added r_refdef.rtlightstylevalue which is a float version of the normal
[divverent/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "cl_dyntexture.h"
24 #include "r_shadow.h"
25 #include "polygon.h"
26 #include "image.h"
27
28 mempool_t *r_main_mempool;
29 rtexturepool_t *r_main_texturepool;
30
31 //
32 // screen size info
33 //
34 r_refdef_t r_refdef;
35 r_view_t r_view;
36 r_viewcache_t r_viewcache;
37
38 cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "1", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
39 cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" };
40 cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
41 cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
42 cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
43 cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
44 cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
45 cvar_t r_showshadowvolumes = {0, "r_showshadowvolumes", "0", "shows areas shadowed by lights, useful for finding out why some areas of a map render slowly (bright blue = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
46 cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
47 cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
48 cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
49 cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
50 cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
51 cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
52 cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"};
53 cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
54 cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling"};
55 cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
56 cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
57 cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
58 cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"};
59 cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"};
60 cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
61 cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
62 cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this)"};
63 cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
64 cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
65 cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
66 cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "2", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
67
68 cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
69 cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
70 cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
71 cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
72 cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
73 cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
74 cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
75
76 cvar_t r_textureunits = {0, "r_textureunits", "32", "number of hardware texture units reported by driver (note: setting this to 1 turns off gl_combine)"};
77
78 cvar_t r_glsl = {CVAR_SAVE, "r_glsl", "1", "enables use of OpenGL 2.0 pixel shaders for lighting"};
79 cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
80 cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
81 cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
82 cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
83 cvar_t r_glsl_contrastboost = {CVAR_SAVE, "r_glsl_contrastboost", "1", "by how much to multiply the contrast in dark areas (1 is no change)"};
84
85 cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
86 cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
87 cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
88 cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
89 cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
90
91 cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "1", "enables animation smoothing on sprites (requires r_lerpmodels 1)"};
92 cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
93 cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
94 cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
95
96 cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
97 cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"};
98 cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"};
99 cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"};
100 cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
101 cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exagerated the glow is"};
102 cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"};
103
104 cvar_t r_hdr = {CVAR_SAVE, "r_hdr", "0", "enables High Dynamic Range bloom effect (higher quality version of r_bloom)"};
105 cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
106 cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
107 cvar_t r_hdr_range = {CVAR_SAVE, "r_hdr_range", "4", "how much dynamic range to render bloom with (equivilant to multiplying r_bloom_brighten by this value and dividing r_bloom_colorscale by this value)"};
108
109 cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
110
111 cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
112
113 cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers)"};
114
115 cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
116 cvar_t r_batchmode = {0, "r_batchmode", "1", "selects method of rendering multiple surfaces with one driver call (values are 0, 1, 2, etc...)"};
117 cvar_t r_track_sprites = {CVAR_SAVE, "r_track_sprites", "1", "track SPR_LABEL* sprites by putting them as indicator at the screen border to rotate to"};
118 cvar_t r_track_sprites_flags = {CVAR_SAVE, "r_track_sprites_flags", "1", "1: Rotate sprites accodringly, 2: Make it a continuous rotation"};
119 cvar_t r_track_sprites_scalew = {CVAR_SAVE, "r_track_sprites_scalew", "1", "width scaling of tracked sprites"};
120 cvar_t r_track_sprites_scaleh = {CVAR_SAVE, "r_track_sprites_scaleh", "1", "height scaling of tracked sprites"};
121
122 extern qboolean v_flipped_state;
123
124 typedef struct r_glsl_bloomshader_s
125 {
126         int program;
127         int loc_Texture_Bloom;
128 }
129 r_glsl_bloomshader_t;
130
131 static struct r_bloomstate_s
132 {
133         qboolean enabled;
134         qboolean hdr;
135
136         int bloomwidth, bloomheight;
137
138         int screentexturewidth, screentextureheight;
139         rtexture_t *texture_screen;
140
141         int bloomtexturewidth, bloomtextureheight;
142         rtexture_t *texture_bloom;
143
144         r_glsl_bloomshader_t *shader;
145
146         // arrays for rendering the screen passes
147         float screentexcoord2f[8];
148         float bloomtexcoord2f[8];
149         float offsettexcoord2f[8];
150 }
151 r_bloomstate;
152
153 typedef struct r_waterstate_waterplane_s
154 {
155         rtexture_t *texture_refraction;
156         rtexture_t *texture_reflection;
157         mplane_t plane;
158         int materialflags; // combined flags of all water surfaces on this plane
159         unsigned char pvsbits[(32768+7)>>3]; // FIXME: buffer overflow on huge maps
160         qboolean pvsvalid;
161 }
162 r_waterstate_waterplane_t;
163
164 #define MAX_WATERPLANES 16
165
166 static struct r_waterstate_s
167 {
168         qboolean enabled;
169
170         qboolean renderingscene; // true while rendering a refraction or reflection texture, disables water surfaces
171
172         int waterwidth, waterheight;
173         int texturewidth, textureheight;
174
175         int maxwaterplanes; // same as MAX_WATERPLANES
176         int numwaterplanes;
177         r_waterstate_waterplane_t waterplanes[MAX_WATERPLANES];
178
179         float screenscale[2];
180         float screencenter[2];
181 }
182 r_waterstate;
183
184 // shadow volume bsp struct with automatically growing nodes buffer
185 svbsp_t r_svbsp;
186
187 rtexture_t *r_texture_blanknormalmap;
188 rtexture_t *r_texture_white;
189 rtexture_t *r_texture_grey128;
190 rtexture_t *r_texture_black;
191 rtexture_t *r_texture_notexture;
192 rtexture_t *r_texture_whitecube;
193 rtexture_t *r_texture_normalizationcube;
194 rtexture_t *r_texture_fogattenuation;
195 //rtexture_t *r_texture_fogintensity;
196
197 char r_qwskincache[MAX_SCOREBOARD][MAX_QPATH];
198 skinframe_t *r_qwskincache_skinframe[MAX_SCOREBOARD];
199
200 // vertex coordinates for a quad that covers the screen exactly
201 const static float r_screenvertex3f[12] =
202 {
203         0, 0, 0,
204         1, 0, 0,
205         1, 1, 0,
206         0, 1, 0
207 };
208
209 extern void R_DrawModelShadows(void);
210
211 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
212 {
213         int i;
214         for (i = 0;i < verts;i++)
215         {
216                 out[0] = in[0] * r;
217                 out[1] = in[1] * g;
218                 out[2] = in[2] * b;
219                 out[3] = in[3];
220                 in += 4;
221                 out += 4;
222         }
223 }
224
225 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
226 {
227         int i;
228         for (i = 0;i < verts;i++)
229         {
230                 out[0] = r;
231                 out[1] = g;
232                 out[2] = b;
233                 out[3] = a;
234                 out += 4;
235         }
236 }
237
238 // FIXME: move this to client?
239 void FOG_clear(void)
240 {
241         if (gamemode == GAME_NEHAHRA)
242         {
243                 Cvar_Set("gl_fogenable", "0");
244                 Cvar_Set("gl_fogdensity", "0.2");
245                 Cvar_Set("gl_fogred", "0.3");
246                 Cvar_Set("gl_foggreen", "0.3");
247                 Cvar_Set("gl_fogblue", "0.3");
248         }
249         r_refdef.fog_density = r_refdef.fog_red = r_refdef.fog_green = r_refdef.fog_blue = 0.0f;
250 }
251
252 float FogPoint_World(const vec3_t p)
253 {
254         unsigned int fogmasktableindex = (unsigned int)(VectorDistance((p), r_view.origin) * r_refdef.fogmasktabledistmultiplier);
255         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
256 }
257
258 float FogPoint_Model(const vec3_t p)
259 {
260         unsigned int fogmasktableindex = (unsigned int)(VectorDistance((p), rsurface.modelorg) * r_refdef.fogmasktabledistmultiplier);
261         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
262 }
263
264 static void R_BuildBlankTextures(void)
265 {
266         unsigned char data[4];
267         data[2] = 128; // normal X
268         data[1] = 128; // normal Y
269         data[0] = 255; // normal Z
270         data[3] = 128; // height
271         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
272         data[0] = 255;
273         data[1] = 255;
274         data[2] = 255;
275         data[3] = 255;
276         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
277         data[0] = 128;
278         data[1] = 128;
279         data[2] = 128;
280         data[3] = 255;
281         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
282         data[0] = 0;
283         data[1] = 0;
284         data[2] = 0;
285         data[3] = 255;
286         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
287 }
288
289 static void R_BuildNoTexture(void)
290 {
291         int x, y;
292         unsigned char pix[16][16][4];
293         // this makes a light grey/dark grey checkerboard texture
294         for (y = 0;y < 16;y++)
295         {
296                 for (x = 0;x < 16;x++)
297                 {
298                         if ((y < 8) ^ (x < 8))
299                         {
300                                 pix[y][x][0] = 128;
301                                 pix[y][x][1] = 128;
302                                 pix[y][x][2] = 128;
303                                 pix[y][x][3] = 255;
304                         }
305                         else
306                         {
307                                 pix[y][x][0] = 64;
308                                 pix[y][x][1] = 64;
309                                 pix[y][x][2] = 64;
310                                 pix[y][x][3] = 255;
311                         }
312                 }
313         }
314         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, NULL);
315 }
316
317 static void R_BuildWhiteCube(void)
318 {
319         unsigned char data[6*1*1*4];
320         memset(data, 255, sizeof(data));
321         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
322 }
323
324 static void R_BuildNormalizationCube(void)
325 {
326         int x, y, side;
327         vec3_t v;
328         vec_t s, t, intensity;
329 #define NORMSIZE 64
330         unsigned char data[6][NORMSIZE][NORMSIZE][4];
331         for (side = 0;side < 6;side++)
332         {
333                 for (y = 0;y < NORMSIZE;y++)
334                 {
335                         for (x = 0;x < NORMSIZE;x++)
336                         {
337                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
338                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
339                                 switch(side)
340                                 {
341                                 default:
342                                 case 0:
343                                         v[0] = 1;
344                                         v[1] = -t;
345                                         v[2] = -s;
346                                         break;
347                                 case 1:
348                                         v[0] = -1;
349                                         v[1] = -t;
350                                         v[2] = s;
351                                         break;
352                                 case 2:
353                                         v[0] = s;
354                                         v[1] = 1;
355                                         v[2] = t;
356                                         break;
357                                 case 3:
358                                         v[0] = s;
359                                         v[1] = -1;
360                                         v[2] = -t;
361                                         break;
362                                 case 4:
363                                         v[0] = s;
364                                         v[1] = -t;
365                                         v[2] = 1;
366                                         break;
367                                 case 5:
368                                         v[0] = -s;
369                                         v[1] = -t;
370                                         v[2] = -1;
371                                         break;
372                                 }
373                                 intensity = 127.0f / sqrt(DotProduct(v, v));
374                                 data[side][y][x][2] = (unsigned char)(128.0f + intensity * v[0]);
375                                 data[side][y][x][1] = (unsigned char)(128.0f + intensity * v[1]);
376                                 data[side][y][x][0] = (unsigned char)(128.0f + intensity * v[2]);
377                                 data[side][y][x][3] = 255;
378                         }
379                 }
380         }
381         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, &data[0][0][0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
382 }
383
384 static void R_BuildFogTexture(void)
385 {
386         int x, b;
387 #define FOGWIDTH 64
388         unsigned char data1[FOGWIDTH][4];
389         //unsigned char data2[FOGWIDTH][4];
390         for (x = 0;x < FOGWIDTH;x++)
391         {
392                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
393                 data1[x][0] = b;
394                 data1[x][1] = b;
395                 data1[x][2] = b;
396                 data1[x][3] = 255;
397                 //data2[x][0] = 255 - b;
398                 //data2[x][1] = 255 - b;
399                 //data2[x][2] = 255 - b;
400                 //data2[x][3] = 255;
401         }
402         r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
403         //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
404 }
405
406 static const char *builtinshaderstring =
407 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
408 "// written by Forest 'LordHavoc' Hale\n"
409 "\n"
410 "// common definitions between vertex shader and fragment shader:\n"
411 "\n"
412 "#ifdef __GLSL_CG_DATA_TYPES\n"
413 "# define myhalf half\n"
414 "# define myhvec2 hvec2\n"
415 "# define myhvec3 hvec3\n"
416 "# define myhvec4 hvec4\n"
417 "#else\n"
418 "# define myhalf float\n"
419 "# define myhvec2 vec2\n"
420 "# define myhvec3 vec3\n"
421 "# define myhvec4 vec4\n"
422 "#endif\n"
423 "\n"
424 "varying vec2 TexCoord;\n"
425 "varying vec2 TexCoordLightmap;\n"
426 "\n"
427 "//#ifdef MODE_LIGHTSOURCE\n"
428 "varying vec3 CubeVector;\n"
429 "//#endif\n"
430 "\n"
431 "//#ifdef MODE_LIGHTSOURCE\n"
432 "varying vec3 LightVector;\n"
433 "//#else\n"
434 "//# ifdef MODE_LIGHTDIRECTION\n"
435 "//varying vec3 LightVector;\n"
436 "//# endif\n"
437 "//#endif\n"
438 "\n"
439 "varying vec3 EyeVector;\n"
440 "//#ifdef USEFOG\n"
441 "varying vec3 EyeVectorModelSpace;\n"
442 "//#endif\n"
443 "\n"
444 "varying vec3 VectorS; // direction of S texcoord (sometimes crudely called tangent)\n"
445 "varying vec3 VectorT; // direction of T texcoord (sometimes crudely called binormal)\n"
446 "varying vec3 VectorR; // direction of R texcoord (surface normal)\n"
447 "\n"
448 "//#ifdef MODE_WATER\n"
449 "varying vec4 ModelViewProjectionPosition;\n"
450 "//#else\n"
451 "//# ifdef MODE_REFRACTION\n"
452 "//varying vec4 ModelViewProjectionPosition;\n"
453 "//# else\n"
454 "//#  ifdef USEREFLECTION\n"
455 "//varying vec4 ModelViewProjectionPosition;\n"
456 "//#  endif\n"
457 "//# endif\n"
458 "//#endif\n"
459 "\n"
460 "\n"
461 "\n"
462 "\n"
463 "\n"
464 "// vertex shader specific:\n"
465 "#ifdef VERTEX_SHADER\n"
466 "\n"
467 "uniform vec3 LightPosition;\n"
468 "uniform vec3 EyePosition;\n"
469 "uniform vec3 LightDir;\n"
470 "\n"
471 "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3)\n"
472 "\n"
473 "void main(void)\n"
474 "{\n"
475 "       gl_FrontColor = gl_Color;\n"
476 "       // copy the surface texcoord\n"
477 "       TexCoord = vec2(gl_TextureMatrix[0] * gl_MultiTexCoord0);\n"
478 "#ifndef MODE_LIGHTSOURCE\n"
479 "# ifndef MODE_LIGHTDIRECTION\n"
