Move rt* states and the ambient value into r_refdef_scene. Menu now uses fullbright...
[divverent/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "cl_dyntexture.h"
24 #include "r_shadow.h"
25 #include "polygon.h"
26 #include "image.h"
27
28 mempool_t *r_main_mempool;
29 rtexturepool_t *r_main_texturepool;
30
31 //
32 // screen size info
33 //
34 r_refdef_t r_refdef;
35
36 cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "1", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
37 cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" };
38 cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
39 cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
40 cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
41 cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
42 cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
43 cvar_t r_showshadowvolumes = {0, "r_showshadowvolumes", "0", "shows areas shadowed by lights, useful for finding out why some areas of a map render slowly (bright blue = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
44 cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
45 cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
46 cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
47 cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
48 cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
49 cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
50 cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"};
51 cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
52 cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling"};
53 cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
54 cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
55 cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
56 cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"};
57 cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"};
58 cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
59 cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
60 cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this)"};
61 cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
62 cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
63 cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
64 cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "2", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
65 cvar_t r_fog_exp2 = {0, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
66
67 cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
68 cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
69 cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
70 cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
71 cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
72 cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
73 cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
74 cvar_t gl_skyclip = {0, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
75
76 cvar_t r_textureunits = {0, "r_textureunits", "32", "number of hardware texture units reported by driver (note: setting this to 1 turns off gl_combine)"};
77
78 cvar_t r_glsl = {CVAR_SAVE, "r_glsl", "1", "enables use of OpenGL 2.0 pixel shaders for lighting"};
79 cvar_t r_glsl_contrastboost = {CVAR_SAVE, "r_glsl_contrastboost", "1", "by how much to multiply the contrast in dark areas (1 is no change)"};
80 cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
81 cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
82 cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
83 cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
84 cvar_t r_glsl_postprocess = {CVAR_SAVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
85 cvar_t r_glsl_postprocess_uservec1 = {CVAR_SAVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
86 cvar_t r_glsl_postprocess_uservec2 = {CVAR_SAVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
87 cvar_t r_glsl_postprocess_uservec3 = {CVAR_SAVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
88 cvar_t r_glsl_postprocess_uservec4 = {CVAR_SAVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
89 cvar_t r_glsl_usegeneric = {CVAR_SAVE, "r_glsl_usegeneric", "1", "use shaders for rendering simple geometry (rather than conventional fixed-function rendering for this purpose)"};
90
91 cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
92 cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
93 cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
94 cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
95 cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
96
97 cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "1", "enables animation smoothing on sprites (requires r_lerpmodels 1)"};
98 cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
99 cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
100 cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
101
102 cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
103 cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"};
104 cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"};
105 cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"};
106 cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
107 cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exagerated the glow is"};
108 cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"};
109
110 cvar_t r_hdr = {CVAR_SAVE, "r_hdr", "0", "enables High Dynamic Range bloom effect (higher quality version of r_bloom)"};
111 cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
112 cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
113 cvar_t r_hdr_range = {CVAR_SAVE, "r_hdr_range", "4", "how much dynamic range to render bloom with (equivilant to multiplying r_bloom_brighten by this value and dividing r_bloom_colorscale by this value)"};
114
115 cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
116
117 cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
118
119 cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers)"};
120
121 cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
122 cvar_t r_batchmode = {0, "r_batchmode", "1", "selects method of rendering multiple surfaces with one driver call (values are 0, 1, 2, etc...)"};
123 cvar_t r_track_sprites = {CVAR_SAVE, "r_track_sprites", "1", "track SPR_LABEL* sprites by putting them as indicator at the screen border to rotate to"};
124 cvar_t r_track_sprites_flags = {CVAR_SAVE, "r_track_sprites_flags", "1", "1: Rotate sprites accodringly, 2: Make it a continuous rotation"};
125 cvar_t r_track_sprites_scalew = {CVAR_SAVE, "r_track_sprites_scalew", "1", "width scaling of tracked sprites"};
126 cvar_t r_track_sprites_scaleh = {CVAR_SAVE, "r_track_sprites_scaleh", "1", "height scaling of tracked sprites"};
127
128 extern cvar_t v_glslgamma;
129
130 extern qboolean v_flipped_state;
131
132 static struct r_bloomstate_s
133 {
134         qboolean enabled;
135         qboolean hdr;
136
137         int bloomwidth, bloomheight;
138
139         int screentexturewidth, screentextureheight;
140         rtexture_t *texture_screen;
141
142         int bloomtexturewidth, bloomtextureheight;
143         rtexture_t *texture_bloom;
144
145         // arrays for rendering the screen passes
146         float screentexcoord2f[8];
147         float bloomtexcoord2f[8];
148         float offsettexcoord2f[8];
149 }
150 r_bloomstate;
151
152 r_waterstate_t r_waterstate;
153
154 // shadow volume bsp struct with automatically growing nodes buffer
155 svbsp_t r_svbsp;
156
157 rtexture_t *r_texture_blanknormalmap;
158 rtexture_t *r_texture_white;
159 rtexture_t *r_texture_grey128;
160 rtexture_t *r_texture_black;
161 rtexture_t *r_texture_notexture;
162 rtexture_t *r_texture_whitecube;
163 rtexture_t *r_texture_normalizationcube;
164 rtexture_t *r_texture_fogattenuation;
165 rtexture_t *r_texture_gammaramps;
166 unsigned int r_texture_gammaramps_serial;
167 //rtexture_t *r_texture_fogintensity;
168
169 char r_qwskincache[MAX_SCOREBOARD][MAX_QPATH];
170 skinframe_t *r_qwskincache_skinframe[MAX_SCOREBOARD];
171
172 // vertex coordinates for a quad that covers the screen exactly
173 const static float r_screenvertex3f[12] =
174 {
175         0, 0, 0,
176         1, 0, 0,
177         1, 1, 0,
178         0, 1, 0
179 };
180
181 extern void R_DrawModelShadows(void);
182
183 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
184 {
185         int i;
186         for (i = 0;i < verts;i++)
187         {
188                 out[0] = in[0] * r;
189                 out[1] = in[1] * g;
190                 out[2] = in[2] * b;
191                 out[3] = in[3];
192                 in += 4;
193                 out += 4;
194         }
195 }
196
197 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
198 {
199         int i;
200         for (i = 0;i < verts;i++)
201         {
202                 out[0] = r;
203                 out[1] = g;
204                 out[2] = b;
205                 out[3] = a;
206                 out += 4;
207         }
208 }
209
210 // FIXME: move this to client?
