just like it would be in a GLSL shader)
3087         if (r_bloom_colorsubtract.value > 0 && gl_support_ext_blend_subtract)
3088         {
3089                 GL_BlendFunc(GL_ONE, GL_ZERO);
3090                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3091                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3092                 GL_Color(1, 1, 1, 1);
3093                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3094                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3095
3096                 GL_BlendFunc(GL_ONE, GL_ONE);
3097                 qglBlendEquationEXT(GL_FUNC_REVERSE_SUBTRACT_EXT);
3098                 R_Mesh_TexBind(0, R_GetTexture(r_texture_white));
3099                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3100                 GL_Color(r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 1);
3101                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3102                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3103                 qglBlendEquationEXT(GL_FUNC_ADD_EXT);
3104
3105                 // copy the darkened bloom view to a texture
3106                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3107                 GL_ActiveTexture(0);
3108                 CHECKGLERROR
3109                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3110                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3111         }
3112 }
3113
3114 void R_HDR_RenderBloomTexture(void)
3115 {
3116         int oldwidth, oldheight;
3117
3118         oldwidth = r_view.width;
3119         oldheight = r_view.height;
3120         r_view.width = r_bloomstate.bloomwidth;
3121         r_view.height = r_bloomstate.bloomheight;
3122
3123         // TODO: support GL_EXT_framebuffer_object rather than reusing the framebuffer?  it might improve SLI performance.
3124         // TODO: add exposure compensation features
3125         // TODO: add fp16 framebuffer support
3126
3127         r_view.showdebug = false;
3128         r_view.colorscale = r_bloom_colorscale.value * r_hdr_scenebrightness.value;
3129         if (r_hdr.integer)
3130                 r_view.colorscale /= r_hdr_range.value;
3131         r_waterstate.numwaterplanes = 0;
3132         R_RenderScene(r_waterstate.enabled);
3133         r_view.showdebug = true;
3134
3135         R_ResetViewRendering2D();
3136
3137         R_Bloom_CopyHDRTexture();
3138         R_Bloom_MakeTexture();
3139
3140         R_ResetViewRendering3D();
3141
3142         R_ClearScreen();
3143         if (r_timereport_active)
3144                 R_TimeReport("viewclear");
3145
3146         // restore the view settings
3147         r_view.width = oldwidth;
3148         r_view.height = oldheight;
3149 }
3150
3151 static void R_BlendView(void)
3152 {
3153         if (r_bloomstate.enabled && r_bloomstate.hdr)
3154         {
3155                 // render high dynamic range bloom effect
3156                 // the bloom texture was made earlier this render, so we just need to
3157                 // blend it onto the screen...
3158                 R_ResetViewRendering2D();
3159                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3160                 R_Mesh_ColorPointer(NULL, 0, 0);
3161                 GL_Color(1, 1, 1, 1);
3162                 GL_BlendFunc(GL_ONE, GL_ONE);
3163                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3164                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3165                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3166                 r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3167         }
3168         else if (r_bloomstate.enabled)
3169         {
3170                 // render simple bloom effect
3171                 // copy the screen and shrink it and darken it for the bloom process
3172                 R_Bloom_CopyScreenTexture(r_bloom_colorscale.value);
3173                 // make the bloom texture
3174                 R_Bloom_MakeTexture();
3175                 // put the original screen image back in place and blend the bloom
3176                 // texture on it
3177                 R_ResetViewRendering2D();
3178                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3179                 R_Mesh_ColorPointer(NULL, 0, 0);
3180                 GL_Color(1, 1, 1, 1);