480 "       TexCoordLightmap = vec2(gl_MultiTexCoord4);\n"
481 "# endif\n"
482 "#endif\n"
483 "\n"
484 "#ifdef MODE_LIGHTSOURCE\n"
485 "       // transform vertex position into light attenuation/cubemap space\n"
486 "       // (-1 to +1 across the light box)\n"
487 "       CubeVector = vec3(gl_TextureMatrix[3] * gl_Vertex);\n"
488 "\n"
489 "       // transform unnormalized light direction into tangent space\n"
490 "       // (we use unnormalized to ensure that it interpolates correctly and then\n"
491 "       //  normalize it per pixel)\n"
492 "       vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n"
493 "       LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n"
494 "       LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n"
495 "       LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n"
496 "#endif\n"
497 "\n"
498 "#ifdef MODE_LIGHTDIRECTION\n"
499 "       LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n"
500 "       LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n"
501 "       LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n"
502 "#endif\n"
503 "\n"
504 "       // transform unnormalized eye direction into tangent space\n"
505 "#ifndef USEFOG\n"
506 "       vec3 EyeVectorModelSpace;\n"
507 "#endif\n"
508 "       EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n"
509 "       EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n"
510 "       EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n"
511 "       EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n"
512 "\n"
513 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
514 "       VectorS = gl_MultiTexCoord1.xyz;\n"
515 "       VectorT = gl_MultiTexCoord2.xyz;\n"
516 "       VectorR = gl_MultiTexCoord3.xyz;\n"
517 "#endif\n"
518 "\n"
519 "//#if defined(MODE_WATER) || defined(MODE_REFRACTION) || defined(USEREFLECTION)\n"
520 "//     ModelViewProjectionPosition = gl_Vertex * gl_ModelViewProjectionMatrix;\n"
521 "//     //ModelViewProjectionPosition_svector = (gl_Vertex + vec4(gl_MultiTexCoord1.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
522 "//     //ModelViewProjectionPosition_tvector = (gl_Vertex + vec4(gl_MultiTexCoord2.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
523 "//#endif\n"
524 "\n"
525 "// transform vertex to camera space, using ftransform to match non-VS\n"
526 "       // rendering\n"
527 "       gl_Position = ftransform();\n"
528 "\n"
529 "#ifdef MODE_WATER\n"
530 "       ModelViewProjectionPosition = gl_Position;\n"
531 "#endif\n"
532 "#ifdef MODE_REFRACTION\n"
533 "       ModelViewProjectionPosition = gl_Position;\n"
534 "#endif\n"
535 "#ifdef USEREFLECTION\n"
536 "       ModelViewProjectionPosition = gl_Position;\n"
537 "#endif\n"
538 "}\n"
539 "\n"
540 "#endif // VERTEX_SHADER\n"
541 "\n"
542 "\n"
543 "\n"
544 "\n"
545 "// fragment shader specific:\n"
546 "#ifdef FRAGMENT_SHADER\n"
547 "\n"
548 "// 13 textures, we can only use up to 16 on DX9-class hardware\n"
549 "uniform sampler2D Texture_Normal;\n"
550 "uniform sampler2D Texture_Color;\n"
551 "uniform sampler2D Texture_Gloss;\n"
552 "uniform samplerCube Texture_Cube;\n"
553 "uniform sampler2D Texture_Attenuation;\n"
554 "uniform sampler2D Texture_FogMask;\n"
555 "uniform sampler2D Texture_Pants;\n"
556 "uniform sampler2D Texture_Shirt;\n"
557 "uniform sampler2D Texture_Lightmap;\n"
558 "uniform sampler2D Texture_Deluxemap;\n"
559 "uniform sampler2D Texture_Glow;\n"
560 "uniform sampler2D Texture_Reflection;\n"
561 "uniform sampler2D Texture_Refraction;\n"
562 "\n"
563 "uniform myhvec3 LightColor;\n"
564 "uniform myhvec3 AmbientColor;\n"
565 "uniform myhvec3 DiffuseColor;\n"
566 "uniform myhvec3 SpecularColor;\n"
567 "uniform myhvec3 Color_Pants;\n"
568 "uniform myhvec3 Color_Shirt;\n"
569 "uniform myhvec3 FogColor;\n"
570 "\n"
571 "//#ifdef MODE_WATER\n"
572 "uniform vec4 DistortScaleRefractReflect;\n"
573 "uniform vec4 ScreenScaleRefractReflect;\n"
574 "uniform vec4 ScreenCenterRefractReflect;\n"
575 "uniform myhvec4 RefractColor;\n"
576 "uniform myhvec4 ReflectColor;\n"
577 "uniform myhalf ReflectFactor;\n"
578 "uniform myhalf ReflectOffset;\n"
579 "//#else\n"
580 "//# ifdef MODE_REFRACTION\n"
581 "//uniform vec4 DistortScaleRefractReflect;\n"
582 "//uniform vec4 ScreenScaleRefractReflect;\n"
583 "//uniform vec4 ScreenCenterRefractReflect;\n"
584 "//uniform myhvec4 RefractColor;\n"
585 "//#  ifdef USEREFLECTION\n"
586 "//uniform myhvec4 ReflectColor;\n"
587 "//#  endif\n"
588 "//# else\n"
589 "//#  ifdef USEREFLECTION\n"
590 "//uniform vec4 DistortScaleRefractReflect;\n"
591 "//uniform vec4 ScreenScaleRefractReflect;\n"
592 "//uniform vec4 ScreenCenterRefractReflect;\n"
593 "//uniform myhvec4 ReflectColor;\n"
594 "//#  endif\n"
595 "//# endif\n"
596 "//#endif\n"
597 "\n"
598 "uniform myhalf GlowScale;\n"
599 "uniform myhalf SceneBrightness;\n"
600 "#ifdef USECONTRASTBOOST\n"
601 "uniform myhalf ContrastBoostCoeff;\n"
602 "#endif\n"
603 "\n"
604 "uniform float OffsetMapping_Scale;\n"
605 "uniform float OffsetMapping_Bias;\n"
606 "uniform float FogRangeRecip;\n"
607 "\n"
608 "uniform myhalf AmbientScale;\n"
609 "uniform myhalf DiffuseScale;\n"
610 "uniform myhalf SpecularScale;\n"
611 "uniform myhalf SpecularPower;\n"
612 "\n"
613 "#ifdef USEOFFSETMAPPING\n"
614 "vec2 OffsetMapping(vec2 TexCoord)\n"
615 "{\n"
616 "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n"
617 "       // 14 sample relief mapping: linear search and then binary search\n"
618 "       // this basically steps forward a small amount repeatedly until it finds\n"
619 "       // itself inside solid, then jitters forward and back using decreasing\n"
620 "       // amounts to find the impact\n"
621 "       //vec3 OffsetVector = vec3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1), -1);\n"
622 "       //vec3 OffsetVector = vec3(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
623 "       vec3 OffsetVector = vec3(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
624 "       vec3 RT = vec3(TexCoord, 1);\n"
625 "       OffsetVector *= 0.1;\n"
626 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
627 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
628 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
629 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
630 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
631 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
632 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
633 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
634 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
635 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z)          - 0.5);\n"
636 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.5    - 0.25);\n"
637 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.25   - 0.125);\n"
638 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.125  - 0.0625);\n"
639 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n"
640 "       return RT.xy;\n"
641 "#else\n"
642 "       // 3 sample offset mapping (only 3 samples because of ATI Radeon 9500-9800/X300 limits)\n"
643 "       // this basically moves forward the full distance, and then backs up based\n"
644 "       // on height of samples\n"
645 "       //vec2 OffsetVector = vec2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1));\n"
646 "       //vec2 OffsetVector = vec2(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1));\n"
647 "       vec2 OffsetVector = vec2(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1));\n"
648 "       TexCoord += OffsetVector;\n"
649 "       OffsetVector *= 0.333;\n"
650 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
651 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
652 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
653 "       return TexCoord;\n"
654 "#endif\n"
655 "}\n"
656 "#endif // USEOFFSETMAPPING\n"
657 "\n"
658 "#ifdef MODE_WATER\n"
659 "\n"
660 "// water pass\n"
661 "void main(void)\n"
662 "{\n"
663 "#ifdef USEOFFSETMAPPING\n"
664 "       // apply offsetmapping\n"
665 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
666 "#define TexCoord TexCoordOffset\n"
667 "#endif\n"
668 "\n"
669 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
670 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
671 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec2(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xyxy * DistortScaleRefractReflect;\n"
672 "       float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 5.0) * ReflectFactor + ReflectOffset;\n"
673 "       gl_FragColor = mix(texture2D(Texture_Refraction, ScreenTexCoord.xy) * RefractColor, texture2D(Texture_Reflection, ScreenTexCoord.zw) * ReflectColor, Fresnel);\n"
674 "}\n"
675 "\n"
676 "#else // MODE_WATER\n"
677 "#ifdef MODE_REFRACTION\n"
678 "\n"
679 "// refraction pass\n"
680 "void main(void)\n"
681 "{\n"
682 "#ifdef USEOFFSETMAPPING\n"
683 "       // apply offsetmapping\n"
684 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
685 "#define TexCoord TexCoordOffset\n"
686 "#endif\n"
687 "\n"
688 "       vec2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n"
689 "       //vec2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n"
690 "       vec2 ScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy + vec2(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xy * DistortScaleRefractReflect.xy;\n"
691 "       gl_FragColor = texture2D(Texture_Refraction, ScreenTexCoord) * RefractColor;\n"
692 "}\n"
693 "\n"
694 "#else // MODE_REFRACTION\n"
695 "void main(void)\n"
696 "{\n"
697 "#ifdef USEOFFSETMAPPING\n"
698 "       // apply offsetmapping\n"
699 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
700 "#define TexCoord TexCoordOffset\n"
701 "#endif\n"
702 "\n"
703 "       // combine the diffuse textures (base, pants, shirt)\n"
704 "       myhvec4 color = myhvec4(texture2D(Texture_Color, TexCoord));\n"
705 "#ifdef USECOLORMAPPING\n"
706 "       color.rgb += myhvec3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhvec3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n"
707 "#endif\n"
708 "\n"
709 "\n"
710 "\n"
711 "\n"
712 "#ifdef MODE_LIGHTSOURCE\n"
713 "       // light source\n"
714 "\n"
715 "       // calculate surface normal, light normal, and specular normal\n"
716 "       // compute color intensity for the two textures (colormap and glossmap)\n"
717 "       // scale by light color and attenuation as efficiently as possible\n"
718 "       // (do as much scalar math as possible rather than vector math)\n"
719 "# ifdef USESPECULAR\n"
720 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
721 "       myhvec3 diffusenormal = myhvec3(normalize(LightVector));\n"
722 "       myhvec3 specularnormal = normalize(diffusenormal + myhvec3(normalize(EyeVector)));\n"
723 "\n"
724 "       // calculate directional shading\n"
725 "       color.rgb = LightColor * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (color.rgb * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))) + (SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower)) * myhvec3(texture2D(Texture_Gloss, TexCoord)));\n"
726 "# else\n"
727 "#  ifdef USEDIFFUSE\n"
728 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
729 "       myhvec3 diffusenormal = myhvec3(normalize(LightVector));\n"
730 "\n"
731 "       // calculate directional shading\n"
732 "       color.rgb = color.rgb * LightColor * (myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))));\n"
733 "#  else\n"
734 "       // calculate directionless shading\n"
735 "       color.rgb = color.rgb * LightColor * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n"
736 "#  endif\n"
737 "# endif\n"
738 "\n"
739 "# ifdef USECUBEFILTER\n"
740 "       // apply light cubemap filter\n"
741 "       //color.rgb *= normalize(CubeVector) * 0.5 + 0.5;//vec3(textureCube(Texture_Cube, CubeVector));\n"
742 "       color.rgb *= myhvec3(textureCube(Texture_Cube, CubeVector));\n"
743 "# endif\n"
744 "       color *= myhvec4(gl_Color);\n"
745 "#endif // MODE_LIGHTSOURCE\n"
746 "\n"
747 "\n"
748 "\n"
749 "\n"
750 "#ifdef MODE_LIGHTDIRECTION\n"
751 "       // directional model lighting\n"
752 "# ifdef USESPECULAR\n"
753 "       // get the surface normal and light normal\n"
754 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
755 "       myhvec3 diffusenormal = myhvec3(LightVector);\n"
756 "\n"
757 "       // calculate directional shading\n"
758 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
759 "       myhvec3 specularnormal = normalize(diffusenormal + myhvec3(normalize(EyeVector)));\n"
760 "       color.rgb += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularColor * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
761 "# else\n"
762 "#  ifdef USEDIFFUSE\n"
763 "       // get the surface normal and light normal\n"
764 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
765 "       myhvec3 diffusenormal = myhvec3(LightVector);\n"
766 "\n"
767 "       // calculate directional shading\n"
768 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
769 "#  else\n"
770 "       color.rgb *= AmbientColor;\n"
771 "#  endif\n"
772 "# endif\n"
773 "\n"
774 "       color *= myhvec4(gl_Color);\n"
775 "#endif // MODE_LIGHTDIRECTION\n"
776 "\n"
777 "\n"
778 "\n"
779 "\n"
780 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
781 "       // deluxemap lightmapping using light vectors in modelspace (evil q3map2)\n"
782 "\n"
783 "       // get the surface normal and light normal\n"
784 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
785 "\n"
786 "       myhvec3 diffusenormal_modelspace = myhvec3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhvec3(0.5);\n"
787 "       myhvec3 diffusenormal = normalize(myhvec3(dot(diffusenormal_modelspace, myhvec3(VectorS)), dot(diffusenormal_modelspace, myhvec3(VectorT)), dot(diffusenormal_modelspace, myhvec3(VectorR))));\n"
788 "       // calculate directional shading\n"
789 "       myhvec3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
790 "# ifdef USESPECULAR\n"
791 "       myhvec3 specularnormal = myhvec3(normalize(diffusenormal + myhvec3(normalize(EyeVector))));\n"
792 "       tempcolor += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
793 "# endif\n"
794 "\n"
795 "       // apply lightmap color\n"
796 "       color.rgb = myhvec4(tempcolor,1) * myhvec4(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec4(gl_Color) + myhvec4(color.rgb * AmbientScale, 0);\n"
797 "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
798 "\n"
799 "\n"
800 "\n"
801 "\n"
802 "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
803 "       // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n"
804 "\n"
805 "       // get the surface normal and light normal\n"
806 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
807 "\n"
808 "       myhvec3 diffusenormal = normalize(myhvec3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhvec3(0.5));\n"
809 "       // calculate directional shading\n"
810 "       myhvec3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
811 "# ifdef USESPECULAR\n"
812 "       myhvec3 specularnormal = myhvec3(normalize(diffusenormal + myhvec3(normalize(EyeVector))));\n"
813 "       tempcolor += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
814 "# endif\n"
815 "\n"
816 "       // apply lightmap color\n"
817 "       color = myhvec4(tempcolor, 1) * myhvec4(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec4(gl_Color) + myhvec4(color.rgb * AmbientScale, 0);\n"
818 "#endif // MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
819 "\n"
820 "\n"
821 "\n"
822 "\n"
823 "#ifdef MODE_LIGHTMAP\n"
824 "       // apply lightmap color\n"
825 "       color *= myhvec4(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec4(gl_Color) * myhvec4(myhvec3(DiffuseScale), 1) + myhvec4(myhvec3(AmbientScale), 0);\n"
826 "#endif // MODE_LIGHTMAP\n"
827 "\n"
828 "\n"
829 "\n"
830 "\n"
831 "\n"
832 "\n"
833 "\n"
834 "\n"
835 "#ifdef USEGLOW\n"
836 "       color.rgb += myhvec3(texture2D(Texture_Glow, TexCoord)) * GlowScale;\n"
837 "#endif\n"
838 "\n"
839 "#ifndef MODE_LIGHTSOURCE\n"
840 "# ifdef USEREFLECTION\n"
841 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
842 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
843 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec3(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xyxy * DistortScaleRefractReflect;\n"
844 "       color.rgb = mix(color.rgb, myhvec3(texture2D(Texture_Reflection, ScreenTexCoord.zw)) * ReflectColor.rgb, ReflectColor.a);\n"
845 "# endif\n"
846 "#endif\n"
847 "\n"
848 "#ifdef USEFOG\n"
849 "       // apply fog\n"
850 "       color.rgb = mix(FogColor, color.rgb, myhalf(texture2D(Texture_FogMask, myhvec2(length(EyeVectorModelSpace)*FogRangeRecip, 0.0))));\n"
851 "#endif\n"
852 "\n"
853 "#ifdef USECONTRASTBOOST\n"
854 "       color.rgb = color.rgb / (ContrastBoostCoeff * color.rgb + myhvec3(1, 1, 1));\n"
855 "#endif\n"
856 "\n"
857 "       color.rgb *= SceneBrightness;\n"
858 "\n"
859 "       gl_FragColor = vec4(color);\n"
860 "}\n"
861 "#endif // MODE_REFRACTION\n"
862 "#endif // MODE_WATER\n"
863 "\n"
864 "#endif // FRAGMENT_SHADER\n"
865 ;
866
867 #define SHADERPERMUTATION_COLORMAPPING (1<<0) // indicates this is a colormapped skin
868 #define SHADERPERMUTATION_CONTRASTBOOST (1<<1) // r_glsl_contrastboost boosts the contrast at low color levels (similar to gamma)
869 #define SHADERPERMUTATION_FOG (1<<2) // tint the color by fog color or black if using additive blend mode
870 #define SHADERPERMUTATION_CUBEFILTER (1<<3) // (lightsource) use cubemap light filter
871 #define SHADERPERMUTATION_GLOW (1<<4) // (lightmap) blend in an additive glow texture
872 #define SHADERPERMUTATION_DIFFUSE (1<<5) // (lightsource) whether to use directional shading
873 #define SHADERPERMUTATION_SPECULAR (1<<6) // (lightsource or deluxemapping) render specular effects
874 #define SHADERPERMUTATION_REFLECTION (1<<7) // normalmap-perturbed reflection of the scene infront of the surface, preformed as an overlay on the surface
875 #define SHADERPERMUTATION_OFFSETMAPPING (1<<8) // adjust texcoords to roughly simulate a displacement mapped surface
876 #define SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING (1<<9) // adjust texcoords to accurately simulate a displacement mapped surface (requires OFFSETMAPPING to also be set!)