211 void FOG_clear(void)
212 {
213         if (gamemode == GAME_NEHAHRA)
214         {
215                 Cvar_Set("gl_fogenable", "0");
216                 Cvar_Set("gl_fogdensity", "0.2");
217                 Cvar_Set("gl_fogred", "0.3");
218                 Cvar_Set("gl_foggreen", "0.3");
219                 Cvar_Set("gl_fogblue", "0.3");
220         }
221         r_refdef.fog_density = 0;
222         r_refdef.fog_red = 0;
223         r_refdef.fog_green = 0;
224         r_refdef.fog_blue = 0;
225         r_refdef.fog_alpha = 1;
226         r_refdef.fog_start = 0;
227         r_refdef.fog_end = 0;
228 }
229
230 float FogForDistance(vec_t dist)
231 {
232         unsigned int fogmasktableindex = (unsigned int)(dist * r_refdef.fogmasktabledistmultiplier);
233         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
234 }
235
236 float FogPoint_World(const vec3_t p)
237 {
238         return FogForDistance(VectorDistance((p), r_refdef.view.origin));
239 }
240
241 float FogPoint_Model(const vec3_t p)
242 {
243         return FogForDistance(VectorDistance((p), rsurface.modelorg));
244 }
245
246 static void R_BuildBlankTextures(void)
247 {
248         unsigned char data[4];
249         data[2] = 128; // normal X
250         data[1] = 128; // normal Y
251         data[0] = 255; // normal Z
252         data[3] = 128; // height
253         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
254         data[0] = 255;
255         data[1] = 255;
256         data[2] = 255;
257         data[3] = 255;
258         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
259         data[0] = 128;
260         data[1] = 128;
261         data[2] = 128;
262         data[3] = 255;
263         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
264         data[0] = 0;
265         data[1] = 0;
266         data[2] = 0;
267         data[3] = 255;
268         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
269 }
270
271 static void R_BuildNoTexture(void)
272 {
273         int x, y;
274         unsigned char pix[16][16][4];
275         // this makes a light grey/dark grey checkerboard texture
276         for (y = 0;y < 16;y++)
277         {
278                 for (x = 0;x < 16;x++)
279                 {
280                         if ((y < 8) ^ (x < 8))
281                         {
282                                 pix[y][x][0] = 128;
283                                 pix[y][x][1] = 128;
284                                 pix[y][x][2] = 128;
285                                 pix[y][x][3] = 255;
286                         }
287                         else
288                         {
289                                 pix[y][x][0] = 64;
290                                 pix[y][x][1] = 64;
291                                 pix[y][x][2] = 64;
292                                 pix[y][x][3] = 255;
293                         }
294                 }
295         }
296         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, NULL);
297 }
298
299 static void R_BuildWhiteCube(void)
300 {
301         unsigned char data[6*1*1*4];
302         memset(data, 255, sizeof(data));
303         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
304 }
305
306 static void R_BuildNormalizationCube(void)
307 {
308         int x, y, side;
309         vec3_t v;
310         vec_t s, t, intensity;
311 #define NORMSIZE 64
312         unsigned char data[6][NORMSIZE][NORMSIZE][4];
313         for (side = 0;side < 6;side++)
314         {
315                 for (y = 0;y < NORMSIZE;y++)
316                 {
317                         for (x = 0;x < NORMSIZE;x++)
318                         {
319                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
320                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
321                                 switch(side)
322                                 {
323                                 default:
324                                 case 0:
325                                         v[0] = 1;
326                                         v[1] = -t;
327                                         v[2] = -s;
328                                         break;
329                                 case 1:
330                                         v[0] = -1;
331                                         v[1] = -t;
332                                         v[2] = s;
333                                         break;
334                                 case 2:
335                                         v[0] = s;
336                                         v[1] = 1;
337                                         v[2] = t;
338                                         break;
339                                 case 3:
340                                         v[0] = s;
341                                         v[1] = -1;
342                                         v[2] = -t;
343                                         break;
344                                 case 4:
345                                         v[0] = s;
346                                         v[1] = -t;
347                                         v[2] = 1;
348                                         break;
349                                 case 5:
350                                         v[0] = -s;
351                                         v[1] = -t;
352                                         v[2] = -1;
353                                         break;
354                                 }
355                                 intensity = 127.0f / sqrt(DotProduct(v, v));
356                                 data[side][y][x][2] = (unsigned char)(128.0f + intensity * v[0]);
357                                 data[side][y][x][1] = (unsigned char)(128.0f + intensity * v[1]);
358                                 data[side][y][x][0] = (unsigned char)(128.0f + intensity * v[2]);
359                                 data[side][y][x][3] = 255;
360                         }
361                 }
362         }
363         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, &data[0][0][0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
364 }
365
366 static void R_BuildFogTexture(void)
367 {
368         int x, b;