3181                 GL_BlendFunc(GL_ONE, GL_ZERO);
3182                 // do both in one pass if possible
3183                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3184                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3185                 if (r_textureunits.integer >= 2 && gl_combine.integer)
3186                 {
3187                         R_Mesh_TexCombine(1, GL_ADD, GL_ADD, 1, 1);
3188                         R_Mesh_TexBind(1, R_GetTexture(r_bloomstate.texture_screen));
3189                         R_Mesh_TexCoordPointer(1, 2, r_bloomstate.screentexcoord2f, 0, 0);
3190                 }
3191                 else
3192                 {
3193                         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3194                         r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3195                         // now blend on the bloom texture
3196                         GL_BlendFunc(GL_ONE, GL_ONE);
3197                         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3198                         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
3199                 }
3200                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3201                 r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3202         }
3203         if (r_refdef.viewblend[3] >= (1.0f / 256.0f))
3204         {
3205                 // apply a color tint to the whole view
3206                 R_ResetViewRendering2D();
3207                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3208                 R_Mesh_ColorPointer(NULL, 0, 0);
3209                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3210                 GL_Color(r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
3211                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3212         }
3213 }
3214
3215 void R_RenderScene(qboolean addwaterplanes);
3216
3217 matrix4x4_t r_waterscrollmatrix;
3218
3219 void R_UpdateVariables(void)
3220 {
3221         R_Textures_Frame();
3222
3223         r_refdef.farclip = 4096;
3224         if (r_refdef.worldmodel)
3225                 r_refdef.farclip += VectorDistance(r_refdef.worldmodel->normalmins, r_refdef.worldmodel->normalmaxs);
3226         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
3227
3228         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
3229                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
3230         r_refdef.polygonfactor = 0;
3231         r_refdef.polygonoffset = 0;
3232         r_refdef.shadowpolygonfactor = r_refdef.polygonfactor + r_shadow_polygonfactor.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3233         r_refdef.shadowpolygonoffset = r_refdef.polygonoffset + r_shadow_polygonoffset.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3234
3235         r_refdef.rtworld = r_shadow_realtime_world.integer;
3236         r_refdef.rtworldshadows = r_shadow_realtime_world_shadows.integer && gl_stencil;
3237         r_refdef.rtdlight = (r_shadow_realtime_world.integer || r_shadow_realtime_dlight.integer) && !gl_flashblend.integer && r_dynamic.integer;
3238         r_refdef.rtdlightshadows = r_refdef.rtdlight && r_shadow_realtime_dlight_shadows.integer && gl_stencil;
3239         r_refdef.lightmapintensity = r_refdef.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
3240         if (r_showsurfaces.integer)
3241         {
3242                 r_refdef.rtworld = false;
3243                 r_refdef.rtworldshadows = false;
3244                 r_refdef.rtdlight = false;
3245                 r_refdef.rtdlightshadows = false;
3246                 r_refdef.lightmapintensity = 0;
3247         }
3248
3249         if (gamemode == GAME_NEHAHRA)
3250         {
3251                 if (gl_fogenable.integer)
3252                 {
3253                         r_refdef.oldgl_fogenable = true;
3254                         r_refdef.fog_density = gl_fogdensity.value;
3255                         r_refdef.fog_red = gl_fogred.value;
3256                         r_refdef.fog_green = gl_foggreen.value;
3257                         r_refdef.fog_blue = gl_fogblue.value;
3258                 }
3259                 else if (r_refdef.oldgl_fogenable)
3260                 {
3261                         r_refdef.oldgl_fogenable = false;
3262                         r_refdef.fog_density = 0;