877 #define SHADERPERMUTATION_MODEBASE (1<<10) // multiplier for the SHADERMODE_ values to get a valid index
878
879 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
880 const char *shaderpermutationinfo[][2] =
881 {
882         {"#define USECOLORMAPPING\n", " colormapping"},
883         {"#define USECONTRASTBOOST\n", " contrastboost"},
884         {"#define USEFOG\n", " fog"},
885         {"#define USECUBEFILTER\n", " cubefilter"},
886         {"#define USEGLOW\n", " glow"},
887         {"#define USEDIFFUSE\n", " diffuse"},
888         {"#define USESPECULAR\n", " specular"},
889         {"#define USEREFLECTION\n", " reflection"},
890         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
891         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
892         {NULL, NULL}
893 };
894
895 // this enum is multiplied by SHADERPERMUTATION_MODEBASE
896 typedef enum shadermode_e
897 {
898         SHADERMODE_LIGHTMAP, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
899         SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE, // (lightmap) use directional pixel shading from texture containing modelspace light directions (deluxemap)
900         SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE, // (lightmap) use directional pixel shading from texture containing tangentspace light directions (deluxemap)
901         SHADERMODE_LIGHTDIRECTION, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
902         SHADERMODE_LIGHTSOURCE, // (lightsource) use directional pixel shading from light source (rtlight)
903         SHADERMODE_REFRACTION, // refract background (the material is rendered normally after this pass)
904         SHADERMODE_WATER, // refract background and reflection (the material is rendered normally after this pass)
905         SHADERMODE_COUNT
906 }
907 shadermode_t;
908
909 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
910 const char *shadermodeinfo[][2] =
911 {
912         {"#define MODE_LIGHTMAP\n", " lightmap"},
913         {"#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
914         {"#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
915         {"#define MODE_LIGHTDIRECTION\n", " lightdirection"},
916         {"#define MODE_LIGHTSOURCE\n", " lightsource"},
917         {"#define MODE_REFRACTION\n", " refraction"},
918         {"#define MODE_WATER\n", " water"},
919         {NULL, NULL}
920 };
921
922 #define SHADERPERMUTATION_INDICES (SHADERPERMUTATION_MODEBASE * SHADERMODE_COUNT)
923
924 typedef struct r_glsl_permutation_s
925 {
926         // indicates if we have tried compiling this permutation already
927         qboolean compiled;
928         // 0 if compilation failed
929         int program;
930         // locations of detected uniforms in program object, or -1 if not found
931         int loc_Texture_Normal;
932         int loc_Texture_Color;
933         int loc_Texture_Gloss;
934         int loc_Texture_Cube;
935         int loc_Texture_Attenuation;
936         int loc_Texture_FogMask;
937         int loc_Texture_Pants;
938         int loc_Texture_Shirt;
939         int loc_Texture_Lightmap;
940         int loc_Texture_Deluxemap;
941         int loc_Texture_Glow;
942         int loc_Texture_Refraction;
943         int loc_Texture_Reflection;
944         int loc_FogColor;
945         int loc_LightPosition;
946         int loc_EyePosition;
947         int loc_LightColor;
948         int loc_Color_Pants;
949         int loc_Color_Shirt;
950         int loc_FogRangeRecip;
951         int loc_AmbientScale;
952         int loc_DiffuseScale;
953         int loc_SpecularScale;
954         int loc_SpecularPower;
955         int loc_GlowScale;
956         int loc_SceneBrightness; // or: Scenebrightness * ContrastBoost
957         int loc_OffsetMapping_Scale;
958         int loc_AmbientColor;
959         int loc_DiffuseColor;
960         int loc_SpecularColor;
961         int loc_LightDir;
962         int loc_ContrastBoostCoeff; // 1 - 1/ContrastBoost
963         int loc_DistortScaleRefractReflect;
964         int loc_ScreenScaleRefractReflect;
965         int loc_ScreenCenterRefractReflect;
966         int loc_RefractColor;
967         int loc_ReflectColor;
968         int loc_ReflectFactor;
969         int loc_ReflectOffset;
970 }
971 r_glsl_permutation_t;
972
973 // information about each possible shader permutation
974 r_glsl_permutation_t r_glsl_permutations[SHADERPERMUTATION_INDICES];
975 // currently selected permutation
976 r_glsl_permutation_t *r_glsl_permutation;
977
978 // these are additional flags used only by R_GLSL_CompilePermutation
979 #define SHADERTYPE_USES_VERTEXSHADER (1<<0)
980 #define SHADERTYPE_USES_GEOMETRYSHADER (1<<1)
981 #define SHADERTYPE_USES_FRAGMENTSHADER (1<<2)
982
983 static void R_GLSL_CompilePermutation(const char *filename, int permutation, int shadertype)
984 {
985         int i;
986         qboolean shaderfound;
987         r_glsl_permutation_t *p = r_glsl_permutations + permutation;
988         int vertstrings_count;
989         int geomstrings_count;
990         int fragstrings_count;
991         char *shaderstring;
992         const char *vertstrings_list[32+1];
993         const char *geomstrings_list[32+1];
994         const char *fragstrings_list[32+1];
995         char permutationname[256];
996         if (p->compiled)
997                 return;
998         p->compiled = true;
999         p->program = 0;
1000         vertstrings_list[0] = "#define VERTEX_SHADER\n";
1001         geomstrings_list[0] = "#define GEOMETRY_SHADER\n";
1002         fragstrings_list[0] = "#define FRAGMENT_SHADER\n";
1003         vertstrings_count = 1;
1004         geomstrings_count = 1;
1005         fragstrings_count = 1;
1006         permutationname[0] = 0;
1007         i = permutation / SHADERPERMUTATION_MODEBASE;
1008         vertstrings_list[vertstrings_count++] = shadermodeinfo[i][0];
1009         geomstrings_list[geomstrings_count++] = shadermodeinfo[i][0];
1010         fragstrings_list[fragstrings_count++] = shadermodeinfo[i][0];
1011         strlcat(permutationname, shadermodeinfo[i][1], sizeof(permutationname));
1012         for (i = 0;shaderpermutationinfo[i][0];i++)
1013         {
1014                 if (permutation & (1<<i))
1015                 {
1016                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i][0];
1017                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i][0];
1018                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i][0];
1019                         strlcat(permutationname, shaderpermutationinfo[i][1], sizeof(permutationname));
1020                 }
1021                 else
1022                 {
1023                         // keep line numbers correct
1024                         vertstrings_list[vertstrings_count++] = "\n";
1025                         geomstrings_list[geomstrings_count++] = "\n";
1026                         fragstrings_list[fragstrings_count++] = "\n";
1027                 }
1028         }
1029         shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL);
1030         shaderfound = false;
1031         if (shaderstring)
1032         {
1033                 Con_DPrint("from disk... ");
1034                 vertstrings_list[vertstrings_count++] = shaderstring;
1035                 geomstrings_list[geomstrings_count++] = shaderstring;
1036                 fragstrings_list[fragstrings_count++] = shaderstring;
1037                 shaderfound = true;
1038         }
1039         else if (!strcmp(filename, "glsl/default.glsl"))
1040         {
1041                 vertstrings_list[vertstrings_count++] = builtinshaderstring;
1042                 geomstrings_list[geomstrings_count++] = builtinshaderstring;
1043                 fragstrings_list[fragstrings_count++] = builtinshaderstring;
1044                 shaderfound = true;
1045         }
1046         // clear any lists that are not needed by this shader
1047         if (!(shadertype & SHADERTYPE_USES_VERTEXSHADER))
1048                 vertstrings_count = 0;
1049         if (!(shadertype & SHADERTYPE_USES_GEOMETRYSHADER))
1050                 geomstrings_count = 0;
1051         if (!(shadertype & SHADERTYPE_USES_FRAGMENTSHADER))
1052                 fragstrings_count = 0;
1053         // compile the shader program
1054         if (shaderfound && vertstrings_count + geomstrings_count + fragstrings_count)
1055                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1056         if (p->program)
1057         {
1058                 CHECKGLERROR
1059                 qglUseProgramObjectARB(p->program);CHECKGLERROR
1060                 // look up all the uniform variable names we care about, so we don't
1061                 // have to look them up every time we set them
1062                 p->loc_Texture_Normal      = qglGetUniformLocationARB(p->program, "Texture_Normal");
1063                 p->loc_Texture_Color       = qglGetUniformLocationARB(p->program, "Texture_Color");
1064                 p->loc_Texture_Gloss       = qglGetUniformLocationARB(p->program, "Texture_Gloss");
1065                 p->loc_Texture_Cube        = qglGetUniformLocationARB(p->program, "Texture_Cube");
1066                 p->loc_Texture_Attenuation = qglGetUniformLocationARB(p->program, "Texture_Attenuation");
1067                 p->loc_Texture_FogMask     = qglGetUniformLocationARB(p->program, "Texture_FogMask");
1068                 p->loc_Texture_Pants       = qglGetUniformLocationARB(p->program, "Texture_Pants");
1069                 p->loc_Texture_Shirt       = qglGetUniformLocationARB(p->program, "Texture_Shirt");
1070                 p->loc_Texture_Lightmap    = qglGetUniformLocationARB(p->program, "Texture_Lightmap");
1071                 p->loc_Texture_Deluxemap   = qglGetUniformLocationARB(p->program, "Texture_Deluxemap");
1072                 p->loc_Texture_Glow        = qglGetUniformLocationARB(p->program, "Texture_Glow");
1073                 p->loc_Texture_Refraction  = qglGetUniformLocationARB(p->program, "Texture_Refraction");
1074                 p->loc_Texture_Reflection  = qglGetUniformLocationARB(p->program, "Texture_Reflection");
1075                 p->loc_FogColor            = qglGetUniformLocationARB(p->program, "FogColor");
1076                 p->loc_LightPosition       = qglGetUniformLocationARB(p->program, "LightPosition");
1077                 p->loc_EyePosition         = qglGetUniformLocationARB(p->program, "EyePosition");
1078                 p->loc_LightColor          = qglGetUniformLocationARB(p->program, "LightColor");
1079                 p->loc_Color_Pants         = qglGetUniformLocationARB(p->program, "Color_Pants");
1080                 p->loc_Color_Shirt         = qglGetUniformLocationARB(p->program, "Color_Shirt");
1081                 p->loc_FogRangeRecip       = qglGetUniformLocationARB(p->program, "FogRangeRecip");
1082                 p->loc_AmbientScale        = qglGetUniformLocationARB(p->program, "AmbientScale");
1083                 p->loc_DiffuseScale        = qglGetUniformLocationARB(p->program, "DiffuseScale");
1084                 p->loc_SpecularPower       = qglGetUniformLocationARB(p->program, "SpecularPower");
1085                 p->loc_SpecularScale       = qglGetUniformLocationARB(p->program, "SpecularScale");
1086                 p->loc_GlowScale           = qglGetUniformLocationARB(p->program, "GlowScale");
1087                 p->loc_SceneBrightness     = qglGetUniformLocationARB(p->program, "SceneBrightness");
1088                 p->loc_OffsetMapping_Scale = qglGetUniformLocationARB(p->program, "OffsetMapping_Scale");
1089                 p->loc_AmbientColor        = qglGetUniformLocationARB(p->program, "AmbientColor");
1090                 p->loc_DiffuseColor        = qglGetUniformLocationARB(p->program, "DiffuseColor");
1091                 p->loc_SpecularColor       = qglGetUniformLocationARB(p->program, "SpecularColor");
1092                 p->loc_LightDir            = qglGetUniformLocationARB(p->program, "LightDir");
1093                 p->loc_ContrastBoostCoeff  = qglGetUniformLocationARB(p->program, "ContrastBoostCoeff");
1094                 p->loc_DistortScaleRefractReflect = qglGetUniformLocationARB(p->program, "DistortScaleRefractReflect");
1095                 p->loc_ScreenScaleRefractReflect = qglGetUniformLocationARB(p->program, "ScreenScaleRefractReflect");
1096                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocationARB(p->program, "ScreenCenterRefractReflect");
1097                 p->loc_RefractColor        = qglGetUniformLocationARB(p->program, "RefractColor");
1098                 p->loc_ReflectColor        = qglGetUniformLocationARB(p->program, "ReflectColor");
1099                 p->loc_ReflectFactor       = qglGetUniformLocationARB(p->program, "ReflectFactor");
1100                 p->loc_ReflectOffset       = qglGetUniformLocationARB(p->program, "ReflectOffset");
1101                 // initialize the samplers to refer to the texture units we use
1102                 if (p->loc_Texture_Normal >= 0)    qglUniform1iARB(p->loc_Texture_Normal, 0);
1103                 if (p->loc_Texture_Color >= 0)     qglUniform1iARB(p->loc_Texture_Color, 1);
1104                 if (p->loc_Texture_Gloss >= 0)     qglUniform1iARB(p->loc_Texture_Gloss, 2);
1105                 if (p->loc_Texture_Cube >= 0)      qglUniform1iARB(p->loc_Texture_Cube, 3);
1106                 if (p->loc_Texture_FogMask >= 0)   qglUniform1iARB(p->loc_Texture_FogMask, 4);
1107                 if (p->loc_Texture_Pants >= 0)     qglUniform1iARB(p->loc_Texture_Pants, 5);
1108                 if (p->loc_Texture_Shirt >= 0)     qglUniform1iARB(p->loc_Texture_Shirt, 6);
1109                 if (p->loc_Texture_Lightmap >= 0)  qglUniform1iARB(p->loc_Texture_Lightmap, 7);
1110                 if (p->loc_Texture_Deluxemap >= 0) qglUniform1iARB(p->loc_Texture_Deluxemap, 8);
1111                 if (p->loc_Texture_Glow >= 0)      qglUniform1iARB(p->loc_Texture_Glow, 9);
1112                 if (p->loc_Texture_Attenuation >= 0) qglUniform1iARB(p->loc_Texture_Attenuation, 10);
1113                 if (p->loc_Texture_Refraction >= 0) qglUniform1iARB(p->loc_Texture_Refraction, 11);
1114                 if (p->loc_Texture_Reflection >= 0) qglUniform1iARB(p->loc_Texture_Reflection, 12);
1115                 CHECKGLERROR
1116                 qglUseProgramObjectARB(0);CHECKGLERROR
1117                 if (developer.integer)
1118                         Con_Printf("GLSL shader %s :%s compiled.\n", filename, permutationname);
1119         }
1120         else
1121         {
1122                 if (developer.integer)
1123                         Con_Printf("GLSL shader %s :%s failed!  source code line offset for above errors is %i.\n", permutationname, filename, -(vertstrings_count - 1));
1124                 else
1125                         Con_Printf("GLSL shader %s :%s failed!  some features may not work properly.\n", permutationname, filename);
1126         }
1127         if (shaderstring)
1128                 Mem_Free(shaderstring);
1129 }
1130
1131 void R_GLSL_Restart_f(void)
1132 {
1133         int i;
1134         for (i = 0;i < SHADERPERMUTATION_INDICES;i++)
1135                 if (r_glsl_permutations[i].program)
1136                         GL_Backend_FreeProgram(r_glsl_permutations[i].program);
1137         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1138 }
1139
1140 void R_GLSL_DumpShader_f(void)
1141 {
1142         int i;
1143
1144         qfile_t *file = FS_Open("glsl/default.glsl", "w", false, false);
1145         if(!file)
1146         {
1147                 Con_Printf("failed to write to glsl/default.glsl\n");
1148                 return;
1149         }
1150
1151         FS_Print(file, "// The engine may define the following macros:\n");
1152         FS_Print(file, "// #define VERTEX_SHADER\n// #define GEOMETRY_SHADER\n// #define FRAGMENT_SHADER\n");
1153         for (i = 0;shadermodeinfo[i][0];i++)
1154                 FS_Printf(file, "// %s", shadermodeinfo[i][0]);
1155         for (i = 0;shaderpermutationinfo[i][0];i++)
1156                 FS_Printf(file, "// %s", shaderpermutationinfo[i][0]);
1157         FS_Print(file, "\n");
1158         FS_Print(file, builtinshaderstring);
1159         FS_Close(file);
1160
1161         Con_Printf("glsl/default.glsl written\n");
1162 }
1163
1164 extern rtexture_t *r_shadow_attenuationgradienttexture;
1165 extern rtexture_t *r_shadow_attenuation2dtexture;
1166 extern rtexture_t *r_shadow_attenuation3dtexture;
1167 int R_SetupSurfaceShader(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass)
1168 {
1169         // select a permutation of the lighting shader appropriate to this
1170         // combination of texture, entity, light source, and fogging, only use the
1171         // minimum features necessary to avoid wasting rendering time in the
1172         // fragment shader on features that are not being used
1173         const char *shaderfilename = NULL;
1174         unsigned int permutation = 0;
1175         unsigned int shadertype = 0;
1176         shadermode_t mode = 0;
1177         r_glsl_permutation = NULL;
1178         shaderfilename = "glsl/default.glsl";
1179         shadertype = SHADERTYPE_USES_VERTEXSHADER | SHADERTYPE_USES_FRAGMENTSHADER;
1180         // TODO: implement geometry-shader based shadow volumes someday
1181         if (r_glsl_offsetmapping.integer)
1182         {
1183                 permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1184                 if (r_glsl_offsetmapping_reliefmapping.integer)
1185                         permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1186         }
1187         if (rsurfacepass == RSURFPASS_BACKGROUND)
1188         {
1189                 // distorted background
1190                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1191                         mode = SHADERMODE_WATER;
1192                 else
1193                         mode = SHADERMODE_REFRACTION;
1194         }
1195         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1196         {
1197                 // light source
1198                 mode = SHADERMODE_LIGHTSOURCE;
1199                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1200                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1201                 if (diffusescale > 0)
1202                         permutation |= SHADERPERMUTATION_DIFFUSE;
1203                 if (specularscale > 0)
1204                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1205                 if (r_refdef.fogenabled)
1206                         permutation |= SHADERPERMUTATION_FOG;
1207                 if (rsurface.texture->colormapping)
1208                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1209                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1210                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1211                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1212                         permutation |= SHADERPERMUTATION_REFLECTION;
1213         }
1214         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)
1215         {
1216                 // unshaded geometry (fullbright or ambient model lighting)
1217                 mode = SHADERMODE_LIGHTMAP;
1218                 if (rsurface.texture->currentskinframe->glow)
1219                         permutation |= SHADERPERMUTATION_GLOW;
1220                 if (r_refdef.fogenabled)
1221                         permutation |= SHADERPERMUTATION_FOG;
1222                 if (rsurface.texture->colormapping)
1223                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1224                 if (r_glsl_offsetmapping.integer)
1225                 {
1226                         permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1227                         if (r_glsl_offsetmapping_reliefmapping.integer)
1228                                 permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1229                 }
1230                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1231                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1232                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1233                         permutation |= SHADERPERMUTATION_REFLECTION;
1234         }
1235         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT_DIRECTIONAL)
1236         {
1237                 // directional model lighting
1238                 mode = SHADERMODE_LIGHTDIRECTION;
1239                 if (rsurface.texture->currentskinframe->glow)
1240                         permutation |= SHADERPERMUTATION_GLOW;
1241                 permutation |= SHADERPERMUTATION_DIFFUSE;
1242                 if (specularscale > 0)
1243                         permutation |= SHADERPERMUTATION_SPECULAR;
1244                 if (r_refdef.fogenabled)
1245                         permutation |= SHADERPERMUTATION_FOG;
1246                 if (rsurface.texture->colormapping)
1247                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1248                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1249                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1250                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1251                         permutation |= SHADERPERMUTATION_REFLECTION;
1252         }
1253         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1254         {
1255                 // ambient model lighting
1256                 mode = SHADERMODE_LIGHTDIRECTION;
1257                 if (rsurface.texture->currentskinframe->glow)
1258                         permutation |= SHADERPERMUTATION_GLOW;
1259                 if (r_refdef.fogenabled)
1260                         permutation |= SHADERPERMUTATION_FOG;
1261                 if (rsurface.texture->colormapping)
1262                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1263                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1264                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1265                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1266                         permutation |= SHADERPERMUTATION_REFLECTION;
1267         }
1268         else
1269         {
1270                 // lightmapped wall
1271                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.worldmodel && r_refdef.worldmodel->brushq3.deluxemapping)
1272                 {
1273                         // deluxemapping (light direction texture)
1274                         if (rsurface.uselightmaptexture && r_refdef.worldmodel && r_refdef.worldmodel->brushq3.deluxemapping && r_refdef.worldmodel->brushq3.deluxemapping_modelspace)
1275                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1276                         else
1277                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1278                         if (specularscale > 0)