369 #define FOGWIDTH 256
370         unsigned char data1[FOGWIDTH][4];
371         //unsigned char data2[FOGWIDTH][4];
372         double d, r, alpha;
373
374         r_refdef.fogmasktable_start = r_refdef.fog_start;
375         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
376         r_refdef.fogmasktable_range = r_refdef.fogrange;
377         r_refdef.fogmasktable_density = r_refdef.fog_density;
378
379         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
380         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
381         {
382                 d = (x * r - r_refdef.fogmasktable_start);
383                 if(developer.integer >= 100)
384                         Con_Printf("%f ", d);
385                 d = max(0, d);
386                 if (r_fog_exp2.integer)
387                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
388                 else
389                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
390                 if(developer.integer >= 100)
391                         Con_Printf(" : %f ", alpha);
392                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
393                 if(developer.integer >= 100)
394                         Con_Printf(" = %f\n", alpha);
395                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
396         }
397
398         for (x = 0;x < FOGWIDTH;x++)
399         {
400                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
401                 data1[x][0] = b;
402                 data1[x][1] = b;
403                 data1[x][2] = b;
404                 data1[x][3] = 255;
405                 //data2[x][0] = 255 - b;
406                 //data2[x][1] = 255 - b;
407                 //data2[x][2] = 255 - b;
408                 //data2[x][3] = 255;
409         }
410         if (r_texture_fogattenuation)
411         {
412                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, FOGWIDTH, 1);
413                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, FOGWIDTH, 1);
414         }
415         else
416         {
417                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
418                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
419         }
420 }
421
422 static const char *builtinshaderstring =
423 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
424 "// written by Forest 'LordHavoc' Hale\n"
425 "\n"
426 "// common definitions between vertex shader and fragment shader:\n"
427 "\n"
428 "//#ifdef __GLSL_CG_DATA_TYPES\n"
429 "//# define myhalf half\n"
430 "//# define myhalf2 half2\n"
431 "//# define myhalf3 half3\n"
432 "//# define myhalf4 half4\n"
433 "//#else\n"
434 "# define myhalf float\n"
435 "# define myhalf2 vec2\n"
436 "# define myhalf3 vec3\n"
437 "# define myhalf4 vec4\n"
438 "//#endif\n"
439 "\n"
440 "#ifdef MODE_DEPTH_OR_SHADOW\n"
441 "\n"
442 "# ifdef VERTEX_SHADER\n"
443 "void main(void)\n"
444 "{\n"
445 "       gl_Position = ftransform();\n"
446 "}\n"
447 "# endif\n"
448 "\n"
449 "#else\n"
450 "\n"
451 "#ifdef MODE_POSTPROCESS\n"
452 "# ifdef VERTEX_SHADER\n"
453 "void main(void)\n"
454 "{\n"
455 "       gl_FrontColor = gl_Color;\n"
456 "       gl_Position = ftransform();\n"
457 "       gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;\n"
458 "#ifdef USEGLOW\n"
459 "       gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;\n"
460 "#endif\n"
461 "}\n"
462 "# endif\n"
463 "# ifdef FRAGMENT_SHADER\n"
464 "\n"
465 "uniform sampler2D Texture_First;\n"
466 "#ifdef USEGLOW\n"
467 "uniform sampler2D Texture_Second;\n"
468 "#endif\n"
469 "#ifdef USEGAMMARAMPS\n"
470 "uniform sampler2D Texture_GammaRamps;\n"
471 "#endif\n"
472 "#ifdef USEVERTEXTEXTUREBLEND\n"
473 "uniform vec4 TintColor;\n"
474 "#endif\n"
475 "#ifdef USECOLORMOD\n"
476 "uniform vec3 Gamma;\n"
477 "#endif\n"
478 "//uncomment these if you want to use them:\n"
479 "// uniform vec4 UserVec1;\n"
480 "// uniform vec4 UserVec2;\n"
481 "// uniform vec4 UserVec3;\n"
482 "// uniform vec4 UserVec4;\n"
483 "// uniform float ClientTime;\n"
484 "// uniform vec2 PixelSize;\n"
485 "void main(void)\n"
486 "{\n"
487 "       gl_FragColor = texture2D(Texture_First, gl_TexCoord[0].xy);\n"
488 "#ifdef USEGLOW\n"
489 "       gl_FragColor += texture2D(Texture_Second, gl_TexCoord[1].xy);\n"
490 "#endif\n"
491 "#ifdef USEVERTEXTEXTUREBLEND\n"
492 "       gl_FragColor = mix(gl_FragColor, TintColor, TintColor.a);\n"
493 "#endif\n"
494 "\n"
495 "#ifdef USEPOSTPROCESSING\n"
496 "// add your own postprocessing here or make your own ifdef for it\n"
497 "#endif\n"
498 "\n"
499 "#ifdef USEGAMMARAMPS\n"
500 "       gl_FragColor.r = texture2D(Texture_GammaRamps, vec2(gl_FragColor.r, 0)).r;\n"
501 "       gl_FragColor.g = texture2D(Texture_GammaRamps, vec2(gl_FragColor.g, 0)).g;\n"
502 "       gl_FragColor.b = texture2D(Texture_GammaRamps, vec2(gl_FragColor.b, 0)).b;\n"
503 "#endif\n"
504 "}\n"
505 "# endif\n"
506 "\n"
507 "\n"
508 "#else\n"
509 "#ifdef MODE_GENERIC\n"
510 "# ifdef VERTEX_SHADER\n"
511 "void main(void)\n"
512 "{\n"
513 "       gl_FrontColor = gl_Color;\n"
514 "#  ifdef USEDIFFUSE\n"
515 "       gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;\n"
516 "#  endif\n"
517 "#  ifdef USESPECULAR\n"
518 "       gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;\n"
519 "#  endif\n"
520 "       gl_Position = ftransform();\n"
521 "}\n"
522 "# endif\n"
523 "# ifdef FRAGMENT_SHADER\n"
524 "\n"
525 "#  ifdef USEDIFFUSE\n"
526 "uniform sampler2D Texture_First;\n"
527 "#  endif\n"
528 "#  ifdef USESPECULAR\n"
529 "uniform sampler2D Texture_Second;\n"
530 "#  endif\n"
531 "\n"
532 "void main(void)\n"
533 "{\n"
534 "       gl_FragColor = gl_Color;\n"
535 "#  ifdef USEDIFFUSE\n"
536 "       gl_FragColor *= texture2D(Texture_First, gl_TexCoord[0].xy);\n"
537 "#  endif\n"
538 "\n"
539 "#  ifdef USESPECULAR\n"
540 "       vec4 tex2 = texture2D(Texture_Second, gl_TexCoord[1].xy);\n"
541 "#  endif\n"
542 "#  ifdef USECOLORMAPPING\n"
543 "       gl_FragColor *= tex2;\n"
544 "#  endif\n"
545 "#  ifdef USEGLOW\n"
546 "       gl_FragColor += tex2;\n"
547 "#  endif\n"
548 "#  ifdef USEVERTEXTEXTUREBLEND\n"
549 "       gl_FragColor = mix(tex2, gl_FragColor, tex2.a);\n"
550 "#  endif\n"
551 "}\n"
552 "# endif\n"
553 "\n"