3263                         r_refdef.fog_red = 0;
3264                         r_refdef.fog_green = 0;
3265                         r_refdef.fog_blue = 0;
3266                 }
3267         }
3268         if (r_refdef.fog_density)
3269         {
3270                 r_refdef.fogcolor[0] = bound(0.0f, r_refdef.fog_red  , 1.0f);
3271                 r_refdef.fogcolor[1] = bound(0.0f, r_refdef.fog_green, 1.0f);
3272                 r_refdef.fogcolor[2] = bound(0.0f, r_refdef.fog_blue , 1.0f);
3273         }
3274         if (r_refdef.fog_density)
3275         {
3276                 r_refdef.fogenabled = true;
3277                 // this is the point where the fog reaches 0.9986 alpha, which we
3278                 // consider a good enough cutoff point for the texture
3279                 // (0.9986 * 256 == 255.6)
3280                 r_refdef.fogrange = 16 / (r_refdef.fog_density * r_refdef.fog_density);
3281                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
3282                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
3283                 // fog color was already set
3284         }
3285         else
3286                 r_refdef.fogenabled = false;
3287 }
3288
3289 /*
3290 ================
3291 R_RenderView
3292 ================
3293 */
3294 void R_RenderView(void)
3295 {
3296         if (!r_refdef.entities/* || !r_refdef.worldmodel*/)
3297                 return; //Host_Error ("R_RenderView: NULL worldmodel");
3298
3299         R_Shadow_UpdateWorldLightSelection();
3300
3301         R_Bloom_StartFrame();
3302         R_Water_StartFrame();
3303
3304         CHECKGLERROR
3305         if (r_timereport_active)
3306                 R_TimeReport("viewsetup");
3307
3308         R_ResetViewRendering3D();
3309
3310         if (r_view.clear)
3311         {
3312                 R_ClearScreen();
3313                 if (r_timereport_active)
3314                         R_TimeReport("viewclear");
3315         }
3316         r_view.clear = true;
3317
3318         r_view.showdebug = true;
3319
3320         // this produces a bloom texture to be used in R_BlendView() later
3321         if (r_hdr.integer)
3322                 R_HDR_RenderBloomTexture();
3323
3324         r_view.colorscale = r_hdr_scenebrightness.value;
3325         r_waterstate.numwaterplanes = 0;
3326         R_RenderScene(r_waterstate.enabled);
3327
3328         R_BlendView();
3329         if (r_timereport_active)
3330                 R_TimeReport("blendview");
3331
3332         GL_Scissor(0, 0, vid.width, vid.height);
3333         GL_ScissorTest(false);
3334         CHECKGLERROR
3335 }
3336
3337 extern void R_DrawLightningBeams (void);
3338 extern void VM_CL_AddPolygonsToMeshQueue (void);
3339 extern void R_DrawPortals (void);
3340 extern cvar_t cl_locs_show;
3341 static void R_DrawLocs(void);
3342 static void R_DrawEntityBBoxes(void);
3343 void R_RenderScene(qboolean addwaterplanes)
3344 {
3345         if (addwaterplanes)
3346         {
3347                 R_ResetViewRendering3D();
3348
3349                 R_View_Update();
3350                 if (r_timereport_active)
3351                         R_TimeReport("watervis");
3352
3353                 if (cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->DrawAddWaterPlanes)
3354                 {
3355                         r_refdef.worldmodel->DrawAddWaterPlanes(r_refdef.worldentity);
3356                         if (r_timereport_active)
3357                                 R_TimeReport("waterworld");
3358                 }
3359
3360                 // don't let sound skip if going slow
3361                 if (r_refdef.extraupdate)
3362                         S_ExtraUpdate ();
3363
3364                 R_DrawModelsAddWaterPlanes();
3365                 if (r_timereport_active)
3366                         R_TimeReport("watermodels");
3367
3368                 R_Water_ProcessPlanes();
3369                 if (r_timereport_active)
3370                         R_TimeReport("waterscenes");
3371         }
3372
3373         R_ResetViewRendering3D();
3374
3375         // don't let sound skip if going slow
3376         if (r_refdef.extraupdate)
3377                 S_ExtraUpdate ();
3378
3379         R_MeshQueue_BeginScene();
3380
3381         R_SkyStartFrame();
3382
3383         R_View_Update();
3384         if (r_timereport_active)