1279                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1280                 }
1281                 else if (r_glsl_deluxemapping.integer >= 2)
1282                 {
1283                         // fake deluxemapping (uniform light direction in tangentspace)
1284                         mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1285                         if (specularscale > 0)
1286                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1287                 }
1288                 else
1289                 {
1290                         // ordinary lightmapping
1291                         mode = SHADERMODE_LIGHTMAP;
1292                 }
1293                 if (rsurface.texture->currentskinframe->glow)
1294                         permutation |= SHADERPERMUTATION_GLOW;
1295                 if (r_refdef.fogenabled)
1296                         permutation |= SHADERPERMUTATION_FOG;
1297                 if (rsurface.texture->colormapping)
1298                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1299                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1300                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1301                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1302                         permutation |= SHADERPERMUTATION_REFLECTION;
1303         }
1304         permutation |= mode * SHADERPERMUTATION_MODEBASE;
1305         if (!r_glsl_permutations[permutation].program)
1306         {
1307                 if (!r_glsl_permutations[permutation].compiled)
1308                         R_GLSL_CompilePermutation(shaderfilename, permutation, shadertype);
1309                 if (!r_glsl_permutations[permutation].program)
1310                 {
1311                         // remove features until we find a valid permutation
1312                         unsigned int i;
1313                         for (i = (SHADERPERMUTATION_MODEBASE >> 1);;i>>=1)
1314                         {
1315                                 if (!i)
1316                                 {
1317                                         Con_Printf("OpenGL 2.0 shaders disabled - unable to find a working shader permutation fallback on this driver (set r_glsl 1 if you want to try again)\n");
1318                                         Cvar_SetValueQuick(&r_glsl, 0);
1319                                         return 0; // no bit left to clear
1320                                 }
1321                                 // reduce i more quickly whenever it would not remove any bits
1322                                 if (!(permutation & i))
1323                                         continue;
1324                                 permutation &= ~i;
1325                                 if (!r_glsl_permutations[permutation].compiled)
1326                                         R_GLSL_CompilePermutation(shaderfilename, permutation, shadertype);
1327                                 if (r_glsl_permutations[permutation].program)
1328                                         break;
1329                         }
1330                 }
1331         }
1332         r_glsl_permutation = r_glsl_permutations + permutation;
1333         CHECKGLERROR
1334         qglUseProgramObjectARB(r_glsl_permutation->program);CHECKGLERROR
1335         if (mode == SHADERMODE_LIGHTSOURCE)
1336         {
1337                 if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1338                 if (permutation & SHADERPERMUTATION_DIFFUSE)
1339                 {
1340                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2]);
1341                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, ambientscale);
1342                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, diffusescale);
1343                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, specularscale);
1344                 }
1345                 else
1346                 {
1347                         // ambient only is simpler
1348                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, lightcolorbase[0] * ambientscale, lightcolorbase[1] * ambientscale, lightcolorbase[2] * ambientscale);
1349                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, 1);
1350                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, 0);
1351                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, 0);
1352                 }
1353         }
1354         else if (mode == SHADERMODE_LIGHTDIRECTION)
1355         {
1356                 if (r_glsl_permutation->loc_AmbientColor >= 0)
1357                         qglUniform3fARB(r_glsl_permutation->loc_AmbientColor, rsurface.modellight_ambient[0] * ambientscale, rsurface.modellight_ambient[1] * ambientscale, rsurface.modellight_ambient[2] * ambientscale);
1358                 if (r_glsl_permutation->loc_DiffuseColor >= 0)
1359                         qglUniform3fARB(r_glsl_permutation->loc_DiffuseColor, rsurface.modellight_diffuse[0] * diffusescale, rsurface.modellight_diffuse[1] * diffusescale, rsurface.modellight_diffuse[2] * diffusescale);
1360                 if (r_glsl_permutation->loc_SpecularColor >= 0)
1361                         qglUniform3fARB(r_glsl_permutation->loc_SpecularColor, rsurface.modellight_diffuse[0] * specularscale, rsurface.modellight_diffuse[1] * specularscale, rsurface.modellight_diffuse[2] * specularscale);
1362                 if (r_glsl_permutation->loc_LightDir >= 0)
1363                         qglUniform3fARB(r_glsl_permutation->loc_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);
1364         }
1365         else
1366         {
1367                 if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, r_ambient.value * 2.0f / 128.0f);
1368                 if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, r_refdef.lightmapintensity * 2.0f);
1369                 if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, r_refdef.lightmapintensity * specularscale * 2.0f);
1370         }
1371         if (r_glsl_permutation->loc_GlowScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_GlowScale, r_hdr_glowintensity.value);
1372         if (r_glsl_permutation->loc_ContrastBoostCoeff >= 0)
1373         {
1374                 // The formula used is actually:
1375                 //   color.rgb *= SceneBrightness;
1376                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1377                 // I simplify that to
1378                 //   color.rgb *= [[SceneBrightness * ContrastBoost]];
1379                 //   color.rgb /= [[(ContrastBoost - 1) / ContrastBoost]] * color.rgb + 1;
1380                 // and Black:
1381                 //   color.rgb = [[SceneBrightness * ContrastBoost]] * color.rgb / ([[(ContrastBoost - 1) * SceneBrightness]] * color.rgb + 1);
1382                 // and do [[calculations]] here in the engine
1383                 qglUniform1fARB(r_glsl_permutation->loc_ContrastBoostCoeff, (r_glsl_contrastboost.value - 1) * r_view.colorscale);
1384                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_view.colorscale * r_glsl_contrastboost.value);
1385         }
1386         else
1387                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_view.colorscale);
1388         if (r_glsl_permutation->loc_FogColor >= 0)
1389         {
1390                 // additive passes are only darkened by fog, not tinted
1391                 if (rsurface.rtlight || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD))
1392                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1393                 else
1394                 /*
1395                 {
1396                         vec3_t fogvec;
1397                         //   color.rgb *= SceneBrightness;
1398                         VectorScale(r_refdef.fogcolor, r_view.colorscale, fogvec);
1399                         if(r_glsl_permutation->loc_ContrastBoostCoeff >= 0) // need to support contrast boost
1400                         {
1401                                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1402                                 fogvec[0] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[0] + 1);
1403                                 fogvec[1] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[1] + 1);
1404                                 fogvec[2] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[2] + 1);
1405                         }
1406                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, fogvec[0], fogvec[1], fogvec[2]);
1407                 }
1408                 */
1409                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1410         }
1411         if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_EyePosition, rsurface.modelorg[0], rsurface.modelorg[1], rsurface.modelorg[2]);
1412         if (r_glsl_permutation->loc_Color_Pants >= 0)
1413         {
1414                 if (rsurface.texture->currentskinframe->pants)
1415                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]);
1416                 else
1417                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1418         }
1419         if (r_glsl_permutation->loc_Color_Shirt >= 0)
1420         {
1421                 if (rsurface.texture->currentskinframe->shirt)
1422                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]);
1423                 else
1424                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
1425         }
1426         if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogRangeRecip, r_refdef.fograngerecip);
1427         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower);
1428         if (r_glsl_permutation->loc_OffsetMapping_Scale >= 0) qglUniform1fARB(r_glsl_permutation->loc_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value);
1429         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor);
1430         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]);
1431         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]);
1432         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_RefractColor, 1, rsurface.texture->refractcolor4f);
1433         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_ReflectColor, 1, rsurface.texture->reflectcolor4f);
1434         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin);
1435         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectOffset, rsurface.texture->reflectmin);
1436         CHECKGLERROR
1437         return permutation;
1438 }
1439
1440 #define SKINFRAME_HASH 1024
1441
1442 struct
1443 {
1444         int loadsequence; // incremented each level change
1445         memexpandablearray_t array;
1446         skinframe_t *hash[SKINFRAME_HASH];
1447 }
1448 r_skinframe;
1449
1450 void R_SkinFrame_PrepareForPurge(void)
1451 {
1452         r_skinframe.loadsequence++;
1453         // wrap it without hitting zero
1454         if (r_skinframe.loadsequence >= 200)
1455                 r_skinframe.loadsequence = 1;
1456 }
1457
1458 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
1459 {
1460         if (!skinframe)
1461                 return;
1462         // mark the skinframe as used for the purging code
1463         skinframe->loadsequence = r_skinframe.loadsequence;
1464 }
1465
1466 void R_SkinFrame_Purge(void)
1467 {
1468         int i;
1469         skinframe_t *s;
1470         for (i = 0;i < SKINFRAME_HASH;i++)
1471         {
1472                 for (s = r_skinframe.hash[i];s;s = s->next)
1473                 {
1474                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
1475                         {
1476                                 if (s->merged == s->base)
1477                                         s->merged = NULL;
1478                                 // FIXME: maybe pass a pointer to the pointer to R_PurgeTexture and reset it to NULL inside? [11/29/2007 Black]
1479                                 R_PurgeTexture(s->stain );s->stain  = NULL;
1480                                 R_PurgeTexture(s->merged);s->merged = NULL;
1481                                 R_PurgeTexture(s->base  );s->base   = NULL;
1482                                 R_PurgeTexture(s->pants );s->pants  = NULL;
1483                                 R_PurgeTexture(s->shirt );s->shirt  = NULL;
1484                                 R_PurgeTexture(s->nmap  );s->nmap   = NULL;
1485                                 R_PurgeTexture(s->gloss );s->gloss  = NULL;
1486                                 R_PurgeTexture(s->glow  );s->glow   = NULL;
1487                                 R_PurgeTexture(s->fog   );s->fog    = NULL;
1488                                 s->loadsequence = 0;
1489                         }
1490                 }
1491         }
1492 }
1493
1494 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
1495         skinframe_t *item;
1496         char basename[MAX_QPATH];
1497
1498         Image_StripImageExtension(name, basename, sizeof(basename));
1499
1500         if( last == NULL ) {
1501                 int hashindex;
1502                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1503                 item = r_skinframe.hash[hashindex];
1504         } else {
1505                 item = last->next;
1506         }
1507
1508         // linearly search through the hash bucket
1509         for( ; item ; item = item->next ) {
1510                 if( !strcmp( item->basename, basename ) ) {
1511                         return item;
1512                 }
1513         }
1514         return NULL;
1515 }
1516
1517 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add)
1518 {
1519         skinframe_t *item;
1520         int hashindex;
1521         char basename[MAX_QPATH];
1522         
1523         Image_StripImageExtension(name, basename, sizeof(basename));
1524
1525         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1526         for (item = r_skinframe.hash[hashindex];item;item = item->next)
1527                 if (!strcmp(item->basename, basename) && item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc)
1528                         break;
1529
1530         if (!item) {
1531                 rtexture_t *dyntexture;
1532                 // check whether its a dynamic texture
1533                 dyntexture = CL_GetDynTexture( basename );
1534                 if (!add && !dyntexture)
1535                         return NULL;
1536                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
1537                 memset(item, 0, sizeof(*item));
1538                 strlcpy(item->basename, basename, sizeof(item->basename));
1539                 item->base = dyntexture; // either NULL or dyntexture handle
1540                 item->textureflags = textureflags;
1541                 item->comparewidth = comparewidth;
1542                 item->compareheight = compareheight;
1543                 item->comparecrc = comparecrc;
1544                 item->next = r_skinframe.hash[hashindex];       
1545                 r_skinframe.hash[hashindex] = item;
1546         }
1547         else if( item->base == NULL )
1548         {
1549                 rtexture_t *dyntexture;
1550                 // check whether its a dynamic texture
1551                 // this only needs to be done because Purge doesnt delete skinframes - only sets the texture pointers to NULL and we need to restore it before returing.. [11/29/2007 Black]
1552                 dyntexture = CL_GetDynTexture( basename );
1553                 item->base = dyntexture; // either NULL or dyntexture handle
1554         }
1555
1556         R_SkinFrame_MarkUsed(item);
1557         return item;
1558 }
1559
1560 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain)
1561 {
1562         // FIXME: it should be possible to disable loading various layers using
1563         // cvars, to prevent wasted loading time and memory usage if the user does
1564         // not want them
1565         qboolean loadnormalmap = true;
1566         qboolean loadgloss = true;
1567         qboolean loadpantsandshirt = true;
1568         qboolean loadglow = true;
1569         int j;
1570         unsigned char *pixels;
1571         unsigned char *bumppixels;
1572         unsigned char *basepixels = NULL;
1573         int basepixels_width;
1574         int basepixels_height;
1575         skinframe_t *skinframe;
1576
1577         if (cls.state == ca_dedicated)
1578                 return NULL;
1579
1580         // return an existing skinframe if already loaded
1581         // if loading of the first image fails, don't make a new skinframe as it
1582         // would cause all future lookups of this to be missing
1583         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
1584         if (skinframe && skinframe->base)
1585                 return skinframe;
1586
1587         basepixels = loadimagepixelsbgra(name, complain, true);
1588         if (basepixels == NULL)
1589                 return NULL;
1590
1591         // we've got some pixels to store, so really allocate this new texture now
1592         if (!skinframe)
1593                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
1594         skinframe->stain = NULL;
1595         skinframe->merged = NULL;
1596         skinframe->base = r_texture_notexture;
1597         skinframe->pants = NULL;
1598         skinframe->shirt = NULL;
1599         skinframe->nmap = r_texture_blanknormalmap;
1600         skinframe->gloss = NULL;
1601         skinframe->glow = NULL;
1602         skinframe->fog = NULL;
1603
1604         basepixels_width = image_width;
1605         basepixels_height = image_height;
1606         skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1607
1608         if (textureflags & TEXF_ALPHA)
1609         {
1610                 for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
1611                         if (basepixels[j] < 255)
1612                                 break;
1613                 if (j < basepixels_width * basepixels_height * 4)
1614                 {
1615                         // has transparent pixels
1616                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1617                         for (j = 0;j < image_width * image_height * 4;j += 4)
1618                         {
1619                                 pixels[j+0] = 255;
1620                                 pixels[j+1] = 255;
1621                                 pixels[j+2] = 255;
1622                                 pixels[j+3] = basepixels[j+3];
1623                         }
1624                         skinframe->fog = R_LoadTexture2D (r_main_texturepool, va("%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1625                         Mem_Free(pixels);
1626                 }
1627         }
1628
1629         // _norm is the name used by tenebrae and has been adopted as standard
1630         if (loadnormalmap)
1631         {
1632                 if ((pixels = loadimagepixelsbgra(va("%s_norm", skinframe->basename), false, false)) != NULL)
1633                 {
1634                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1635                         Mem_Free(pixels);
1636                         pixels = NULL;
1637                 }
1638                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va("%s_bump", skinframe->basename), false, false)) != NULL)
1639                 {
1640                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1641                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
1642                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1643                         Mem_Free(pixels);
1644                         Mem_Free(bumppixels);
1645                 }
1646                 else if (r_shadow_bumpscale_basetexture.value > 0)
1647                 {
1648                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
1649                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
1650                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1651                         Mem_Free(pixels);
1652                 }
1653         }
1654         // _luma is supported for tenebrae compatibility
1655         // (I think it's a very stupid name, but oh well)
1656         // _glow is the preferred name
1657         if (loadglow          && ((pixels = loadimagepixelsbgra(va("%s_glow", skinframe->basename), false, false)) != NULL || (pixels = loadimagepixelsbgra(va("%s_luma", skinframe->basename), false, false)) != NULL)) {skinframe->glow = R_LoadTexture2D (r_main_texturepool, va("%s_glow", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_glow.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1658         if (loadgloss         && (pixels = loadimagepixelsbgra(va("%s_gloss", skinframe->basename), false, false)) != NULL) {skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va("%s_gloss", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_gloss.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1659         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_pants", skinframe->basename), false, false)) != NULL) {skinframe->pants = R_LoadTexture2D (r_main_texturepool, va("%s_pants", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1660         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_shirt", skinframe->basename), false, false)) != NULL) {skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va("%s_shirt", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1661
1662         if (basepixels)
1663                 Mem_Free(basepixels);
1664
1665         return skinframe;
1666 }
1667
1668 static rtexture_t *R_SkinFrame_TextureForSkinLayer(const unsigned char *in, int width, int height, const char *name, const unsigned int *palette, int textureflags, qboolean force)
1669 {
1670         int i;
1671         if (!force)
1672         {
1673                 for (i = 0;i < width*height;i++)
1674                         if (((unsigned char *)&palette[in[i]])[3] > 0)
1675                                 break;
1676                 if (i == width*height)
1677                         return NULL;
1678         }
1679         return R_LoadTexture2D (r_main_texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette);
1680 }
1681
1682 // this is only used by .spr32 sprites, HL .spr files, HL .bsp files
1683 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height)
1684 {
1685         int i;
1686         unsigned char *temp1, *temp2;
1687         skinframe_t *skinframe;
1688
1689         if (cls.state == ca_dedicated)
1690                 return NULL;
1691
1692         // if already loaded just return it, otherwise make a new skinframe
1693         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height*4) : 0, true);
1694         if (skinframe && skinframe->base)
1695                 return skinframe;
1696
1697         skinframe->stain = NULL;
1698         skinframe->merged = NULL;