554 "#else // !MODE_GENERIC\n"
555 "\n"
556 "varying vec2 TexCoord;\n"
557 "varying vec2 TexCoordLightmap;\n"
558 "\n"
559 "#ifdef MODE_LIGHTSOURCE\n"
560 "varying vec3 CubeVector;\n"
561 "#endif\n"
562 "\n"
563 "#ifdef MODE_LIGHTSOURCE\n"
564 "varying vec3 LightVector;\n"
565 "#endif\n"
566 "#ifdef MODE_LIGHTDIRECTION\n"
567 "varying vec3 LightVector;\n"
568 "#endif\n"
569 "\n"
570 "varying vec3 EyeVector;\n"
571 "#ifdef USEFOG\n"
572 "varying vec3 EyeVectorModelSpace;\n"
573 "#endif\n"
574 "\n"
575 "varying vec3 VectorS; // direction of S texcoord (sometimes crudely called tangent)\n"
576 "varying vec3 VectorT; // direction of T texcoord (sometimes crudely called binormal)\n"
577 "varying vec3 VectorR; // direction of R texcoord (surface normal)\n"
578 "\n"
579 "#ifdef MODE_WATER\n"
580 "varying vec4 ModelViewProjectionPosition;\n"
581 "#endif\n"
582 "#ifdef MODE_REFRACTION\n"
583 "varying vec4 ModelViewProjectionPosition;\n"
584 "#endif\n"
585 "#ifdef USEREFLECTION\n"
586 "varying vec4 ModelViewProjectionPosition;\n"
587 "#endif\n"
588 "\n"
589 "\n"
590 "\n"
591 "\n"
592 "\n"
593 "// vertex shader specific:\n"
594 "#ifdef VERTEX_SHADER\n"
595 "\n"
596 "uniform vec3 LightPosition;\n"
597 "uniform vec3 EyePosition;\n"
598 "uniform vec3 LightDir;\n"
599 "\n"
600 "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3), this would require sending a 4 component texcoord1 with W as 1 or -1 according to which side the texcoord2 should be on\n"
601 "\n"
602 "void main(void)\n"
603 "{\n"
604 "       gl_FrontColor = gl_Color;\n"
605 "       // copy the surface texcoord\n"
606 "       TexCoord = vec2(gl_TextureMatrix[0] * gl_MultiTexCoord0);\n"
607 "#ifndef MODE_LIGHTSOURCE\n"
608 "# ifndef MODE_LIGHTDIRECTION\n"
609 "       TexCoordLightmap = vec2(gl_MultiTexCoord4);\n"
610 "# endif\n"
611 "#endif\n"
612 "\n"
613 "#ifdef MODE_LIGHTSOURCE\n"
614 "       // transform vertex position into light attenuation/cubemap space\n"
615 "       // (-1 to +1 across the light box)\n"
616 "       CubeVector = vec3(gl_TextureMatrix[3] * gl_Vertex);\n"
617 "\n"
618 "       // transform unnormalized light direction into tangent space\n"
619 "       // (we use unnormalized to ensure that it interpolates correctly and then\n"
620 "       //  normalize it per pixel)\n"
621 "       vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n"
622 "       LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n"
623 "       LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n"
624 "       LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n"
625 "#endif\n"
626 "\n"
627 "#ifdef MODE_LIGHTDIRECTION\n"
628 "       LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n"
629 "       LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n"
630 "       LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n"
631 "#endif\n"
632 "\n"
633 "       // transform unnormalized eye direction into tangent space\n"
634 "#ifndef USEFOG\n"
635 "       vec3 EyeVectorModelSpace;\n"
636 "#endif\n"
637 "       EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n"
638 "       EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n"
639 "       EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n"
640 "       EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n"
641 "\n"
642 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
643 "       VectorS = gl_MultiTexCoord1.xyz;\n"
644 "       VectorT = gl_MultiTexCoord2.xyz;\n"
645 "       VectorR = gl_MultiTexCoord3.xyz;\n"
646 "#endif\n"
647 "\n"
648 "//#if defined(MODE_WATER) || defined(MODE_REFRACTION) || defined(USEREFLECTION)\n"
649 "//     ModelViewProjectionPosition = gl_Vertex * gl_ModelViewProjectionMatrix;\n"
650 "//     //ModelViewProjectionPosition_svector = (gl_Vertex + vec4(gl_MultiTexCoord1.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
651 "//     //ModelViewProjectionPosition_tvector = (gl_Vertex + vec4(gl_MultiTexCoord2.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
652 "//#endif\n"
653 "\n"
654 "// transform vertex to camera space, using ftransform to match non-VS\n"
655 "       // rendering\n"
656 "       gl_Position = ftransform();\n"
657 "\n"
658 "#ifdef MODE_WATER\n"
659 "       ModelViewProjectionPosition = gl_Position;\n"
660 "#endif\n"
661 "#ifdef MODE_REFRACTION\n"
662 "       ModelViewProjectionPosition = gl_Position;\n"
663 "#endif\n"
664 "#ifdef USEREFLECTION\n"
665 "       ModelViewProjectionPosition = gl_Position;\n"
666 "#endif\n"
667 "}\n"
668 "\n"
669 "#endif // VERTEX_SHADER\n"
670 "\n"
671 "\n"
672 "\n"
673 "\n"
674 "// fragment shader specific:\n"
675 "#ifdef FRAGMENT_SHADER\n"
676 "\n"
677 "// 13 textures, we can only use up to 16 on DX9-class hardware\n"
678 "uniform sampler2D Texture_Normal;\n"
679 "uniform sampler2D Texture_Color;\n"
680 "uniform sampler2D Texture_Gloss;\n"
681 "uniform sampler2D Texture_Glow;\n"
682 "uniform sampler2D Texture_SecondaryNormal;\n"
683 "uniform sampler2D Texture_SecondaryColor;\n"
684 "uniform sampler2D Texture_SecondaryGloss;\n"
685 "uniform sampler2D Texture_SecondaryGlow;\n"
686 "uniform sampler2D Texture_Pants;\n"
687 "uniform sampler2D Texture_Shirt;\n"
688 "uniform sampler2D Texture_FogMask;\n"
689 "uniform sampler2D Texture_Lightmap;\n"
690 "uniform sampler2D Texture_Deluxemap;\n"
691 "uniform sampler2D Texture_Refraction;\n"
692 "uniform sampler2D Texture_Reflection;\n"
693 "uniform sampler2D Texture_Attenuation;\n"
694 "uniform samplerCube Texture_Cube;\n"
695 "\n"
696 "uniform myhalf3 LightColor;\n"
697 "uniform myhalf3 AmbientColor;\n"
698 "uniform myhalf3 DiffuseColor;\n"
699 "uniform myhalf3 SpecularColor;\n"
700 "uniform myhalf3 Color_Pants;\n"
701 "uniform myhalf3 Color_Shirt;\n"
702 "uniform myhalf3 FogColor;\n"
703 "\n"
704 "uniform myhalf4 TintColor;\n"
705 "\n"
706 "\n"
707 "//#ifdef MODE_WATER\n"
708 "uniform vec4 DistortScaleRefractReflect;\n"
709 "uniform vec4 ScreenScaleRefractReflect;\n"
710 "uniform vec4 ScreenCenterRefractReflect;\n"
711 "uniform myhalf4 RefractColor;\n"
712 "uniform myhalf4 ReflectColor;\n"
713 "uniform myhalf ReflectFactor;\n"
714 "uniform myhalf ReflectOffset;\n"
715 "//#else\n"
716 "//# ifdef MODE_REFRACTION\n"
717 "//uniform vec4 DistortScaleRefractReflect;\n"
718 "//uniform vec4 ScreenScaleRefractReflect;\n"