3385                 R_TimeReport("visibility");
3386
3387         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.time) * 0.025 * r_waterscroll.value, sin(r_refdef.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
3388
3389         if (cl.csqc_vidvars.drawworld)
3390         {
3391                 // don't let sound skip if going slow
3392                 if (r_refdef.extraupdate)
3393                         S_ExtraUpdate ();
3394
3395                 if (r_refdef.worldmodel && r_refdef.worldmodel->DrawSky)
3396                 {
3397                         r_refdef.worldmodel->DrawSky(r_refdef.worldentity);
3398                         if (r_timereport_active)
3399                                 R_TimeReport("worldsky");
3400                 }
3401
3402                 if (R_DrawBrushModelsSky() && r_timereport_active)
3403                         R_TimeReport("bmodelsky");
3404         }
3405
3406         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->DrawDepth)
3407         {
3408                 r_refdef.worldmodel->DrawDepth(r_refdef.worldentity);
3409                 if (r_timereport_active)
3410                         R_TimeReport("worlddepth");
3411         }
3412         if (r_depthfirst.integer >= 2)
3413         {
3414                 R_DrawModelsDepth();
3415                 if (r_timereport_active)
3416                         R_TimeReport("modeldepth");
3417         }
3418
3419         if (cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->Draw)
3420         {
3421                 r_refdef.worldmodel->Draw(r_refdef.worldentity);
3422                 if (r_timereport_active)
3423                         R_TimeReport("world");
3424         }
3425
3426         // don't let sound skip if going slow
3427         if (r_refdef.extraupdate)
3428                 S_ExtraUpdate ();
3429
3430         R_DrawModels();
3431         if (r_timereport_active)
3432                 R_TimeReport("models");
3433
3434         // don't let sound skip if going slow
3435         if (r_refdef.extraupdate)
3436                 S_ExtraUpdate ();
3437
3438         if (r_shadows.integer > 0 && r_refdef.lightmapintensity > 0)
3439         {
3440                 R_DrawModelShadows();
3441
3442                 R_ResetViewRendering3D();
3443
3444                 // don't let sound skip if going slow
3445                 if (r_refdef.extraupdate)
3446                         S_ExtraUpdate ();
3447         }
3448
3449         R_ShadowVolumeLighting(false);
3450         if (r_timereport_active)
3451                 R_TimeReport("rtlights");
3452
3453         // don't let sound skip if going slow
3454         if (r_refdef.extraupdate)
3455                 S_ExtraUpdate ();
3456
3457         if (cl.csqc_vidvars.drawworld)
3458         {
3459                 R_DrawLightningBeams();
3460                 if (r_timereport_active)
3461                         R_TimeReport("lightning");
3462
3463                 R_DrawDecals();
3464                 if (r_timereport_active)
3465                         R_TimeReport("decals");
3466
3467                 R_DrawParticles();
3468                 if (r_timereport_active)
3469                         R_TimeReport("particles");
3470
3471                 R_DrawExplosions();
3472                 if (r_timereport_active)
3473                         R_TimeReport("explosions");
3474         }
3475
3476         if (gl_support_fragment_shader)
3477         {
3478                 qglUseProgramObjectARB(0);CHECKGLERROR
3479         }
3480         VM_CL_AddPolygonsToMeshQueue();
3481
3482         if (r_view.showdebug)
3483         {
3484                 if (cl_locs_show.integer)
3485                 {
3486                         R_DrawLocs();
3487                         if (r_timereport_active)
3488                                 R_TimeReport("showlocs");
3489                 }
3490
3491                 if (r_drawportals.integer)
3492                 {
3493                         R_DrawPortals();
3494                         if (r_timereport_active)
3495                                 R_TimeReport("portals");
3496                 }
3497
3498                 if (r_showbboxes.value > 0)
3499                 {
3500                         R_DrawEntityBBoxes();
3501                         if (r_timereport_active)
3502                                 R_TimeReport("bboxes");
3503                 }