1699         skinframe->base = r_texture_notexture;
1700         skinframe->pants = NULL;
1701         skinframe->shirt = NULL;
1702         skinframe->nmap = r_texture_blanknormalmap;
1703         skinframe->gloss = NULL;
1704         skinframe->glow = NULL;
1705         skinframe->fog = NULL;
1706
1707         // if no data was provided, then clearly the caller wanted to get a blank skinframe
1708         if (!skindata)
1709                 return NULL;
1710
1711         if (r_shadow_bumpscale_basetexture.value > 0)
1712         {
1713                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
1714                 temp2 = temp1 + width * height * 4;
1715                 Image_HeightmapToNormalmap_BGRA(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
1716                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
1717                 Mem_Free(temp1);
1718         }
1719         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_BGRA, skinframe->textureflags, NULL);
1720         if (textureflags & TEXF_ALPHA)
1721         {
1722                 for (i = 3;i < width * height * 4;i += 4)
1723                         if (skindata[i] < 255)
1724                                 break;
1725                 if (i < width * height * 4)
1726                 {
1727                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
1728                         memcpy(fogpixels, skindata, width * height * 4);
1729                         for (i = 0;i < width * height * 4;i += 4)
1730                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
1731                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, skinframe->textureflags, NULL);
1732                         Mem_Free(fogpixels);
1733                 }
1734         }
1735
1736         return skinframe;
1737 }
1738
1739 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
1740 {
1741         int i;
1742         unsigned char *temp1, *temp2;
1743         skinframe_t *skinframe;
1744
1745         if (cls.state == ca_dedicated)
1746                 return NULL;
1747
1748         // if already loaded just return it, otherwise make a new skinframe
1749         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
1750         if (skinframe && skinframe->base)
1751                 return skinframe;
1752
1753         skinframe->stain = NULL;
1754         skinframe->merged = NULL;
1755         skinframe->base = r_texture_notexture;
1756         skinframe->pants = NULL;
1757         skinframe->shirt = NULL;
1758         skinframe->nmap = r_texture_blanknormalmap;
1759         skinframe->gloss = NULL;
1760         skinframe->glow = NULL;
1761         skinframe->fog = NULL;
1762
1763         // if no data was provided, then clearly the caller wanted to get a blank skinframe
1764         if (!skindata)
1765                 return NULL;
1766
1767         if (r_shadow_bumpscale_basetexture.value > 0)
1768         {
1769                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
1770                 temp2 = temp1 + width * height * 4;
1771                 // use either a custom palette or the quake palette
1772                 Image_Copy8bitBGRA(skindata, temp1, width * height, palette_bgra_complete);
1773                 Image_HeightmapToNormalmap_BGRA(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
1774                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
1775                 Mem_Free(temp1);
1776         }
1777         // use either a custom palette, or the quake palette
1778         skinframe->base = skinframe->merged = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_merged", skinframe->basename), (loadglowtexture ? palette_bgra_nofullbrights : ((skinframe->textureflags & TEXF_ALPHA) ? palette_bgra_transparent : palette_bgra_complete)), skinframe->textureflags, true); // all
1779         if (loadglowtexture)
1780                 skinframe->glow = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_glow", skinframe->basename), palette_bgra_onlyfullbrights, skinframe->textureflags, false); // glow
1781         if (loadpantsandshirt)
1782         {
1783                 skinframe->pants = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_pants", skinframe->basename), palette_bgra_pantsaswhite, skinframe->textureflags, false); // pants
1784                 skinframe->shirt = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_shirt", skinframe->basename), palette_bgra_shirtaswhite, skinframe->textureflags, false); // shirt
1785         }
1786         if (skinframe->pants || skinframe->shirt)
1787                 skinframe->base = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", skinframe->basename), loadglowtexture ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap, skinframe->textureflags, false); // no special colors
1788         if (textureflags & TEXF_ALPHA)
1789         {
1790                 for (i = 0;i < width * height;i++)
1791                         if (((unsigned char *)palette_bgra_alpha)[skindata[i]*4+3] < 255)
1792                                 break;
1793                 if (i < width * height)
1794                         skinframe->fog = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_fog", skinframe->basename), palette_bgra_alpha, skinframe->textureflags, true); // fog mask
1795         }
1796
1797         return skinframe;
1798 }
1799
1800 skinframe_t *R_SkinFrame_LoadMissing(void)
1801 {
1802         skinframe_t *skinframe;
1803
1804         if (cls.state == ca_dedicated)
1805                 return NULL;
1806
1807         skinframe = R_SkinFrame_Find("missing", TEXF_PRECACHE, 0, 0, 0, true);
1808         skinframe->stain = NULL;
1809         skinframe->merged = NULL;
1810         skinframe->base = r_texture_notexture;
1811         skinframe->pants = NULL;
1812         skinframe->shirt = NULL;
1813         skinframe->nmap = r_texture_blanknormalmap;
1814         skinframe->gloss = NULL;
1815         skinframe->glow = NULL;
1816         skinframe->fog = NULL;
1817
1818         return skinframe;
1819 }
1820
1821 void gl_main_start(void)
1822 {
1823         int x;
1824         double r, alpha;
1825
1826         r = (-1.0/256.0) * (FOGMASKTABLEWIDTH * FOGMASKTABLEWIDTH);
1827         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
1828         {
1829                 alpha = 1 - exp(r / ((double)x*(double)x));
1830                 if (x == FOGMASKTABLEWIDTH - 1)
1831                         alpha = 0;
1832                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
1833         }
1834
1835         memset(r_qwskincache, 0, sizeof(r_qwskincache));
1836         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
1837
1838         // set up r_skinframe loading system for textures
1839         memset(&r_skinframe, 0, sizeof(r_skinframe));
1840         r_skinframe.loadsequence = 1;
1841         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
1842
1843         r_main_texturepool = R_AllocTexturePool();
1844         R_BuildBlankTextures();
1845         R_BuildNoTexture();
1846         if (gl_texturecubemap)
1847         {
1848                 R_BuildWhiteCube();
1849                 R_BuildNormalizationCube();
1850         }
1851         R_BuildFogTexture();
1852         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
1853         memset(&r_waterstate, 0, sizeof(r_waterstate));
1854         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1855         memset(&r_svbsp, 0, sizeof (r_svbsp));
1856 }
1857
1858 void gl_main_shutdown(void)
1859 {
1860         memset(r_qwskincache, 0, sizeof(r_qwskincache));
1861         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
1862
1863         // clear out the r_skinframe state
1864         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
1865         memset(&r_skinframe, 0, sizeof(r_skinframe));
1866
1867         if (r_svbsp.nodes)
1868                 Mem_Free(r_svbsp.nodes);
1869         memset(&r_svbsp, 0, sizeof (r_svbsp));
1870         R_FreeTexturePool(&r_main_texturepool);
1871         r_texture_blanknormalmap = NULL;
1872         r_texture_white = NULL;
1873         r_texture_grey128 = NULL;
1874         r_texture_black = NULL;
1875         r_texture_whitecube = NULL;
1876         r_texture_normalizationcube = NULL;
1877         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
1878         memset(&r_waterstate, 0, sizeof(r_waterstate));
1879         R_GLSL_Restart_f();
1880 }
1881
1882 extern void CL_ParseEntityLump(char *entitystring);
1883 void gl_main_newmap(void)
1884 {
1885         // FIXME: move this code to client
1886         int l;
1887         char *entities, entname[MAX_QPATH];
1888         if (cl.worldmodel)
1889         {
1890                 strlcpy(entname, cl.worldmodel->name, sizeof(entname));
1891                 l = (int)strlen(entname) - 4;
1892                 if (l >= 0 && !strcmp(entname + l, ".bsp"))
1893                 {
1894                         memcpy(entname + l, ".ent", 5);
1895                         if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
1896                         {
1897                                 CL_ParseEntityLump(entities);
1898                                 Mem_Free(entities);
1899                                 return;
1900                         }
1901                 }
1902                 if (cl.worldmodel->brush.entities)
1903                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
1904         }
1905 }
1906
1907 void GL_Main_Init(void)
1908 {
1909         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
1910
1911         Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
1912         Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
1913         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
1914         if (gamemode == GAME_NEHAHRA)
1915         {
1916                 Cvar_RegisterVariable (&gl_fogenable);
1917                 Cvar_RegisterVariable (&gl_fogdensity);
1918                 Cvar_RegisterVariable (&gl_fogred);
1919                 Cvar_RegisterVariable (&gl_foggreen);
1920                 Cvar_RegisterVariable (&gl_fogblue);
1921                 Cvar_RegisterVariable (&gl_fogstart);
1922                 Cvar_RegisterVariable (&gl_fogend);
1923         }
1924         Cvar_RegisterVariable(&r_depthfirst);
1925         Cvar_RegisterVariable(&r_nearclip);
1926         Cvar_RegisterVariable(&r_showbboxes);
1927         Cvar_RegisterVariable(&r_showsurfaces);
1928         Cvar_RegisterVariable(&r_showtris);
1929         Cvar_RegisterVariable(&r_shownormals);
1930         Cvar_RegisterVariable(&r_showlighting);
1931         Cvar_RegisterVariable(&r_showshadowvolumes);
1932         Cvar_RegisterVariable(&r_showcollisionbrushes);
1933         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
1934         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
1935         Cvar_RegisterVariable(&r_showdisabledepthtest);
1936         Cvar_RegisterVariable(&r_drawportals);
1937         Cvar_RegisterVariable(&r_drawentities);
1938         Cvar_RegisterVariable(&r_cullentities_trace);
1939         Cvar_RegisterVariable(&r_cullentities_trace_samples);
1940         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
1941         Cvar_RegisterVariable(&r_cullentities_trace_delay);
1942         Cvar_RegisterVariable(&r_drawviewmodel);
1943         Cvar_RegisterVariable(&r_speeds);
1944         Cvar_RegisterVariable(&r_fullbrights);
1945         Cvar_RegisterVariable(&r_wateralpha);
1946         Cvar_RegisterVariable(&r_dynamic);
1947         Cvar_RegisterVariable(&r_fullbright);
1948         Cvar_RegisterVariable(&r_shadows);
1949         Cvar_RegisterVariable(&r_shadows_throwdistance);
1950         Cvar_RegisterVariable(&r_q1bsp_skymasking);
1951         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
1952         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
1953         Cvar_RegisterVariable(&r_textureunits);
1954         Cvar_RegisterVariable(&r_glsl);
1955         Cvar_RegisterVariable(&r_glsl_offsetmapping);
1956         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
1957         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
1958         Cvar_RegisterVariable(&r_glsl_deluxemapping);
1959         Cvar_RegisterVariable(&r_water);
1960         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
1961         Cvar_RegisterVariable(&r_water_clippingplanebias);
1962         Cvar_RegisterVariable(&r_water_refractdistort);
1963         Cvar_RegisterVariable(&r_water_reflectdistort);
1964         Cvar_RegisterVariable(&r_lerpsprites);
1965         Cvar_RegisterVariable(&r_lerpmodels);
1966         Cvar_RegisterVariable(&r_lerplightstyles);
1967         Cvar_RegisterVariable(&r_waterscroll);
1968         Cvar_RegisterVariable(&r_bloom);
1969         Cvar_RegisterVariable(&r_bloom_colorscale);
1970         Cvar_RegisterVariable(&r_bloom_brighten);
1971         Cvar_RegisterVariable(&r_bloom_blur);
1972         Cvar_RegisterVariable(&r_bloom_resolution);
1973         Cvar_RegisterVariable(&r_bloom_colorexponent);
1974         Cvar_RegisterVariable(&r_bloom_colorsubtract);
1975         Cvar_RegisterVariable(&r_hdr);
1976         Cvar_RegisterVariable(&r_hdr_scenebrightness);
1977         Cvar_RegisterVariable(&r_glsl_contrastboost);
1978         Cvar_RegisterVariable(&r_hdr_glowintensity);
1979         Cvar_RegisterVariable(&r_hdr_range);
1980         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
1981         Cvar_RegisterVariable(&developer_texturelogging);
1982         Cvar_RegisterVariable(&gl_lightmaps);
1983         Cvar_RegisterVariable(&r_test);
1984         Cvar_RegisterVariable(&r_batchmode);
1985         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
1986                 Cvar_SetValue("r_fullbrights", 0);
1987         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap);
1988
1989         Cvar_RegisterVariable(&r_track_sprites);
1990         Cvar_RegisterVariable(&r_track_sprites_flags);
1991         Cvar_RegisterVariable(&r_track_sprites_scalew);
1992         Cvar_RegisterVariable(&r_track_sprites_scaleh);
1993 }
1994
1995 extern void R_Textures_Init(void);
1996 extern void GL_Draw_Init(void);
1997 extern void GL_Main_Init(void);
1998 extern void R_Shadow_Init(void);
1999 extern void R_Sky_Init(void);
2000 extern void GL_Surf_Init(void);
2001 extern void R_Particles_Init(void);
2002 extern void R_Explosion_Init(void);
2003 extern void gl_backend_init(void);
2004 extern void Sbar_Init(void);
2005 extern void R_LightningBeams_Init(void);
2006 extern void Mod_RenderInit(void);
2007
2008 void Render_Init(void)
2009 {
2010         gl_backend_init();
2011         R_Textures_Init();
2012         GL_Main_Init();
2013         GL_Draw_Init();
2014         R_Shadow_Init();
2015         R_Sky_Init();
2016         GL_Surf_Init();
2017         Sbar_Init();
2018         R_Particles_Init();
2019         R_Explosion_Init();
2020         R_LightningBeams_Init();
2021         Mod_RenderInit();
2022 }
2023
2024 /*
2025 ===============
2026 GL_Init
2027 ===============
2028 */
2029 extern char *ENGINE_EXTENSIONS;
2030 void GL_Init (void)
2031 {
2032         VID_CheckExtensions();
2033
2034         // LordHavoc: report supported extensions
2035         Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions );
2036
2037         // clear to black (loading plaque will be seen over this)
2038         CHECKGLERROR
2039         qglClearColor(0,0,0,1);CHECKGLERROR
2040         qglClear(GL_COLOR_BUFFER_BIT);CHECKGLERROR
2041 }
2042
2043 int R_CullBox(const vec3_t mins, const vec3_t maxs)
2044 {
2045         int i;
2046         mplane_t *p;
2047         for (i = 0;i < r_view.numfrustumplanes;i++)
2048         {
2049                 // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
2050                 if (i == 4)
2051                         continue;
2052                 p = r_view.frustum + i;
2053                 switch(p->signbits)
2054                 {
2055                 default:
2056                 case 0:
2057                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2058                                 return true;
2059                         break;
2060                 case 1:
2061                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2062                                 return true;
2063                         break;
2064                 case 2:
2065                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2066                                 return true;
2067                         break;
2068                 case 3:
2069                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2070                                 return true;
2071                         break;
2072                 case 4:
2073                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2074                                 return true;
2075                         break;
2076                 case 5:
2077                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2078                                 return true;
2079                         break;
2080                 case 6:
2081                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2082                                 return true;
2083                         break;
2084                 case 7:
2085                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2086                                 return true;
2087                         break;
2088                 }
2089         }
2090         return false;
2091 }
2092
2093 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
2094 {
2095         int i;
2096         const mplane_t *p;
2097         for (i = 0;i < numplanes;i++)
2098         {
2099                 p = planes + i;
2100                 switch(p->signbits)
2101                 {
2102                 default:
2103                 case 0:
2104                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2105                                 return true;
2106                         break;
2107                 case 1:
2108                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2109                                 return true;
2110                         break;
2111                 case 2:
2112                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2113                                 return true;
2114                         break;
2115                 case 3:
2116                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2117                                 return true;
2118                         break;
2119                 case 4:
2120                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2121                                 return true;
2122                         break;
2123                 case 5:
2124                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2125                                 return true;
2126                         break;
2127                 case 6:
2128                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2129                                 return true;
2130                         break;
2131                 case 7:
2132                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2133                                 return true;
2134                         break;
2135                 }
2136         }
2137         return false;
2138 }
2139
2140 //==================================================================================
2141
2142 static void R_UpdateEntityLighting(entity_render_t *ent)
2143 {
2144         vec3_t tempdiffusenormal;
2145
2146         // fetch the lighting from the worldmodel data
2147         VectorSet(ent->modellight_ambient, r_ambient.value * (2.0f / 128.0f), r_ambient.value * (2.0f / 128.0f), r_ambient.value * (2.0f / 128.0f));
2148         VectorClear(ent->modellight_diffuse);
2149         VectorClear(tempdiffusenormal);
2150         if ((ent->flags & RENDER_LIGHT) && r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint)
2151         {
2152                 vec3_t org;
2153                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
2154                 r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, org, ent->modellight_ambient, ent->modellight_diffuse, tempdiffusenormal);
2155         }
2156         else // highly rare
2157                 VectorSet(ent->modellight_ambient, 1, 1, 1);
2158
2159         // move the light direction into modelspace coordinates for lighting code
2160         Matrix4x4_Transform3x3(&ent->inversematrix, tempdiffusenormal, ent->modellight_lightdir);
2161         if(VectorLength2(ent->modellight_lightdir) > 0)
2162         {
2163                 VectorNormalize(ent->modellight_lightdir);
2164         }
2165         else
2166         {
2167                 VectorSet(ent->modellight_lightdir, 0, 0, 1); // have to set SOME valid vector here
2168         }
2169
2170         // scale ambient and directional light contributions according to rendering variables
2171         ent->modellight_ambient[0] *= ent->colormod[0] * r_refdef.lightmapintensity;
2172         ent->modellight_ambient[1] *= ent->colormod[1] * r_refdef.lightmapintensity;
2173         ent->modellight_ambient[2] *= ent->colormod[2] * r_refdef.lightmapintensity;
2174         ent->modellight_diffuse[0] *= ent->colormod[0] * r_refdef.lightmapintensity;
2175         ent->modellight_diffuse[1] *= ent->colormod[1] * r_refdef.lightmapintensity;
2176         ent->modellight_diffuse[2] *= ent->colormod[2] * r_refdef.lightmapintensity;
2177 }
2178
2179 static void R_View_UpdateEntityVisible (void)
2180 {
2181         int i, renderimask;
2182         entity_render_t *ent;
2183
2184         if (!r_drawentities.integer)
2185                 return;
2186
2187         renderimask = r_refdef.envmap ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : ((chase_active.integer || r_waterstate.renderingscene) ? RENDER_VIEWMODEL : RENDER_EXTERIORMODEL);
2188         if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingVisibleLeafs)
2189         {
2190                 // worldmodel can check visibility
2191                 for (i = 0;i < r_refdef.numentities;i++)
2192                 {
2193                         ent = r_refdef.entities[i];
2194                         r_viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs)) && ((ent->effects & EF_NODEPTHTEST) || (ent->flags & RENDER_VIEWMODEL) || r_refdef.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.worldmodel, r_viewcache.world_leafvisible, ent->mins, ent->maxs));
2195
2196                 }
2197                 if(r_cullentities_trace.integer)
2198                 {
2199                         for (i = 0;i < r_refdef.numentities;i++)
2200                         {
2201                                 ent = r_refdef.entities[i];