719 "//uniform vec4 ScreenCenterRefractReflect;\n"
720 "//uniform myhalf4 RefractColor;\n"
721 "//#  ifdef USEREFLECTION\n"
722 "//uniform myhalf4 ReflectColor;\n"
723 "//#  endif\n"
724 "//# else\n"
725 "//#  ifdef USEREFLECTION\n"
726 "//uniform vec4 DistortScaleRefractReflect;\n"
727 "//uniform vec4 ScreenScaleRefractReflect;\n"
728 "//uniform vec4 ScreenCenterRefractReflect;\n"
729 "//uniform myhalf4 ReflectColor;\n"
730 "//#  endif\n"
731 "//# endif\n"
732 "//#endif\n"
733 "\n"
734 "uniform myhalf GlowScale;\n"
735 "uniform myhalf SceneBrightness;\n"
736 "#ifdef USECONTRASTBOOST\n"
737 "uniform myhalf ContrastBoostCoeff;\n"
738 "#endif\n"
739 "\n"
740 "uniform float OffsetMapping_Scale;\n"
741 "uniform float OffsetMapping_Bias;\n"
742 "uniform float FogRangeRecip;\n"
743 "\n"
744 "uniform myhalf AmbientScale;\n"
745 "uniform myhalf DiffuseScale;\n"
746 "uniform myhalf SpecularScale;\n"
747 "uniform myhalf SpecularPower;\n"
748 "\n"
749 "#ifdef USEOFFSETMAPPING\n"
750 "vec2 OffsetMapping(vec2 TexCoord)\n"
751 "{\n"
752 "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n"
753 "       // 14 sample relief mapping: linear search and then binary search\n"
754 "       // this basically steps forward a small amount repeatedly until it finds\n"
755 "       // itself inside solid, then jitters forward and back using decreasing\n"
756 "       // amounts to find the impact\n"
757 "       //vec3 OffsetVector = vec3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1), -1);\n"
758 "       //vec3 OffsetVector = vec3(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
759 "       vec3 OffsetVector = vec3(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
760 "       vec3 RT = vec3(TexCoord, 1);\n"
761 "       OffsetVector *= 0.1;\n"
762 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
763 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
764 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
765 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
766 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
767 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
768 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
769 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
770 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
771 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z)          - 0.5);\n"
772 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.5    - 0.25);\n"
773 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.25   - 0.125);\n"
774 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.125  - 0.0625);\n"
775 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n"
776 "       return RT.xy;\n"
777 "#else\n"
778 "       // 3 sample offset mapping (only 3 samples because of ATI Radeon 9500-9800/X300 limits)\n"
779 "       // this basically moves forward the full distance, and then backs up based\n"
780 "       // on height of samples\n"
781 "       //vec2 OffsetVector = vec2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1));\n"
782 "       //vec2 OffsetVector = vec2(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1));\n"
783 "       vec2 OffsetVector = vec2(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1));\n"
784 "       TexCoord += OffsetVector;\n"
785 "       OffsetVector *= 0.333;\n"
786 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
787 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
788 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
789 "       return TexCoord;\n"
790 "#endif\n"
791 "}\n"
792 "#endif // USEOFFSETMAPPING\n"
793 "\n"
794 "#ifdef MODE_WATER\n"
795 "\n"
796 "// water pass\n"
797 "void main(void)\n"
798 "{\n"
799 "#ifdef USEOFFSETMAPPING\n"
800 "       // apply offsetmapping\n"
801 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
802 "#define TexCoord TexCoordOffset\n"
803 "#endif\n"
804 "\n"
805 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
806 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
807 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec2(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xyxy * DistortScaleRefractReflect;\n"
808 "       float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 2.0) * ReflectFactor + ReflectOffset;\n"
809 "       gl_FragColor = mix(texture2D(Texture_Refraction, ScreenTexCoord.xy) * RefractColor, texture2D(Texture_Reflection, ScreenTexCoord.zw) * ReflectColor, Fresnel);\n"
810 "}\n"
811 "\n"
812 "#else // !MODE_WATER\n"
813 "#ifdef MODE_REFRACTION\n"
814 "\n"
815 "// refraction pass\n"
816 "void main(void)\n"
817 "{\n"
818 "#ifdef USEOFFSETMAPPING\n"
819 "       // apply offsetmapping\n"
820 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
821 "#define TexCoord TexCoordOffset\n"
822 "#endif\n"
823 "\n"
824 "       vec2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n"
825 "       //vec2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n"
826 "       vec2 ScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy + vec2(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xy * DistortScaleRefractReflect.xy;\n"
827 "       gl_FragColor = texture2D(Texture_Refraction, ScreenTexCoord) * RefractColor;\n"
828 "}\n"
829 "\n"
830 "#else // !MODE_REFRACTION\n"
831 "void main(void)\n"
832 "{\n"
833 "#ifdef USEOFFSETMAPPING\n"
834 "       // apply offsetmapping\n"
835 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
836 "#define TexCoord TexCoordOffset\n"
837 "#endif\n"
838 "\n"
839 "       // combine the diffuse textures (base, pants, shirt)\n"
840 "       myhalf4 color = myhalf4(texture2D(Texture_Color, TexCoord));\n"
841 "#ifdef USECOLORMAPPING\n"
842 "       color.rgb += myhalf3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhalf3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n"
843 "#endif\n"
844 "#ifdef USEVERTEXTEXTUREBLEND\n"
845 "       myhalf terrainblend = clamp(myhalf(gl_Color.a) * color.a * 2.0 - 0.5, myhalf(0.0), myhalf(1.0));\n"
846 "       //myhalf terrainblend = min(myhalf(gl_Color.a) * color.a * 2.0, myhalf(1.0));\n"
847 "       //myhalf terrainblend = myhalf(gl_Color.a) * color.a > 0.5;\n"
848 "       color = mix(myhalf4(texture2D(Texture_SecondaryColor, TexCoord)), color, terrainblend);\n"
849 "       //color = mix(myhalf4(1, 0, 0, 1), color, terrainblend);\n"