3504         }
3505
3506         if (gl_support_fragment_shader)
3507         {
3508                 qglUseProgramObjectARB(0);CHECKGLERROR
3509         }
3510         R_MeshQueue_RenderTransparent();
3511         if (r_timereport_active)
3512                 R_TimeReport("drawtrans");
3513
3514         if (gl_support_fragment_shader)
3515         {
3516                 qglUseProgramObjectARB(0);CHECKGLERROR
3517         }
3518
3519         if (r_view.showdebug && r_refdef.worldmodel && r_refdef.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value > 0 || r_showcollisionbrushes.value > 0))
3520         {
3521                 r_refdef.worldmodel->DrawDebug(r_refdef.worldentity);
3522                 if (r_timereport_active)
3523                         R_TimeReport("worlddebug");
3524                 R_DrawModelsDebug();
3525                 if (r_timereport_active)
3526                         R_TimeReport("modeldebug");
3527         }
3528
3529         if (gl_support_fragment_shader)
3530         {
3531                 qglUseProgramObjectARB(0);CHECKGLERROR
3532         }
3533
3534         if (cl.csqc_vidvars.drawworld)
3535         {
3536                 R_DrawCoronas();
3537                 if (r_timereport_active)
3538                         R_TimeReport("coronas");
3539         }
3540
3541         // don't let sound skip if going slow
3542         if (r_refdef.extraupdate)
3543                 S_ExtraUpdate ();
3544
3545         R_ResetViewRendering2D();
3546 }
3547
3548 static const int bboxelements[36] =
3549 {
3550         5, 1, 3, 5, 3, 7,
3551         6, 2, 0, 6, 0, 4,
3552         7, 3, 2, 7, 2, 6,
3553         4, 0, 1, 4, 1, 5,
3554         4, 5, 7, 4, 7, 6,
3555         1, 0, 2, 1, 2, 3,
3556 };
3557
3558 void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
3559 {
3560         int i;
3561         float *v, *c, f1, f2, vertex3f[8*3], color4f[8*4];
3562         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3563         GL_DepthMask(false);
3564         GL_DepthRange(0, 1);
3565         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
3566         R_Mesh_Matrix(&identitymatrix);
3567         R_Mesh_ResetTextureState();
3568
3569         vertex3f[ 0] = mins[0];vertex3f[ 1] = mins[1];vertex3f[ 2] = mins[2]; //
3570         vertex3f[ 3] = maxs[0];vertex3f[ 4] = mins[1];vertex3f[ 5] = mins[2];
3571         vertex3f[ 6] = mins[0];vertex3f[ 7] = maxs[1];vertex3f[ 8] = mins[2];
3572         vertex3f[ 9] = maxs[0];vertex3f[10] = maxs[1];vertex3f[11] = mins[2];
3573         vertex3f[12] = mins[0];vertex3f[13] = mins[1];vertex3f[14] = maxs[2];
3574         vertex3f[15] = maxs[0];vertex3f[16] = mins[1];vertex3f[17] = maxs[2];
3575         vertex3f[18] = mins[0];vertex3f[19] = maxs[1];vertex3f[20] = maxs[2];
3576         vertex3f[21] = maxs[0];vertex3f[22] = maxs[1];vertex3f[23] = maxs[2];
3577         R_FillColors(color4f, 8, cr, cg, cb, ca);
3578         if (r_refdef.fogenabled)
3579         {
3580                 for (i = 0, v = vertex3f, c = color4f;i < 8;i++, v += 3, c += 4)
3581                 {
3582                         f1 = FogPoint_World(v);
3583                         f2 = 1 - f1;
3584                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
3585                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
3586                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
3587                 }
3588         }
3589         R_Mesh_VertexPointer(vertex3f, 0, 0);
3590         R_Mesh_ColorPointer(color4f, 0, 0);
3591         R_Mesh_ResetTextureState();
3592         R_Mesh_Draw(0, 8, 12, bboxelements, 0, 0);
3593 }
3594
3595 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3596 {
3597         int i;
3598         float color[4];
3599         prvm_edict_t *edict;
3600         // this function draws bounding boxes of server entities
3601         if (!sv.active)
3602                 return;
3603         SV_VM_Begin();
3604         for (i = 0;i < numsurfaces;i++)
3605         {
3606                 edict = PRVM_EDICT_NUM(surfacelist[i]);
3607                 switch ((int)edict->fields.server->solid)
3608                 {
3609                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
3610                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
3611                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