2202                                 if(r_viewcache.entityvisible[i] && !(ent->effects & EF_NODEPTHTEST) && !(ent->flags & RENDER_VIEWMODEL) && !(ent->model && (ent->model->name[0] == '*')))
2203                                 {
2204                                         if(Mod_CanSeeBox_Trace(r_cullentities_trace_samples.integer, r_cullentities_trace_enlarge.value, r_refdef.worldmodel, r_view.origin, ent->mins, ent->maxs))
2205                                                 ent->last_trace_visibility = realtime;
2206                                         if(ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value)
2207                                                 r_viewcache.entityvisible[i] = 0;
2208                                 }
2209                         }
2210                 }
2211         }
2212         else
2213         {
2214                 // no worldmodel or it can't check visibility
2215                 for (i = 0;i < r_refdef.numentities;i++)
2216                 {
2217                         ent = r_refdef.entities[i];
2218                         r_viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs));
2219                 }
2220         }
2221
2222         // update entity lighting (even on hidden entities for r_shadows)
2223         for (i = 0;i < r_refdef.numentities;i++)
2224                 R_UpdateEntityLighting(r_refdef.entities[i]);
2225 }
2226
2227 // only used if skyrendermasked, and normally returns false
2228 int R_DrawBrushModelsSky (void)
2229 {
2230         int i, sky;
2231         entity_render_t *ent;
2232
2233         if (!r_drawentities.integer)
2234                 return false;
2235
2236         sky = false;
2237         for (i = 0;i < r_refdef.numentities;i++)
2238         {
2239                 if (!r_viewcache.entityvisible[i])
2240                         continue;
2241                 ent = r_refdef.entities[i];
2242                 if (!ent->model || !ent->model->DrawSky)
2243                         continue;
2244                 ent->model->DrawSky(ent);
2245                 sky = true;
2246         }
2247         return sky;
2248 }
2249
2250 static void R_DrawNoModel(entity_render_t *ent);
2251 static void R_DrawModels(void)
2252 {
2253         int i;
2254         entity_render_t *ent;
2255
2256         if (!r_drawentities.integer)
2257                 return;
2258
2259         for (i = 0;i < r_refdef.numentities;i++)
2260         {
2261                 if (!r_viewcache.entityvisible[i])
2262                         continue;
2263                 ent = r_refdef.entities[i];
2264                 r_refdef.stats.entities++;
2265                 if (ent->model && ent->model->Draw != NULL)
2266                         ent->model->Draw(ent);
2267                 else
2268                         R_DrawNoModel(ent);
2269         }
2270 }
2271
2272 static void R_DrawModelsDepth(void)
2273 {
2274         int i;
2275         entity_render_t *ent;
2276
2277         if (!r_drawentities.integer)
2278                 return;
2279
2280         for (i = 0;i < r_refdef.numentities;i++)
2281         {
2282                 if (!r_viewcache.entityvisible[i])
2283                         continue;
2284                 ent = r_refdef.entities[i];
2285                 if (ent->model && ent->model->DrawDepth != NULL)
2286                         ent->model->DrawDepth(ent);
2287         }
2288 }
2289
2290 static void R_DrawModelsDebug(void)
2291 {
2292         int i;
2293         entity_render_t *ent;
2294
2295         if (!r_drawentities.integer)
2296                 return;
2297
2298         for (i = 0;i < r_refdef.numentities;i++)
2299         {
2300                 if (!r_viewcache.entityvisible[i])
2301                         continue;
2302                 ent = r_refdef.entities[i];
2303                 if (ent->model && ent->model->DrawDebug != NULL)
2304                         ent->model->DrawDebug(ent);
2305         }
2306 }
2307
2308 static void R_DrawModelsAddWaterPlanes(void)
2309 {
2310         int i;
2311         entity_render_t *ent;
2312
2313         if (!r_drawentities.integer)
2314                 return;
2315
2316         for (i = 0;i < r_refdef.numentities;i++)
2317         {
2318                 if (!r_viewcache.entityvisible[i])
2319                         continue;
2320                 ent = r_refdef.entities[i];
2321                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
2322                         ent->model->DrawAddWaterPlanes(ent);
2323         }
2324 }
2325
2326 static void R_View_SetFrustum(void)
2327 {
2328         int i;
2329         double slopex, slopey;
2330
2331         // break apart the view matrix into vectors for various purposes
2332         Matrix4x4_ToVectors(&r_view.matrix, r_view.forward, r_view.left, r_view.up, r_view.origin);
2333         VectorNegate(r_view.left, r_view.right);
2334
2335 #if 0
2336         r_view.frustum[0].normal[0] = 0 - 1.0 / r_view.frustum_x;
2337         r_view.frustum[0].normal[1] = 0 - 0;
2338         r_view.frustum[0].normal[2] = -1 - 0;
2339         r_view.frustum[1].normal[0] = 0 + 1.0 / r_view.frustum_x;
2340         r_view.frustum[1].normal[1] = 0 + 0;
2341         r_view.frustum[1].normal[2] = -1 + 0;
2342         r_view.frustum[2].normal[0] = 0 - 0;
2343         r_view.frustum[2].normal[1] = 0 - 1.0 / r_view.frustum_y;
2344         r_view.frustum[2].normal[2] = -1 - 0;
2345         r_view.frustum[3].normal[0] = 0 + 0;
2346         r_view.frustum[3].normal[1] = 0 + 1.0 / r_view.frustum_y;
2347         r_view.frustum[3].normal[2] = -1 + 0;
2348 #endif
2349
2350 #if 0
2351         zNear = r_refdef.nearclip;
2352         nudge = 1.0 - 1.0 / (1<<23);
2353         r_view.frustum[4].normal[0] = 0 - 0;
2354         r_view.frustum[4].normal[1] = 0 - 0;
2355         r_view.frustum[4].normal[2] = -1 - -nudge;
2356         r_view.frustum[4].dist = 0 - -2 * zNear * nudge;
2357         r_view.frustum[5].normal[0] = 0 + 0;
2358         r_view.frustum[5].normal[1] = 0 + 0;
2359         r_view.frustum[5].normal[2] = -1 + -nudge;
2360         r_view.frustum[5].dist = 0 + -2 * zNear * nudge;
2361 #endif
2362
2363
2364
2365 #if 0
2366         r_view.frustum[0].normal[0] = m[3] - m[0];
2367         r_view.frustum[0].normal[1] = m[7] - m[4];
2368         r_view.frustum[0].normal[2] = m[11] - m[8];
2369         r_view.frustum[0].dist = m[15] - m[12];
2370
2371         r_view.frustum[1].normal[0] = m[3] + m[0];
2372         r_view.frustum[1].normal[1] = m[7] + m[4];
2373         r_view.frustum[1].normal[2] = m[11] + m[8];
2374         r_view.frustum[1].dist = m[15] + m[12];
2375
2376         r_view.frustum[2].normal[0] = m[3] - m[1];
2377         r_view.frustum[2].normal[1] = m[7] - m[5];
2378         r_view.frustum[2].normal[2] = m[11] - m[9];
2379         r_view.frustum[2].dist = m[15] - m[13];
2380
2381         r_view.frustum[3].normal[0] = m[3] + m[1];
2382         r_view.frustum[3].normal[1] = m[7] + m[5];
2383         r_view.frustum[3].normal[2] = m[11] + m[9];
2384         r_view.frustum[3].dist = m[15] + m[13];
2385
2386         r_view.frustum[4].normal[0] = m[3] - m[2];
2387         r_view.frustum[4].normal[1] = m[7] - m[6];
2388         r_view.frustum[4].normal[2] = m[11] - m[10];
2389         r_view.frustum[4].dist = m[15] - m[14];
2390
2391         r_view.frustum[5].normal[0] = m[3] + m[2];
2392         r_view.frustum[5].normal[1] = m[7] + m[6];
2393         r_view.frustum[5].normal[2] = m[11] + m[10];
2394         r_view.frustum[5].dist = m[15] + m[14];
2395 #endif
2396
2397         if (r_view.useperspective)
2398         {
2399                 slopex = 1.0 / r_view.frustum_x;
2400                 slopey = 1.0 / r_view.frustum_y;
2401                 VectorMA(r_view.forward, -slopex, r_view.left, r_view.frustum[0].normal);
2402                 VectorMA(r_view.forward,  slopex, r_view.left, r_view.frustum[1].normal);
2403                 VectorMA(r_view.forward, -slopey, r_view.up  , r_view.frustum[2].normal);
2404                 VectorMA(r_view.forward,  slopey, r_view.up  , r_view.frustum[3].normal);
2405                 VectorCopy(r_view.forward, r_view.frustum[4].normal);
2406                 
2407                 // Leaving those out was a mistake, those were in the old code, and they
2408                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
2409                 // I couldn't reproduce it after adding those normalizations. --blub
2410                 VectorNormalize(r_view.frustum[0].normal);
2411                 VectorNormalize(r_view.frustum[1].normal);
2412                 VectorNormalize(r_view.frustum[2].normal);
2413                 VectorNormalize(r_view.frustum[3].normal);
2414
2415                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
2416                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward, -1024 * slopex, r_view.left, -1024 * slopey, r_view.up, r_view.frustumcorner[0]);
2417                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward,  1024 * slopex, r_view.left, -1024 * slopey, r_view.up, r_view.frustumcorner[1]);
2418                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward, -1024 * slopex, r_view.left,  1024 * slopey, r_view.up, r_view.frustumcorner[2]);
2419                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward,  1024 * slopex, r_view.left,  1024 * slopey, r_view.up, r_view.frustumcorner[3]);
2420
2421                 r_view.frustum[0].dist = DotProduct (r_view.origin, r_view.frustum[0].normal);
2422                 r_view.frustum[1].dist = DotProduct (r_view.origin, r_view.frustum[1].normal);
2423                 r_view.frustum[2].dist = DotProduct (r_view.origin, r_view.frustum[2].normal);
2424                 r_view.frustum[3].dist = DotProduct (r_view.origin, r_view.frustum[3].normal);
2425                 r_view.frustum[4].dist = DotProduct (r_view.origin, r_view.frustum[4].normal) + r_refdef.nearclip;
2426         }
2427         else
2428         {
2429                 VectorScale(r_view.left, -r_view.ortho_x, r_view.frustum[0].normal);
2430                 VectorScale(r_view.left,  r_view.ortho_x, r_view.frustum[1].normal);
2431                 VectorScale(r_view.up, -r_view.ortho_y, r_view.frustum[2].normal);
2432                 VectorScale(r_view.up,  r_view.ortho_y, r_view.frustum[3].normal);
2433                 VectorCopy(r_view.forward, r_view.frustum[4].normal);
2434                 r_view.frustum[0].dist = DotProduct (r_view.origin, r_view.frustum[0].normal) + r_view.ortho_x;
2435                 r_view.frustum[1].dist = DotProduct (r_view.origin, r_view.frustum[1].normal) + r_view.ortho_x;
2436                 r_view.frustum[2].dist = DotProduct (r_view.origin, r_view.frustum[2].normal) + r_view.ortho_y;
2437                 r_view.frustum[3].dist = DotProduct (r_view.origin, r_view.frustum[3].normal) + r_view.ortho_y;
2438                 r_view.frustum[4].dist = DotProduct (r_view.origin, r_view.frustum[4].normal) + r_refdef.nearclip;
2439         }
2440         r_view.numfrustumplanes = 5;
2441
2442         if (r_view.useclipplane)
2443         {
2444                 r_view.numfrustumplanes = 6;
2445                 r_view.frustum[5] = r_view.clipplane;
2446         }
2447
2448         for (i = 0;i < r_view.numfrustumplanes;i++)
2449                 PlaneClassify(r_view.frustum + i);
2450
2451         // LordHavoc: note to all quake engine coders, Quake had a special case
2452         // for 90 degrees which assumed a square view (wrong), so I removed it,
2453         // Quake2 has it disabled as well.
2454
2455         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
2456         //RotatePointAroundVector( r_view.frustum[0].normal, r_view.up, r_view.forward, -(90 - r_refdef.fov_x / 2));
2457         //r_view.frustum[0].dist = DotProduct (r_view.origin, frustum[0].normal);
2458         //PlaneClassify(&frustum[0]);
2459
2460         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
2461         //RotatePointAroundVector( r_view.frustum[1].normal, r_view.up, r_view.forward, (90 - r_refdef.fov_x / 2));
2462         //r_view.frustum[1].dist = DotProduct (r_view.origin, frustum[1].normal);
2463         //PlaneClassify(&frustum[1]);
2464
2465         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
2466         //RotatePointAroundVector( r_view.frustum[2].normal, r_view.left, r_view.forward, -(90 - r_refdef.fov_y / 2));
2467         //r_view.frustum[2].dist = DotProduct (r_view.origin, frustum[2].normal);
2468         //PlaneClassify(&frustum[2]);
2469
2470         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
2471         //RotatePointAroundVector( r_view.frustum[3].normal, r_view.left, r_view.forward, (90 - r_refdef.fov_y / 2));
2472         //r_view.frustum[3].dist = DotProduct (r_view.origin, frustum[3].normal);
2473         //PlaneClassify(&frustum[3]);
2474
2475         // nearclip plane
2476         //VectorCopy(r_view.forward, r_view.frustum[4].normal);
2477         //r_view.frustum[4].dist = DotProduct (r_view.origin, frustum[4].normal) + r_nearclip.value;
2478         //PlaneClassify(&frustum[4]);
2479 }
2480
2481 void R_View_Update(void)
2482 {
2483         R_View_SetFrustum();
2484         R_View_WorldVisibility(r_view.useclipplane);
2485         R_View_UpdateEntityVisible();
2486 }
2487
2488 void R_SetupView(void)
2489 {
2490         if (!r_view.useperspective)
2491                 GL_SetupView_Mode_Ortho(-r_view.ortho_x, -r_view.ortho_y, r_view.ortho_x, r_view.ortho_y, -r_refdef.farclip, r_refdef.farclip);
2492         else if (r_refdef.rtworldshadows || r_refdef.rtdlightshadows)
2493                 GL_SetupView_Mode_PerspectiveInfiniteFarClip(r_view.frustum_x, r_view.frustum_y, r_refdef.nearclip);
2494         else
2495                 GL_SetupView_Mode_Perspective(r_view.frustum_x, r_view.frustum_y, r_refdef.nearclip, r_refdef.farclip);
2496
2497         GL_SetupView_Orientation_FromEntity(&r_view.matrix);
2498
2499         if (r_view.useclipplane)
2500         {
2501                 // LordHavoc: couldn't figure out how to make this approach the
2502                 vec_t dist = r_view.clipplane.dist - r_water_clippingplanebias.value;
2503                 vec_t viewdist = DotProduct(r_view.origin, r_view.clipplane.normal);
2504                 if (viewdist < r_view.clipplane.dist + r_water_clippingplanebias.value)
2505                         dist = r_view.clipplane.dist;
2506                 GL_SetupView_ApplyCustomNearClipPlane(r_view.clipplane.normal[0], r_view.clipplane.normal[1], r_view.clipplane.normal[2], dist);
2507         }
2508 }
2509
2510 void R_ResetViewRendering2D(void)
2511 {
2512         if (gl_support_fragment_shader)
2513         {
2514                 qglUseProgramObjectARB(0);CHECKGLERROR
2515         }
2516
2517         DrawQ_Finish();
2518
2519         // GL is weird because it's bottom to top, r_view.y is top to bottom
2520         qglViewport(r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2521         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
2522         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
2523         GL_Color(1, 1, 1, 1);
2524         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
2525         GL_BlendFunc(GL_ONE, GL_ZERO);
2526         GL_AlphaTest(false);
2527         GL_ScissorTest(false);
2528         GL_DepthMask(false);
2529         GL_DepthRange(0, 1);
2530         GL_DepthTest(false);
2531         R_Mesh_Matrix(&identitymatrix);
2532         R_Mesh_ResetTextureState();
2533         GL_PolygonOffset(0, 0);
2534         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2535         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2536         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2537         qglStencilMask(~0);CHECKGLERROR
2538         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2539         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2540         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2541 }
2542
2543 void R_ResetViewRendering3D(void)
2544 {
2545         if (gl_support_fragment_shader)
2546         {
2547                 qglUseProgramObjectARB(0);CHECKGLERROR
2548         }
2549
2550         DrawQ_Finish();
2551
2552         // GL is weird because it's bottom to top, r_view.y is top to bottom
2553         qglViewport(r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2554         R_SetupView();
2555         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
2556         GL_Color(1, 1, 1, 1);
2557         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
2558         GL_BlendFunc(GL_ONE, GL_ZERO);
2559         GL_AlphaTest(false);
2560         GL_ScissorTest(true);
2561         GL_DepthMask(true);
2562         GL_DepthRange(0, 1);
2563         GL_DepthTest(true);
2564         R_Mesh_Matrix(&identitymatrix);
2565         R_Mesh_ResetTextureState();
2566         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
2567         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2568         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2569         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2570         qglStencilMask(~0);CHECKGLERROR
2571         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2572         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2573         GL_CullFace(r_view.cullface_back);
2574 }
2575
2576 /*
2577         R_Bloom_SetupShader(
2578 "// bloom shader\n"
2579 "// written by Forest 'LordHavoc' Hale\n"
2580 "\n"
2581 "// common definitions between vertex shader and fragment shader:\n"
2582 "\n"
2583 "#ifdef __GLSL_CG_DATA_TYPES\n"
2584 "#define myhalf half\n"
2585 "#define myhvec2 hvec2\n"
2586 "#define myhvec3 hvec3\n"
2587 "#define myhvec4 hvec4\n"
2588 "#else\n"
2589 "#define myhalf float\n"
2590 "#define myhvec2 vec2\n"
2591 "#define myhvec3 vec3\n"
2592 "#define myhvec4 vec4\n"
2593 "#endif\n"
2594 "\n"
2595 "varying vec2 ScreenTexCoord;\n"
2596 "varying vec2 BloomTexCoord;\n"
2597 "\n"
2598 "\n"
2599 "\n"
2600 "\n"
2601 "// vertex shader specific:\n"
2602 "#ifdef VERTEX_SHADER\n"
2603 "\n"
2604 "void main(void)\n"
2605 "{\n"
2606 "       ScreenTexCoord = vec2(gl_MultiTexCoord0);\n"
2607 "       BloomTexCoord = vec2(gl_MultiTexCoord1);\n"
2608 "       // transform vertex to camera space, using ftransform to match non-VS\n"
2609 "       // rendering\n"
2610 "       gl_Position = ftransform();\n"
2611 "}\n"
2612 "\n"
2613 "#endif // VERTEX_SHADER\n"
2614 "\n"
2615 "\n"
2616 "\n"
2617 "\n"
2618 "// fragment shader specific:\n"
2619 "#ifdef FRAGMENT_SHADER\n"
2620 "\n"
2621 "void main(void)\n"
2622 "{\n"
2623 "       int x, y;
2624 "       myhvec3 color = myhvec3(texture2D(Texture_Screen, ScreenTexCoord));\n"
2625 "       for (x = -BLUR_X;x <= BLUR_X;x++)
2626 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2627 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2628 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2629 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2630
2631 "       gl_FragColor = vec4(color);\n"
2632 "}\n"
2633 "\n"
2634 "#endif // FRAGMENT_SHADER\n"
2635 */
2636
2637 void R_RenderScene(qboolean addwaterplanes);
2638
2639 static void R_Water_StartFrame(void)
2640 {
2641         int i;
2642         int waterwidth, waterheight, texturewidth, textureheight;
2643         r_waterstate_waterplane_t *p;
2644
2645         // set waterwidth and waterheight to the water resolution that will be
2646         // used (often less than the screen resolution for faster rendering)
2647         waterwidth = (int)bound(1, r_view.width * r_water_resolutionmultiplier.value, r_view.width);
2648         waterheight = (int)bound(1, r_view.height * r_water_resolutionmultiplier.value, r_view.height);
2649
2650         // calculate desired texture sizes
2651         // can't use water if the card does not support the texture size
2652         if (!r_water.integer || !r_glsl.integer || !gl_support_fragment_shader || waterwidth > gl_max_texture_size || waterheight > gl_max_texture_size)
2653                 texturewidth = textureheight = waterwidth = waterheight = 0;
2654         else if (gl_support_arb_texture_non_power_of_two)
2655         {
2656                 texturewidth = waterwidth;
2657                 textureheight = waterheight;
2658         }
2659         else
2660         {
2661                 for (texturewidth   = 1;texturewidth   < waterwidth ;texturewidth   *= 2);
2662                 for (textureheight  = 1;textureheight  < waterheight;textureheight  *= 2);
2663         }
2664
2665         // allocate textures as needed
2666         if (r_waterstate.waterwidth != waterwidth || r_waterstate.waterheight != waterheight || r_waterstate.texturewidth != texturewidth || r_waterstate.textureheight != textureheight)
2667         {
2668                 r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2669                 for (i = 0, p = r_waterstate.waterplanes;i < r_waterstate.maxwaterplanes;i++, p++)
2670                 {
2671                         if (p->texture_refraction)
2672                                 R_FreeTexture(p->texture_refraction);
2673                         p->texture_refraction = NULL;
2674                         if (p->texture_reflection)
2675                                 R_FreeTexture(p->texture_reflection);
2676                         p->texture_reflection = NULL;
2677                 }
2678                 memset(&r_waterstate, 0, sizeof(r_waterstate));
2679                 r_waterstate.waterwidth = waterwidth;
2680                 r_waterstate.waterheight = waterheight;
2681                 r_waterstate.texturewidth = texturewidth;
2682                 r_waterstate.textureheight = textureheight;
2683         }
2684
2685         if (r_waterstate.waterwidth)
2686         {
2687                 r_waterstate.enabled = true;
2688
2689                 // set up variables that will be used in shader setup
2690                 r_waterstate.screenscale[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2691                 r_waterstate.screenscale[1] = 0.5f * (float)waterheight / (float)textureheight;
2692                 r_waterstate.screencenter[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2693                 r_waterstate.screencenter[1] = 0.5f * (float)waterheight / (float)textureheight;
2694         }
2695
2696         r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2697         r_waterstate.numwaterplanes = 0;
2698 }
2699
2700 static void R_Water_AddWaterPlane(msurface_t *surface)
2701 {
2702         int triangleindex, planeindex;
2703         const int *e;
2704         vec3_t vert[3];
2705         vec3_t normal;
2706         vec3_t center;
2707         r_waterstate_waterplane_t *p;
2708         // just use the first triangle with a valid normal for any decisions
2709         VectorClear(normal);
2710         for (triangleindex = 0, e = rsurface.modelelement3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
2711         {