850 "#endif\n"
851 "\n"
852 "#ifdef USEDIFFUSE\n"
853 "       // get the surface normal and the gloss color\n"
854 "# ifdef USEVERTEXTEXTUREBLEND\n"
855 "       myhalf3 surfacenormal = normalize(mix(myhalf3(texture2D(Texture_SecondaryNormal, TexCoord)), myhalf3(texture2D(Texture_Normal, TexCoord)), terrainblend) - myhalf3(0.5, 0.5, 0.5));\n"
856 "#  ifdef USESPECULAR\n"
857 "       myhalf3 glosscolor = mix(myhalf3(texture2D(Texture_SecondaryGloss, TexCoord)), myhalf3(texture2D(Texture_Gloss, TexCoord)), terrainblend);\n"
858 "#  endif\n"
859 "# else\n"
860 "       myhalf3 surfacenormal = normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5));\n"
861 "#  ifdef USESPECULAR\n"
862 "       myhalf3 glosscolor = myhalf3(texture2D(Texture_Gloss, TexCoord));\n"
863 "#  endif\n"
864 "# endif\n"
865 "#endif\n"
866 "\n"
867 "\n"
868 "\n"
869 "#ifdef MODE_LIGHTSOURCE\n"
870 "       // light source\n"
871 "\n"
872 "       // calculate surface normal, light normal, and specular normal\n"
873 "       // compute color intensity for the two textures (colormap and glossmap)\n"
874 "       // scale by light color and attenuation as efficiently as possible\n"
875 "       // (do as much scalar math as possible rather than vector math)\n"
876 "# ifdef USEDIFFUSE\n"
877 "       // get the light normal\n"
878 "       myhalf3 diffusenormal = myhalf3(normalize(LightVector));\n"
879 "# endif\n"
880 "# ifdef USESPECULAR\n"
881 "       myhalf3 specularnormal = normalize(diffusenormal + myhalf3(normalize(EyeVector)));\n"
882 "\n"
883 "       // calculate directional shading\n"
884 "       color.rgb = myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (color.rgb * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))) + (SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower)) * glosscolor);\n"
885 "# else\n"
886 "#  ifdef USEDIFFUSE\n"
887 "       // calculate directional shading\n"
888 "       color.rgb = color.rgb * (myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))));\n"
889 "#  else\n"
890 "       // calculate directionless shading\n"
891 "       color.rgb = color.rgb * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n"
892 "#  endif\n"
893 "# endif\n"
894 "\n"
895 "# ifdef USECUBEFILTER\n"
896 "       // apply light cubemap filter\n"
897 "       //color.rgb *= normalize(CubeVector) * 0.5 + 0.5;//vec3(textureCube(Texture_Cube, CubeVector));\n"
898 "       color.rgb *= myhalf3(textureCube(Texture_Cube, CubeVector));\n"
899 "# endif\n"
900 "#endif // MODE_LIGHTSOURCE\n"
901 "\n"
902 "\n"
903 "\n"
904 "\n"
905 "#ifdef MODE_LIGHTDIRECTION\n"
906 "       // directional model lighting\n"
907 "# ifdef USEDIFFUSE\n"
908 "       // get the light normal\n"
909 "       myhalf3 diffusenormal = myhalf3(LightVector);\n"
910 "# endif\n"
911 "# ifdef USESPECULAR\n"
912 "       // calculate directional shading\n"
913 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
914 "       myhalf3 specularnormal = normalize(diffusenormal + myhalf3(normalize(EyeVector)));\n"
915 "       color.rgb += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularColor * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
916 "# else\n"
917 "#  ifdef USEDIFFUSE\n"
918 "\n"
919 "       // calculate directional shading\n"
920 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
921 "#  else\n"
922 "       color.rgb *= AmbientColor;\n"
923 "#  endif\n"
924 "# endif\n"
925 "#endif // MODE_LIGHTDIRECTION\n"
926 "\n"
927 "\n"
928 "\n"
929 "\n"
930 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
931 "       // deluxemap lightmapping using light vectors in modelspace (evil q3map2)\n"
932 "\n"
933 "       // get the light normal\n"
934 "       myhalf3 diffusenormal_modelspace = myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhalf3(0.5);\n"
935 "       myhalf3 diffusenormal = normalize(myhalf3(dot(diffusenormal_modelspace, myhalf3(VectorS)), dot(diffusenormal_modelspace, myhalf3(VectorT)), dot(diffusenormal_modelspace, myhalf3(VectorR))));\n"
936 "       // calculate directional shading\n"
937 "       myhalf3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
938 "# ifdef USESPECULAR\n"
939 "       myhalf3 specularnormal = myhalf3(normalize(diffusenormal + myhalf3(normalize(EyeVector))));\n"
940 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
941 "# endif\n"
942 "\n"
943 "       // apply lightmap color\n"
944 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n"
945 "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
946 "\n"
947 "\n"
948 "\n"
949 "\n"
950 "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
951 "       // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n"
952 "\n"
953 "       // get the light normal\n"
954 "       myhalf3 diffusenormal = normalize(myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhalf3(0.5));\n"
955 "       // calculate directional shading\n"
956 "       myhalf3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
957 "# ifdef USESPECULAR\n"
958 "       myhalf3 specularnormal = myhalf3(normalize(diffusenormal + myhalf3(normalize(EyeVector))));\n"
959 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
960 "# endif\n"
961 "\n"
962 "       // apply lightmap color\n"
963 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n"
964 "#endif // MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
965 "\n"
966 "\n"
967 "\n"
968 "\n"
969 "#ifdef MODE_LIGHTMAP\n"
970 "       // apply lightmap color\n"
971 "       color.rgb = color.rgb * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap)) * DiffuseScale + color.rgb * AmbientScale;\n"
972 "#endif // MODE_LIGHTMAP\n"
973 "\n"
974 "\n"
975 "\n"
976 "\n"
977 "#ifdef MODE_VERTEXCOLOR\n"
978 "       // apply lightmap color\n"
979 "       color.rgb = color.rgb * myhalf3(gl_Color.rgb) * DiffuseScale + color.rgb * AmbientScale;\n"
980 "#endif // MODE_VERTEXCOLOR\n"
981 "\n"
982 "\n"
983 "\n"
984 "\n"
985 "#ifdef MODE_FLATCOLOR\n"
986 "#endif // MODE_FLATCOLOR\n"
987 "\n"
988 "\n"
989 "\n"
990 "\n"
991 "\n"
992 "\n"
993 "\n"
994 "       color *= TintColor;\n"
995 "\n"
996 "#ifdef USEGLOW\n"
997 "       color.rgb += myhalf3(texture2D(Texture_Glow, TexCoord)) * GlowScale;\n"
998 "#endif\n"
999 "\n"
1000 "#ifdef USECONTRASTBOOST\n"