3612                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
3613                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
3614                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
3615                 }
3616                 color[3] *= r_showbboxes.value;
3617                 color[3] = bound(0, color[3], 1);
3618                 GL_DepthTest(!r_showdisabledepthtest.integer);
3619                 GL_CullFace(r_view.cullface_front);
3620                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
3621         }
3622         SV_VM_End();
3623 }
3624
3625 static void R_DrawEntityBBoxes(void)
3626 {
3627         int i;
3628         prvm_edict_t *edict;
3629         vec3_t center;
3630         // this function draws bounding boxes of server entities
3631         if (!sv.active)
3632                 return;
3633         SV_VM_Begin();
3634         for (i = 0;i < prog->num_edicts;i++)
3635         {
3636                 edict = PRVM_EDICT_NUM(i);
3637                 if (edict->priv.server->free)
3638                         continue;
3639                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
3640                 R_MeshQueue_AddTransparent(center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)NULL);
3641         }
3642         SV_VM_End();
3643 }
3644
3645 int nomodelelements[24] =
3646 {
3647         5, 2, 0,
3648         5, 1, 2,
3649         5, 0, 3,
3650         5, 3, 1,
3651         0, 2, 4,
3652         2, 1, 4,
3653         3, 0, 4,
3654         1, 3, 4
3655 };
3656
3657 float nomodelvertex3f[6*3] =
3658 {
3659         -16,   0,   0,
3660          16,   0,   0,
3661           0, -16,   0,
3662           0,  16,   0,
3663           0,   0, -16,
3664           0,   0,  16
3665 };
3666
3667 float nomodelcolor4f[6*4] =
3668 {
3669         0.0f, 0.0f, 0.5f, 1.0f,
3670         0.0f, 0.0f, 0.5f, 1.0f,
3671         0.0f, 0.5f, 0.0f, 1.0f,
3672         0.0f, 0.5f, 0.0f, 1.0f,
3673         0.5f, 0.0f, 0.0f, 1.0f,
3674         0.5f, 0.0f, 0.0f, 1.0f
3675 };
3676
3677 void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3678 {
3679         int i;
3680         float f1, f2, *c;
3681         float color4f[6*4];
3682         // this is only called once per entity so numsurfaces is always 1, and
3683         // surfacelist is always {0}, so this code does not handle batches
3684         R_Mesh_Matrix(&ent->matrix);
3685
3686         if (ent->flags & EF_ADDITIVE)
3687         {
3688                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
3689                 GL_DepthMask(false);
3690         }
3691         else if (ent->alpha < 1)
3692         {
3693                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3694                 GL_DepthMask(false);
3695         }
3696         else
3697         {
3698                 GL_BlendFunc(GL_ONE, GL_ZERO);
3699                 GL_DepthMask(true);
3700         }
3701         GL_DepthRange(0, (ent->flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
3702         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
3703         GL_DepthTest(!(ent->effects & EF_NODEPTHTEST));
3704         GL_CullFace((ent->effects & EF_DOUBLESIDED) ? GL_NONE : r_view.cullface_back);
3705         R_Mesh_VertexPointer(nomodelvertex3f, 0, 0);
3706         if (r_refdef.fogenabled)
3707         {
3708                 vec3_t org;
3709                 memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
3710                 R_Mesh_ColorPointer(color4f, 0, 0);
3711                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
3712                 f1 = FogPoint_World(org);
3713                 f2 = 1 - f1;
3714                 for (i = 0, c = color4f;i < 6;i++, c += 4)
3715                 {
3716                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
3717                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
3718                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
3719                         c[3] *= ent->alpha;
3720                 }
3721         }
3722         else if (ent->alpha != 1)
3723         {
3724                 memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
3725                 R_Mesh_ColorPointer(color4f, 0, 0);
3726                 for (i = 0, c = color4f;i < 6;i++, c += 4)
3727                         c[3] *= ent->alpha;
3728         }
3729         else