2712                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[0]*3, vert[0]);
2713                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[1]*3, vert[1]);
2714                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[2]*3, vert[2]);
2715                 TriangleNormal(vert[0], vert[1], vert[2], normal);
2716                 if (VectorLength2(normal) >= 0.001)
2717                         break;
2718         }
2719
2720         // find a matching plane if there is one
2721         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2722                 if (fabs(PlaneDiff(vert[0], &p->plane)) < 1 && fabs(PlaneDiff(vert[1], &p->plane)) < 1 && fabs(PlaneDiff(vert[2], &p->plane)) < 1)
2723                         break;
2724         if (planeindex >= r_waterstate.maxwaterplanes)
2725                 return; // nothing we can do, out of planes
2726
2727         // if this triangle does not fit any known plane rendered this frame, add one
2728         if (planeindex >= r_waterstate.numwaterplanes)
2729         {
2730                 // store the new plane
2731                 r_waterstate.numwaterplanes++;
2732                 VectorCopy(normal, p->plane.normal);
2733                 VectorNormalize(p->plane.normal);
2734                 p->plane.dist = DotProduct(vert[0], p->plane.normal);
2735                 PlaneClassify(&p->plane);
2736                 // flip the plane if it does not face the viewer
2737                 if (PlaneDiff(r_view.origin, &p->plane) < 0)
2738                 {
2739                         VectorNegate(p->plane.normal, p->plane.normal);
2740                         p->plane.dist *= -1;
2741                         PlaneClassify(&p->plane);
2742                 }
2743                 // clear materialflags and pvs
2744                 p->materialflags = 0;
2745                 p->pvsvalid = false;
2746         }
2747         // merge this surface's materialflags into the waterplane
2748         p->materialflags |= surface->texture->currentframe->currentmaterialflags;
2749         // merge this surface's PVS into the waterplane
2750         VectorMAM(0.5f, surface->mins, 0.5f, surface->maxs, center);
2751         if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.worldmodel && r_refdef.worldmodel->brush.FatPVS
2752          && r_refdef.worldmodel->brush.PointInLeaf && r_refdef.worldmodel->brush.PointInLeaf(r_refdef.worldmodel, center)->clusterindex >= 0)
2753         {
2754                 r_refdef.worldmodel->brush.FatPVS(r_refdef.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
2755                 p->pvsvalid = true;
2756         }
2757 }
2758
2759 static void R_Water_ProcessPlanes(void)
2760 {
2761         r_view_t originalview;
2762         int planeindex;
2763         r_waterstate_waterplane_t *p;
2764
2765         originalview = r_view;
2766
2767         // make sure enough textures are allocated
2768         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2769         {
2770                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2771                 {
2772                         if (!p->texture_refraction)
2773                                 p->texture_refraction = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_refraction", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2774                         if (!p->texture_refraction)
2775                                 goto error;
2776                 }
2777
2778                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2779                 {
2780                         if (!p->texture_reflection)
2781                                 p->texture_reflection = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_reflection", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2782                         if (!p->texture_reflection)
2783                                 goto error;
2784                 }
2785         }
2786
2787         // render views
2788         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2789         {
2790                 r_view.showdebug = false;
2791                 r_view.width = r_waterstate.waterwidth;
2792                 r_view.height = r_waterstate.waterheight;
2793                 r_view.useclipplane = true;
2794                 r_waterstate.renderingscene = true;
2795
2796                 // render the normal view scene and copy into texture
2797                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
2798                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2799                 {
2800                         r_view.clipplane = p->plane;
2801                         VectorNegate(r_view.clipplane.normal, r_view.clipplane.normal);
2802                         r_view.clipplane.dist = -r_view.clipplane.dist;
2803                         PlaneClassify(&r_view.clipplane);
2804
2805                         R_RenderScene(false);
2806
2807                         // copy view into the screen texture
2808                         R_Mesh_TexBind(0, R_GetTexture(p->texture_refraction));
2809                         GL_ActiveTexture(0);
2810                         CHECKGLERROR
2811                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2812                 }
2813
2814                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2815                 {
2816                         // render reflected scene and copy into texture
2817                         Matrix4x4_Reflect(&r_view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
2818                         r_view.clipplane = p->plane;
2819                         // reverse the cullface settings for this render
2820                         r_view.cullface_front = GL_FRONT;
2821                         r_view.cullface_back = GL_BACK;
2822                         if (r_refdef.worldmodel && r_refdef.worldmodel->brush.num_pvsclusterbytes)
2823                         {
2824                                 r_view.usecustompvs = true;
2825                                 if (p->pvsvalid)
2826                                         memcpy(r_viewcache.world_pvsbits, p->pvsbits, r_refdef.worldmodel->brush.num_pvsclusterbytes);
2827                                 else
2828                                         memset(r_viewcache.world_pvsbits, 0xFF, r_refdef.worldmodel->brush.num_pvsclusterbytes);
2829                         }
2830
2831                         R_ResetViewRendering3D();
2832                         R_ClearScreen();
2833                         if (r_timereport_active)
2834                                 R_TimeReport("viewclear");
2835
2836                         R_RenderScene(false);
2837
2838                         R_Mesh_TexBind(0, R_GetTexture(p->texture_reflection));
2839                         GL_ActiveTexture(0);
2840                         CHECKGLERROR
2841                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2842
2843                         R_ResetViewRendering3D();
2844                         R_ClearScreen();
2845                         if (r_timereport_active)
2846                                 R_TimeReport("viewclear");
2847                 }
2848
2849                 r_view = originalview;
2850                 r_view.clear = true;
2851                 r_waterstate.renderingscene = false;
2852         }
2853         return;
2854 error:
2855         r_view = originalview;
2856         r_waterstate.renderingscene = false;
2857         Cvar_SetValueQuick(&r_water, 0);
2858         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
2859         return;
2860 }
2861
2862 void R_Bloom_StartFrame(void)
2863 {
2864         int bloomtexturewidth, bloomtextureheight, screentexturewidth, screentextureheight;
2865
2866         // set bloomwidth and bloomheight to the bloom resolution that will be
2867         // used (often less than the screen resolution for faster rendering)
2868         r_bloomstate.bloomwidth = bound(1, r_bloom_resolution.integer, r_view.width);
2869         r_bloomstate.bloomheight = r_bloomstate.bloomwidth * r_view.height / r_view.width;
2870         r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, r_view.height);
2871
2872         // calculate desired texture sizes
2873         if (gl_support_arb_texture_non_power_of_two)
2874         {
2875                 screentexturewidth = r_view.width;
2876                 screentextureheight = r_view.height;
2877                 bloomtexturewidth = r_bloomstate.bloomwidth;
2878                 bloomtextureheight = r_bloomstate.bloomheight;
2879         }
2880         else
2881         {
2882                 for (screentexturewidth  = 1;screentexturewidth  < vid.width               ;screentexturewidth  *= 2);
2883                 for (screentextureheight = 1;screentextureheight < vid.height              ;screentextureheight *= 2);
2884                 for (bloomtexturewidth   = 1;bloomtexturewidth   < r_bloomstate.bloomwidth ;bloomtexturewidth   *= 2);
2885                 for (bloomtextureheight  = 1;bloomtextureheight  < r_bloomstate.bloomheight;bloomtextureheight  *= 2);
2886         }
2887
2888         if (r_hdr.integer)
2889         {
2890                 screentexturewidth = screentextureheight = 0;
2891         }
2892         else if (r_bloom.integer)
2893         {
2894         }
2895         else
2896         {
2897                 screentexturewidth = screentextureheight = 0;
2898                 bloomtexturewidth = bloomtextureheight = 0;
2899         }
2900
2901         if ((!bloomtexturewidth && !bloomtextureheight) || r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512 || screentexturewidth > gl_max_texture_size || screentextureheight > gl_max_texture_size || bloomtexturewidth > gl_max_texture_size || bloomtextureheight > gl_max_texture_size)
2902         {
2903                 // can't use bloom if the parameters are too weird
2904                 // can't use bloom if the card does not support the texture size
2905                 if (r_bloomstate.texture_screen)
2906                         R_FreeTexture(r_bloomstate.texture_screen);
2907                 if (r_bloomstate.texture_bloom)
2908                         R_FreeTexture(r_bloomstate.texture_bloom);
2909                 memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2910                 return;
2911         }
2912
2913         r_bloomstate.enabled = true;
2914         r_bloomstate.hdr = r_hdr.integer != 0;
2915
2916         // allocate textures as needed
2917         if (r_bloomstate.screentexturewidth != screentexturewidth || r_bloomstate.screentextureheight != screentextureheight)
2918         {
2919                 if (r_bloomstate.texture_screen)
2920                         R_FreeTexture(r_bloomstate.texture_screen);
2921                 r_bloomstate.texture_screen = NULL;
2922                 r_bloomstate.screentexturewidth = screentexturewidth;
2923                 r_bloomstate.screentextureheight = screentextureheight;
2924                 if (r_bloomstate.screentexturewidth && r_bloomstate.screentextureheight)
2925                         r_bloomstate.texture_screen = R_LoadTexture2D(r_main_texturepool, "screen", r_bloomstate.screentexturewidth, r_bloomstate.screentextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2926         }
2927         if (r_bloomstate.bloomtexturewidth != bloomtexturewidth || r_bloomstate.bloomtextureheight != bloomtextureheight)
2928         {
2929                 if (r_bloomstate.texture_bloom)
2930                         R_FreeTexture(r_bloomstate.texture_bloom);
2931                 r_bloomstate.texture_bloom = NULL;
2932                 r_bloomstate.bloomtexturewidth = bloomtexturewidth;
2933                 r_bloomstate.bloomtextureheight = bloomtextureheight;
2934                 if (r_bloomstate.bloomtexturewidth && r_bloomstate.bloomtextureheight)
2935                         r_bloomstate.texture_bloom = R_LoadTexture2D(r_main_texturepool, "bloom", r_bloomstate.bloomtexturewidth, r_bloomstate.bloomtextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2936         }
2937
2938         // set up a texcoord array for the full resolution screen image
2939         // (we have to keep this around to copy back during final render)
2940         r_bloomstate.screentexcoord2f[0] = 0;
2941         r_bloomstate.screentexcoord2f[1] = (float)r_view.height / (float)r_bloomstate.screentextureheight;
2942         r_bloomstate.screentexcoord2f[2] = (float)r_view.width / (float)r_bloomstate.screentexturewidth;
2943         r_bloomstate.screentexcoord2f[3] = (float)r_view.height / (float)r_bloomstate.screentextureheight;
2944         r_bloomstate.screentexcoord2f[4] = (float)r_view.width / (float)r_bloomstate.screentexturewidth;
2945         r_bloomstate.screentexcoord2f[5] = 0;
2946         r_bloomstate.screentexcoord2f[6] = 0;
2947         r_bloomstate.screentexcoord2f[7] = 0;
2948
2949         // set up a texcoord array for the reduced resolution bloom image
2950         // (which will be additive blended over the screen image)
2951         r_bloomstate.bloomtexcoord2f[0] = 0;
2952         r_bloomstate.bloomtexcoord2f[1] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
2953         r_bloomstate.bloomtexcoord2f[2] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
2954         r_bloomstate.bloomtexcoord2f[3] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
2955         r_bloomstate.bloomtexcoord2f[4] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
2956         r_bloomstate.bloomtexcoord2f[5] = 0;
2957         r_bloomstate.bloomtexcoord2f[6] = 0;
2958         r_bloomstate.bloomtexcoord2f[7] = 0;
2959 }
2960
2961 void R_Bloom_CopyScreenTexture(float colorscale)
2962 {
2963         r_refdef.stats.bloom++;
2964
2965         R_ResetViewRendering2D();
2966         R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
2967         R_Mesh_ColorPointer(NULL, 0, 0);
2968         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
2969         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
2970
2971         // copy view into the screen texture
2972         GL_ActiveTexture(0);
2973         CHECKGLERROR
2974         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2975         r_refdef.stats.bloom_copypixels += r_view.width * r_view.height;
2976
2977         // now scale it down to the bloom texture size
2978         CHECKGLERROR
2979         qglViewport(r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2980         GL_BlendFunc(GL_ONE, GL_ZERO);
2981         GL_Color(colorscale, colorscale, colorscale, 1);
2982         // TODO: optimize with multitexture or GLSL
2983         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
2984         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2985
2986         // we now have a bloom image in the framebuffer
2987         // copy it into the bloom image texture for later processing
2988         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
2989         GL_ActiveTexture(0);
2990         CHECKGLERROR
2991         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2992         r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2993 }
2994
2995 void R_Bloom_CopyHDRTexture(void)
2996 {
2997         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
2998         GL_ActiveTexture(0);
2999         CHECKGLERROR
3000         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
3001         r_refdef.stats.bloom_copypixels += r_view.width * r_view.height;
3002 }
3003
3004 void R_Bloom_MakeTexture(void)
3005 {
3006         int x, range, dir;
3007         float xoffset, yoffset, r, brighten;
3008
3009         r_refdef.stats.bloom++;
3010
3011         R_ResetViewRendering2D();
3012         R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3013         R_Mesh_ColorPointer(NULL, 0, 0);
3014
3015         // we have a bloom image in the framebuffer
3016         CHECKGLERROR
3017         qglViewport(r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3018
3019         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
3020         {
3021                 x *= 2;
3022                 r = bound(0, r_bloom_colorexponent.value / x, 1);
3023                 GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR);
3024                 GL_Color(r, r, r, 1);
3025                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3026                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3027                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3028                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3029
3030                 // copy the vertically blurred bloom view to a texture
3031                 GL_ActiveTexture(0);
3032                 CHECKGLERROR
3033                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3034                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3035         }
3036
3037         range = r_bloom_blur.integer * r_bloomstate.bloomwidth / 320;
3038         brighten = r_bloom_brighten.value;
3039         if (r_hdr.integer)
3040                 brighten *= r_hdr_range.value;
3041         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3042         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.offsettexcoord2f, 0, 0);
3043
3044         for (dir = 0;dir < 2;dir++)
3045         {
3046                 // blend on at multiple vertical offsets to achieve a vertical blur
3047                 // TODO: do offset blends using GLSL
3048                 GL_BlendFunc(GL_ONE, GL_ZERO);
3049                 for (x = -range;x <= range;x++)
3050                 {
3051                         if (!dir){xoffset = 0;yoffset = x;}
3052                         else {xoffset = x;yoffset = 0;}
3053                         xoffset /= (float)r_bloomstate.bloomtexturewidth;
3054                         yoffset /= (float)r_bloomstate.bloomtextureheight;
3055                         // compute a texcoord array with the specified x and y offset
3056                         r_bloomstate.offsettexcoord2f[0] = xoffset+0;
3057                         r_bloomstate.offsettexcoord2f[1] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3058                         r_bloomstate.offsettexcoord2f[2] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3059                         r_bloomstate.offsettexcoord2f[3] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3060                         r_bloomstate.offsettexcoord2f[4] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3061                         r_bloomstate.offsettexcoord2f[5] = yoffset+0;
3062                         r_bloomstate.offsettexcoord2f[6] = xoffset+0;
3063                         r_bloomstate.offsettexcoord2f[7] = yoffset+0;
3064                         // this r value looks like a 'dot' particle, fading sharply to
3065                         // black at the edges
3066                         // (probably not realistic but looks good enough)
3067                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
3068                         //r = (dir ? 1.0f : brighten)/(range*2+1);
3069                         r = (dir ? 1.0f : brighten)/(range*2+1)*(1 - x*x/(float)(range*range));
3070                         GL_Color(r, r, r, 1);
3071                         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3072                         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3073                         GL_BlendFunc(GL_ONE, GL_ONE);
3074                 }
3075
3076                 // copy the vertically blurred bloom view to a texture
3077                 GL_ActiveTexture(0);
3078                 CHECKGLERROR
3079                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3080                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3081         }
3082
3083         // apply subtract last
3084         // (just like it would be in a GLSL shader)
3085         if (r_bloom_colorsubtract.value > 0 && gl_support_ext_blend_subtract)
3086         {
3087                 GL_BlendFunc(GL_ONE, GL_ZERO);
3088                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3089                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3090                 GL_Color(1, 1, 1, 1);
3091                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3092                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3093
3094                 GL_BlendFunc(GL_ONE, GL_ONE);
3095                 qglBlendEquationEXT(GL_FUNC_REVERSE_SUBTRACT_EXT);
3096                 R_Mesh_TexBind(0, R_GetTexture(r_texture_white));
3097                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3098                 GL_Color(r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 1);
3099                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3100                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3101                 qglBlendEquationEXT(GL_FUNC_ADD_EXT);
3102
3103                 // copy the darkened bloom view to a texture
3104                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3105                 GL_ActiveTexture(0);
3106                 CHECKGLERROR
3107                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3108                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3109         }
3110 }
3111
3112 void R_HDR_RenderBloomTexture(void)
3113 {
3114         int oldwidth, oldheight;
3115
3116         oldwidth = r_view.width;
3117         oldheight = r_view.height;
3118         r_view.width = r_bloomstate.bloomwidth;
3119         r_view.height = r_bloomstate.bloomheight;
3120
3121         // TODO: support GL_EXT_framebuffer_object rather than reusing the framebuffer?  it might improve SLI performance.
3122         // TODO: add exposure compensation features
3123         // TODO: add fp16 framebuffer support
3124
3125         r_view.showdebug = false;
3126         r_view.colorscale = r_bloom_colorscale.value * r_hdr_scenebrightness.value;
3127         if (r_hdr.integer)
3128                 r_view.colorscale /= r_hdr_range.value;
3129         r_waterstate.numwaterplanes = 0;
3130         R_RenderScene(r_waterstate.enabled);
3131         r_view.showdebug = true;
3132
3133         R_ResetViewRendering2D();
3134
3135         R_Bloom_CopyHDRTexture();
3136         R_Bloom_MakeTexture();
3137
3138         R_ResetViewRendering3D();
3139
3140         R_ClearScreen();
3141         if (r_timereport_active)
3142                 R_TimeReport("viewclear");
3143
3144         // restore the view settings
3145         r_view.width = oldwidth;
3146         r_view.height = oldheight;
3147 }
3148
3149 static void R_BlendView(void)
3150 {
3151         if (r_bloomstate.enabled && r_bloomstate.hdr)
3152         {
3153                 // render high dynamic range bloom effect
3154                 // the bloom texture was made earlier this render, so we just need to
3155                 // blend it onto the screen...