1001 "       color.rgb = color.rgb / (ContrastBoostCoeff * color.rgb + myhalf3(1, 1, 1));\n"
1002 "#endif\n"
1003 "\n"
1004 "       color.rgb *= SceneBrightness;\n"
1005 "\n"
1006 "       // apply fog after Contrastboost/SceneBrightness because its color is already modified appropriately\n"
1007 "#ifdef USEFOG\n"
1008 "       color.rgb = mix(FogColor, color.rgb, myhalf(texture2D(Texture_FogMask, myhalf2(length(EyeVectorModelSpace)*FogRangeRecip, 0.0))));\n"
1009 "#endif\n"
1010 "\n"
1011 "       // reflection must come last because it already contains exactly the correct fog (the reflection render preserves camera distance from the plane, it only flips the side) and ContrastBoost/SceneBrightness\n"
1012 "#ifdef USEREFLECTION\n"
1013 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
1014 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
1015 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec3(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xyxy * DistortScaleRefractReflect;\n"
1016 "       color.rgb = mix(color.rgb, myhalf3(texture2D(Texture_Reflection, ScreenTexCoord.zw)) * ReflectColor.rgb, ReflectColor.a);\n"
1017 "#endif\n"
1018 "\n"
1019 "       gl_FragColor = vec4(color);\n"
1020 "}\n"
1021 "#endif // !MODE_REFRACTION\n"
1022 "#endif // !MODE_WATER\n"
1023 "\n"
1024 "#endif // FRAGMENT_SHADER\n"
1025 "\n"
1026 "#endif // !MODE_GENERIC\n"
1027 "#endif // !MODE_POSTPROCESS\n"
1028 "#endif // !MODE_DEPTH_OR_SHADOW\n"
1029 ;
1030
1031 typedef struct shaderpermutationinfo_s
1032 {
1033         const char *pretext;
1034         const char *name;
1035 }
1036 shaderpermutationinfo_t;
1037
1038 typedef struct shadermodeinfo_s
1039 {
1040         const char *vertexfilename;
1041         const char *geometryfilename;
1042         const char *fragmentfilename;
1043         const char *pretext;
1044         const char *name;
1045 }
1046 shadermodeinfo_t;
1047
1048 typedef enum shaderpermutation_e
1049 {
1050         SHADERPERMUTATION_DIFFUSE = 1<<0, // (lightsource) whether to use directional shading
1051         SHADERPERMUTATION_VERTEXTEXTUREBLEND = 1<<1, // indicates this is a two-layer material blend based on vertex alpha (q3bsp)
1052         SHADERPERMUTATION_COLORMAPPING = 1<<2, // indicates this is a colormapped skin
1053         SHADERPERMUTATION_CONTRASTBOOST = 1<<3, // r_glsl_contrastboost boosts the contrast at low color levels (similar to gamma)
1054         SHADERPERMUTATION_FOG = 1<<4, // tint the color by fog color or black if using additive blend mode
1055         SHADERPERMUTATION_CUBEFILTER = 1<<5, // (lightsource) use cubemap light filter
1056         SHADERPERMUTATION_GLOW = 1<<6, // (lightmap) blend in an additive glow texture
1057         SHADERPERMUTATION_SPECULAR = 1<<7, // (lightsource or deluxemapping) render specular effects
1058         SHADERPERMUTATION_REFLECTION = 1<<8, // normalmap-perturbed reflection of the scene infront of the surface, preformed as an overlay on the surface
1059         SHADERPERMUTATION_OFFSETMAPPING = 1<<9, // adjust texcoords to roughly simulate a displacement mapped surface
1060         SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING = 1<<10, // adjust texcoords to accurately simulate a displacement mapped surface (requires OFFSETMAPPING to also be set!)
1061         SHADERPERMUTATION_GAMMARAMPS = 1<<11, // gamma (postprocessing only)
1062         SHADERPERMUTATION_POSTPROCESSING = 1<<12, // user defined postprocessing
1063         SHADERPERMUTATION_LIMIT = 1<<13, // size of permutations array
1064         SHADERPERMUTATION_COUNT = 13 // size of shaderpermutationinfo array
1065 }
1066 shaderpermutation_t;
1067
1068 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
1069 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
1070 {
1071         {"#define USEDIFFUSE\n", " diffuse"},
1072         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
1073         {"#define USECOLORMAPPING\n", " colormapping"},
1074         {"#define USECONTRASTBOOST\n", " contrastboost"},
1075         {"#define USEFOG\n", " fog"},
1076         {"#define USECUBEFILTER\n", " cubefilter"},
1077         {"#define USEGLOW\n", " glow"},
1078         {"#define USESPECULAR\n", " specular"},
1079         {"#define USEREFLECTION\n", " reflection"},
1080         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
1081         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
1082         {"#define USEGAMMARAMPS\n", " gammaramps"},
1083         {"#define USEPOSTPROCESSING\n", " postprocessing"},
1084 };
1085
1086 // this enum is multiplied by SHADERPERMUTATION_MODEBASE
1087 typedef enum shadermode_e
1088 {
1089         SHADERMODE_GENERIC, // (particles/HUD/etc) vertex color, optionally multiplied by one texture
1090         SHADERMODE_POSTPROCESS, // postprocessing shader (r_glsl_postprocess)
1091         SHADERMODE_DEPTH_OR_SHADOW, // (depthfirst/shadows) vertex shader only
1092         SHADERMODE_FLATCOLOR, // (lightmap) modulate texture by uniform color (q1bsp, q3bsp)
1093         SHADERMODE_VERTEXCOLOR, // (lightmap) modulate texture by vertex colors (q3bsp)
1094         SHADERMODE_LIGHTMAP, // (lightmap) modulate texture by lightmap texture (q1bsp, q3bsp)
1095         SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE, // (lightmap) use directional pixel shading from texture containing modelspace light directions (q3bsp deluxemap)
1096         SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE, // (lightmap) use directional pixel shading from texture containing tangentspace light directions (q1bsp deluxemap)
1097         SHADERMODE_LIGHTDIRECTION, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
1098         SHADERMODE_LIGHTSOURCE, // (lightsource) use directional pixel shading from light source (rtlight)
1099         SHADERMODE_REFRACTION, // refract background (the material is rendered normally after this pass)
1100         SHADERMODE_WATER, // refract background and reflection (the material is rendered normally after this pass)
1101         SHADERMODE_COUNT
1102 }
1103 shadermode_t;
1104
1105 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
1106 shadermodeinfo_t shadermodeinfo[SHADERMODE_COUNT] =
1107 {
1108         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_GENERIC\n", " generic"},