3156                 R_ResetViewRendering2D();
3157                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3158                 R_Mesh_ColorPointer(NULL, 0, 0);
3159                 GL_Color(1, 1, 1, 1);
3160                 GL_BlendFunc(GL_ONE, GL_ONE);
3161                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3162                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3163                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3164                 r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3165         }
3166         else if (r_bloomstate.enabled)
3167         {
3168                 // render simple bloom effect
3169                 // copy the screen and shrink it and darken it for the bloom process
3170                 R_Bloom_CopyScreenTexture(r_bloom_colorscale.value);
3171                 // make the bloom texture
3172                 R_Bloom_MakeTexture();
3173                 // put the original screen image back in place and blend the bloom
3174                 // texture on it
3175                 R_ResetViewRendering2D();
3176                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3177                 R_Mesh_ColorPointer(NULL, 0, 0);
3178                 GL_Color(1, 1, 1, 1);
3179                 GL_BlendFunc(GL_ONE, GL_ZERO);
3180                 // do both in one pass if possible
3181                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3182                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3183                 if (r_textureunits.integer >= 2 && gl_combine.integer)
3184                 {
3185                         R_Mesh_TexCombine(1, GL_ADD, GL_ADD, 1, 1);
3186                         R_Mesh_TexBind(1, R_GetTexture(r_bloomstate.texture_screen));
3187                         R_Mesh_TexCoordPointer(1, 2, r_bloomstate.screentexcoord2f, 0, 0);
3188                 }
3189                 else
3190                 {
3191                         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3192                         r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3193                         // now blend on the bloom texture
3194                         GL_BlendFunc(GL_ONE, GL_ONE);
3195                         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3196                         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
3197                 }
3198                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3199                 r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3200         }
3201         if (r_refdef.viewblend[3] >= (1.0f / 256.0f))
3202         {
3203                 // apply a color tint to the whole view
3204                 R_ResetViewRendering2D();
3205                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3206                 R_Mesh_ColorPointer(NULL, 0, 0);
3207                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3208                 GL_Color(r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
3209                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3210         }
3211 }
3212
3213 void R_RenderScene(qboolean addwaterplanes);
3214
3215 matrix4x4_t r_waterscrollmatrix;
3216
3217 void R_UpdateVariables(void)
3218 {
3219         R_Textures_Frame();
3220
3221         r_refdef.farclip = 4096;
3222         if (r_refdef.worldmodel)
3223                 r_refdef.farclip += VectorDistance(r_refdef.worldmodel->normalmins, r_refdef.worldmodel->normalmaxs);
3224         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
3225
3226         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
3227                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
3228         r_refdef.polygonfactor = 0;
3229         r_refdef.polygonoffset = 0;
3230         r_refdef.shadowpolygonfactor = r_refdef.polygonfactor + r_shadow_polygonfactor.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3231         r_refdef.shadowpolygonoffset = r_refdef.polygonoffset + r_shadow_polygonoffset.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3232
3233         r_refdef.rtworld = r_shadow_realtime_world.integer;
3234         r_refdef.rtworldshadows = r_shadow_realtime_world_shadows.integer && gl_stencil;
3235         r_refdef.rtdlight = (r_shadow_realtime_world.integer || r_shadow_realtime_dlight.integer) && !gl_flashblend.integer && r_dynamic.integer;
3236         r_refdef.rtdlightshadows = r_refdef.rtdlight && r_shadow_realtime_dlight_shadows.integer && gl_stencil;
3237         r_refdef.lightmapintensity = r_refdef.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
3238         if (r_showsurfaces.integer)
3239         {
3240                 r_refdef.rtworld = false;
3241                 r_refdef.rtworldshadows = false;
3242                 r_refdef.rtdlight = false;
3243                 r_refdef.rtdlightshadows = false;
3244                 r_refdef.lightmapintensity = 0;
3245         }
3246
3247         if (gamemode == GAME_NEHAHRA)
3248         {
3249                 if (gl_fogenable.integer)
3250                 {
3251                         r_refdef.oldgl_fogenable = true;
3252                         r_refdef.fog_density = gl_fogdensity.value;
3253                         r_refdef.fog_red = gl_fogred.value;
3254                         r_refdef.fog_green = gl_foggreen.value;
3255                         r_refdef.fog_blue = gl_fogblue.value;
3256                 }
3257                 else if (r_refdef.oldgl_fogenable)
3258                 {
3259                         r_refdef.oldgl_fogenable = false;
3260                         r_refdef.fog_density = 0;
3261                         r_refdef.fog_red = 0;
3262                         r_refdef.fog_green = 0;
3263                         r_refdef.fog_blue = 0;
3264                 }
3265         }
3266         if (r_refdef.fog_density)
3267         {
3268                 r_refdef.fogcolor[0] = bound(0.0f, r_refdef.fog_red  , 1.0f);
3269                 r_refdef.fogcolor[1] = bound(0.0f, r_refdef.fog_green, 1.0f);
3270                 r_refdef.fogcolor[2] = bound(0.0f, r_refdef.fog_blue , 1.0f);
3271         }
3272         if (r_refdef.fog_density)
3273         {
3274                 r_refdef.fogenabled = true;
3275                 // this is the point where the fog reaches 0.9986 alpha, which we
3276                 // consider a good enough cutoff point for the texture
3277                 // (0.9986 * 256 == 255.6)
3278                 r_refdef.fogrange = 400 / r_refdef.fog_density;
3279                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
3280                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
3281                 // fog color was already set
3282         }
3283         else
3284                 r_refdef.fogenabled = false;
3285 }
3286
3287 /*
3288 ================
3289 R_RenderView
3290 ================
3291 */
3292 void R_RenderView(void)
3293 {
3294         if (!r_refdef.entities/* || !r_refdef.worldmodel*/)
3295                 return; //Host_Error ("R_RenderView: NULL worldmodel");
3296
3297         R_Shadow_UpdateWorldLightSelection();
3298
3299         R_Bloom_StartFrame();
3300         R_Water_StartFrame();
3301
3302         CHECKGLERROR
3303         if (r_timereport_active)
3304                 R_TimeReport("viewsetup");
3305
3306         R_ResetViewRendering3D();
3307
3308         if (r_view.clear)
3309         {
3310                 R_ClearScreen();
3311                 if (r_timereport_active)
3312                         R_TimeReport("viewclear");
3313         }
3314         r_view.clear = true;
3315
3316         r_view.showdebug = true;
3317
3318         // this produces a bloom texture to be used in R_BlendView() later
3319         if (r_hdr.integer)
3320                 R_HDR_RenderBloomTexture();
3321
3322         r_view.colorscale = r_hdr_scenebrightness.value;
3323         r_waterstate.numwaterplanes = 0;
3324         R_RenderScene(r_waterstate.enabled);
3325
3326         R_BlendView();
3327         if (r_timereport_active)
3328                 R_TimeReport("blendview");
3329
3330         GL_Scissor(0, 0, vid.width, vid.height);
3331         GL_ScissorTest(false);
3332         CHECKGLERROR
3333 }
3334
3335 extern void R_DrawLightningBeams (void);
3336 extern void VM_CL_AddPolygonsToMeshQueue (void);
3337 extern void R_DrawPortals (void);
3338 extern cvar_t cl_locs_show;
3339 static void R_DrawLocs(void);
3340 static void R_DrawEntityBBoxes(void);
3341 void R_RenderScene(qboolean addwaterplanes)
3342 {
3343         if (addwaterplanes)
3344         {
3345                 R_ResetViewRendering3D();
3346
3347                 R_View_Update();
3348                 if (r_timereport_active)
3349                         R_TimeReport("watervis");
3350
3351                 if (cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->DrawAddWaterPlanes)
3352                 {
3353                         r_refdef.worldmodel->DrawAddWaterPlanes(r_refdef.worldentity);
3354                         if (r_timereport_active)
3355                                 R_TimeReport("waterworld");
3356                 }
3357
3358                 // don't let sound skip if going slow
3359                 if (r_refdef.extraupdate)
3360                         S_ExtraUpdate ();
3361
3362                 R_DrawModelsAddWaterPlanes();
3363                 if (r_timereport_active)
3364                         R_TimeReport("watermodels");
3365
3366                 R_Water_ProcessPlanes();
3367                 if (r_timereport_active)
3368                         R_TimeReport("waterscenes");
3369         }
3370
3371         R_ResetViewRendering3D();
3372
3373         // don't let sound skip if going slow
3374         if (r_refdef.extraupdate)
3375                 S_ExtraUpdate ();
3376
3377         R_MeshQueue_BeginScene();
3378
3379         R_SkyStartFrame();
3380
3381         R_View_Update();
3382         if (r_timereport_active)
3383                 R_TimeReport("visibility");
3384
3385         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.time) * 0.025 * r_waterscroll.value, sin(r_refdef.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
3386
3387         if (cl.csqc_vidvars.drawworld)
3388         {
3389                 // don't let sound skip if going slow
3390                 if (r_refdef.extraupdate)
3391                         S_ExtraUpdate ();
3392
3393                 if (r_refdef.worldmodel && r_refdef.worldmodel->DrawSky)
3394                 {
3395                         r_refdef.worldmodel->DrawSky(r_refdef.worldentity);
3396                         if (r_timereport_active)
3397                                 R_TimeReport("worldsky");
3398                 }
3399
3400                 if (R_DrawBrushModelsSky() && r_timereport_active)
3401                         R_TimeReport("bmodelsky");
3402         }
3403
3404         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->DrawDepth)
3405         {
3406                 r_refdef.worldmodel->DrawDepth(r_refdef.worldentity);
3407                 if (r_timereport_active)
3408                         R_TimeReport("worlddepth");
3409         }
3410         if (r_depthfirst.integer >= 2)
3411         {
3412                 R_DrawModelsDepth();
3413                 if (r_timereport_active)
3414                         R_TimeReport("modeldepth");
3415         }
3416
3417         if (cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->Draw)
3418         {
3419                 r_refdef.worldmodel->Draw(r_refdef.worldentity);
3420                 if (r_timereport_active)
3421                         R_TimeReport("world");
3422         }
3423
3424         // don't let sound skip if going slow
3425         if (r_refdef.extraupdate)
3426                 S_ExtraUpdate ();
3427
3428         R_DrawModels();
3429         if (r_timereport_active)
3430                 R_TimeReport("models");
3431
3432         // don't let sound skip if going slow
3433         if (r_refdef.extraupdate)
3434                 S_ExtraUpdate ();
3435
3436         if (r_shadows.integer > 0 && r_refdef.lightmapintensity > 0)
3437         {
3438                 R_DrawModelShadows();
3439
3440                 R_ResetViewRendering3D();
3441
3442                 // don't let sound skip if going slow
3443                 if (r_refdef.extraupdate)
3444                         S_ExtraUpdate ();
3445         }
3446
3447         R_ShadowVolumeLighting(false);
3448         if (r_timereport_active)
3449                 R_TimeReport("rtlights");
3450
3451         // don't let sound skip if going slow
3452         if (r_refdef.extraupdate)
3453                 S_ExtraUpdate ();
3454
3455         if (cl.csqc_vidvars.drawworld)
3456         {
3457                 R_DrawLightningBeams();
3458                 if (r_timereport_active)
3459                         R_TimeReport("lightning");
3460
3461                 R_DrawDecals();
3462                 if (r_timereport_active)
3463                         R_TimeReport("decals");
3464
3465                 R_DrawParticles();
3466                 if (r_timereport_active)
3467                         R_TimeReport("particles");
3468
3469                 R_DrawExplosions();
3470                 if (r_timereport_active)
3471                         R_TimeReport("explosions");
3472         }
3473
3474         if (gl_support_fragment_shader)
3475         {
3476                 qglUseProgramObjectARB(0);CHECKGLERROR
3477         }
3478         VM_CL_AddPolygonsToMeshQueue();
3479
3480         if (r_view.showdebug)
3481         {
3482                 if (cl_locs_show.integer)
3483                 {
3484                         R_DrawLocs();
3485                         if (r_timereport_active)
3486                                 R_TimeReport("showlocs");
3487                 }
3488
3489                 if (r_drawportals.integer)
3490                 {
3491                         R_DrawPortals();
3492                         if (r_timereport_active)
3493                                 R_TimeReport("portals");
3494                 }
3495
3496                 if (r_showbboxes.value > 0)
3497                 {
3498                         R_DrawEntityBBoxes();
3499                         if (r_timereport_active)
3500                                 R_TimeReport("bboxes");
3501                 }
3502         }
3503
3504         if (gl_support_fragment_shader)
3505         {
3506                 qglUseProgramObjectARB(0);CHECKGLERROR
3507         }
3508         R_MeshQueue_RenderTransparent();
3509         if (r_timereport_active)
3510                 R_TimeReport("drawtrans");
3511
3512         if (gl_support_fragment_shader)
3513         {
3514                 qglUseProgramObjectARB(0);CHECKGLERROR
3515         }
3516
3517         if (r_view.showdebug && r_refdef.worldmodel && r_refdef.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value > 0 || r_showcollisionbrushes.value > 0))
3518         {
3519                 r_refdef.worldmodel->DrawDebug(r_refdef.worldentity);
3520                 if (r_timereport_active)
3521                         R_TimeReport("worlddebug");
3522                 R_DrawModelsDebug();
3523                 if (r_timereport_active)
3524                         R_TimeReport("modeldebug");
3525         }
3526
3527         if (gl_support_fragment_shader)
3528         {
3529                 qglUseProgramObjectARB(0);CHECKGLERROR
3530         }
3531
3532         if (cl.csqc_vidvars.drawworld)
3533         {
3534                 R_DrawCoronas();
3535                 if (r_timereport_active)
3536                         R_TimeReport("coronas");
3537         }
3538
3539         // don't let sound skip if going slow
3540         if (r_refdef.extraupdate)
3541                 S_ExtraUpdate ();
3542
3543         R_ResetViewRendering2D();
3544 }
3545
3546 static const int bboxelements[36] =
3547 {
3548         5, 1, 3, 5, 3, 7,
3549         6, 2, 0, 6, 0, 4,
3550         7, 3, 2, 7, 2, 6,
3551         4, 0, 1, 4, 1, 5,
3552         4, 5, 7, 4, 7, 6,
3553         1, 0, 2, 1, 2, 3,
3554 };
3555
3556 void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
3557 {
3558         int i;
3559         float *v, *c, f1, f2, vertex3f[8*3], color4f[8*4];
3560         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3561         GL_DepthMask(false);
3562         GL_DepthRange(0, 1);
3563         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
3564         R_Mesh_Matrix(&identitymatrix);
3565         R_Mesh_ResetTextureState();
3566
3567         vertex3f[ 0] = mins[0];vertex3f[ 1] = mins[1];vertex3f[ 2] = mins[2]; //
3568         vertex3f[ 3] = maxs[0];vertex3f[ 4] = mins[1];vertex3f[ 5] = mins[2];
3569         vertex3f[ 6] = mins[0];vertex3f[ 7] = maxs[1];vertex3f[ 8] = mins[2];
3570         vertex3f[ 9] = maxs[0];vertex3f[10] = maxs[1];vertex3f[11] = mins[2];
3571         vertex3f[12] = mins[0];vertex3f[13] = mins[1];vertex3f[14] = maxs[2];
3572         vertex3f[15] = maxs[0];vertex3f[16] = mins[1];vertex3f[17] = maxs[2];
3573         vertex3f[18] = mins[0];vertex3f[19] = maxs[1];vertex3f[20] = maxs[2];
3574         vertex3f[21] = maxs[0];vertex3f[22] = maxs[1];vertex3f[23] = maxs[2];
3575         R_FillColors(color4f, 8, cr, cg, cb, ca);
3576         if (r_refdef.fogenabled)
3577         {
3578                 for (i = 0, v = vertex3f, c = color4f;i < 8;i++, v += 3, c += 4)
3579                 {
3580                         f1 = FogPoint_World(v);
3581                         f2 = 1 - f1;
3582                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
3583                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
3584                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
3585                 }
3586         }
3587         R_Mesh_VertexPointer(vertex3f, 0, 0);
3588         R_Mesh_ColorPointer(color4f, 0, 0);
3589         R_Mesh_ResetTextureState();
3590         R_Mesh_Draw(0, 8, 12, bboxelements, 0, 0);
3591 }
3592
3593 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3594 {
3595         int i;
3596         float color[4];
3597         prvm_edict_t *edict;
3598         // this function draws bounding boxes of server entities
3599         if (!sv.active)
3600                 return;
3601         SV_VM_Begin();
3602         for (i = 0;i < numsurfaces;i++)
3603         {
3604                 edict = PRVM_EDICT_NUM(surfacelist[i]);
3605                 switch ((int)edict->fields.server->solid)
3606                 {
3607                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
3608                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
3609                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
3610                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
3611                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
3612                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
3613                 }
3614                 color[3] *= r_showbboxes.value;
3615                 color[3] = bound(0, color[3], 1);
3616                 GL_DepthTest(!r_showdisabledepthtest.integer);
3617                 GL_CullFace(r_view.cullface_front);
3618                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
3619         }
3620         SV_VM_End();
3621 }
3622
3623 static void R_DrawEntityBBoxes(void)
3624 {
3625         int i;
3626         prvm_edict_t *edict;
3627         vec3_t center;
3628         // this function draws bounding boxes of server entities
3629         if (!sv.active)
3630                 return;
3631         SV_VM_Begin();
3632         for (i = 0;i < prog->num_edicts;i++)
3633         {
3634                 edict = PRVM_EDICT_NUM(i);
3635                 if (edict->priv.server->free)
3636                         continue;
3637                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
3638                 R_MeshQueue_AddTransparent(center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)NULL);
3639         }
3640         SV_VM_End();
3641 }
3642
3643 int nomodelelements[24] =
3644 {
3645         5, 2, 0,
3646         5, 1, 2,
3647         5, 0, 3,
3648         5, 3, 1,
3649         0, 2, 4,
3650         2, 1, 4,
3651         3, 0, 4,
3652         1, 3, 4
3653 };
3654
3655 float nomodelvertex3f[6*3] =
3656 {
3657         -16,   0,   0,
3658          16,   0,   0,
3659           0, -16,   0,
3660           0,  16,   0,
3661           0,   0, -16,
3662           0,   0,  16
3663 };
3664
3665 float nomodelcolor4f[6*4] =
3666 {
3667         0.0f, 0.0f, 0.5f, 1.0f,
3668         0.0f, 0.0f, 0.5f, 1.0f,
3669         0.0f, 0.5f, 0.0f, 1.0f,
3670         0.0f, 0.5f, 0.0f, 1.0f,
3671         0.5f, 0.0f, 0.0f, 1.0f,
3672         0.5f, 0.0f, 0.0f, 1.0f
3673 };
3674
3675 void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3676 {
3677         int i;
3678         float f1, f2, *c;
3679         float color4f[6*4];
3680         // this is only called once per entity so numsurfaces is always 1, and
3681         // surfacelist is always {0}, so this code does not handle batches
3682         R_Mesh_Matrix(&ent->matrix);
3683
3684         if (ent->flags & EF_ADDITIVE)
3685         {
3686                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
3687                 GL_DepthMask(false);
3688         }
3689         else if (ent->alpha < 1)
3690         {
3691                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3692                 GL_DepthMask(false);
3693         }
3694         else
3695         {
3696                 GL_BlendFunc(GL_ONE, GL_ZERO);
3697                 GL_DepthMask(true);
3698         }
3699         GL_DepthRange(0, (ent->flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
3700         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
3701         GL_DepthTest(!(ent->effects & EF_NODEPTHTEST));
3702         GL_CullFace((ent->effects & EF_DOUBLESIDED) ? GL_NONE : r_view.cullface_back);
3703         R_Mesh_VertexPointer(nomodelvertex3f, 0, 0);
3704         if (r_refdef.fogenabled)
3705         {
3706                 vec3_t org;
3707                 memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
3708                 R_Mesh_ColorPointer(color4f, 0, 0);
3709                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
3710                 f1 = FogPoint_World(org);
3711                 f2 = 1 - f1;
3712                 for (i = 0, c = color4f;i < 6;i++, c += 4)
3713                 {
3714                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
3715                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
3716                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
3717                         c[3] *= ent->alpha;
3718                 }
3719         }
3720         else if (ent->alpha != 1)
3721         {
3722                 memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
3723                 R_Mesh_ColorPointer(color4f, 0, 0);
3724                 for (i = 0, c = color4f;i < 6;i++, c += 4)
3725                         c[3] *= ent->alpha;
3726         }
3727         else
3728                 R_Mesh_ColorPointer(nomodelcolor4f, 0, 0);
3729         R