1109         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_POSTPROCESS\n", " postprocess"},
1110         {"glsl/default.glsl", NULL, NULL               , "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
1111         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_FLATCOLOR\n", " flatcolor"},
1112         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
1113         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTMAP\n", " lightmap"},
1114         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
1115         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
1116         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
1117         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTSOURCE\n", " lightsource"},
1118         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_REFRACTION\n", " refraction"},
1119         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_WATER\n", " water"},
1120 };
1121
1122 typedef struct r_glsl_permutation_s
1123 {
1124         // indicates if we have tried compiling this permutation already
1125         qboolean compiled;
1126         // 0 if compilation failed
1127         int program;
1128         // locations of detected uniforms in program object, or -1 if not found
1129         int loc_Texture_First;
1130         int loc_Texture_Second;
1131         int loc_Texture_GammaRamps;
1132         int loc_Texture_Normal;
1133         int loc_Texture_Color;
1134         int loc_Texture_Gloss;
1135         int loc_Texture_Glow;
1136         int loc_Texture_SecondaryNormal;
1137         int loc_Texture_SecondaryColor;
1138         int loc_Texture_SecondaryGloss;
1139         int loc_Texture_SecondaryGlow;
1140         int loc_Texture_Pants;
1141         int loc_Texture_Shirt;
1142         int loc_Texture_FogMask;
1143         int loc_Texture_Lightmap;
1144         int loc_Texture_Deluxemap;
1145         int loc_Texture_Attenuation;
1146         int loc_Texture_Cube;
1147         int loc_Texture_Refraction;
1148         int loc_Texture_Reflection;
1149         int loc_FogColor;
1150         int loc_LightPosition;
1151         int loc_EyePosition;
1152         int loc_Color_Pants;
1153         int loc_Color_Shirt;
1154         int loc_FogRangeRecip;
1155         int loc_AmbientScale;
1156         int loc_DiffuseScale;
1157         int loc_SpecularScale;
1158         int loc_SpecularPower;
1159         int loc_GlowScale;
1160         int loc_SceneBrightness; // or: Scenebrightness * ContrastBoost
1161         int loc_OffsetMapping_Scale;
1162         int loc_TintColor;
1163         int loc_AmbientColor;
1164         int loc_DiffuseColor;
1165         int loc_SpecularColor;
1166         int loc_LightDir;
1167         int loc_ContrastBoostCoeff; // 1 - 1/ContrastBoost
1168         int loc_GammaCoeff; // 1 / gamma
1169         int loc_DistortScaleRefractReflect;
1170         int loc_ScreenScaleRefractReflect;
1171         int loc_ScreenCenterRefractReflect;
1172         int loc_RefractColor;
1173         int loc_ReflectColor;
1174         int loc_ReflectFactor;
1175         int loc_ReflectOffset;
1176         int loc_UserVec1;
1177         int loc_UserVec2;
1178         int loc_UserVec3;
1179         int loc_UserVec4;
1180         int loc_ClientTime;
1181         int loc_PixelSize;
1182 }
1183 r_glsl_permutation_t;
1184
1185 // information about each possible shader permutation
1186 r_glsl_permutation_t r_glsl_permutations[SHADERMODE_COUNT][SHADERPERMUTATION_LIMIT];
1187 // currently selected permutation
1188 r_glsl_permutation_t *r_glsl_permutation;
1189
1190 static char *R_GLSL_GetText(const char *filename, qboolean printfromdisknotice)
1191 {
1192         char *shaderstring;
1193         if (!filename || !filename[0])
1194                 return NULL;
1195         shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL);
1196         if (shaderstring)
1197         {
1198                 if (printfromdisknotice)
1199                         Con_DPrint("from disk... ");
1200                 return shaderstring;
1201         }
1202         else if (!strcmp(filename, "glsl/default.glsl"))
1203         {
1204                 shaderstring = Mem_Alloc(r_main_mempool, strlen(builtinshaderstring) + 1);
1205                 memcpy(shaderstring, builtinshaderstring, strlen(builtinshaderstring) + 1);
1206         }
1207         return shaderstring;
1208 }
1209
1210 static void R_GLSL_CompilePermutation(shadermode_t mode, shaderpermutation_t permutation)
1211 {
1212         int i;
1213         shadermodeinfo_t *modeinfo = shadermodeinfo + mode;
1214         r_glsl_permutation_t *p = &r_glsl_permutations[mode][permutation];
1215         int vertstrings_count = 0;
1216         int geomstrings_count = 0;
1217         int fragstrings_count = 0;
1218         char *vertexstring, *geometrystring, *fragmentstring;
1219         const char *vertstrings_list[32+3];
1220         const char *geomstrings_list[32+3];
1221         const char *fragstrings_list[32+3];
1222         char permutationname[256];
1223
1224         if (p->compiled)
1225                 return;
1226         p->compiled = true;
1227         p->program = 0;
1228
1229         permutationname[0] = 0;
1230         vertexstring   = R_GLSL_GetText(modeinfo->vertexfilename, true);
1231         geometrystring = R_GLSL_GetText(modeinfo->geometryfilename, false);
1232         fragmentstring = R_GLSL_GetText(modeinfo->fragmentfilename, false);
1233
1234         strlcat(permutationname, shadermodeinfo[mode].vertexfilename, sizeof(permutationname));
1235
1236         // the first pretext is which type of shader to compile as
1237         // (later these will all be bound together as a program object)
1238         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1239         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1240         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1241
1242         // the second pretext is the mode (for example a light source)
1243         vertstrings_list[vertstrings_count++] = shadermodeinfo[mode].pretext;
1244         geomstrings_list[geomstrings_count++] = shadermodeinfo[mode].pretext;
1245         fragstrings_list[fragstrings_count++] = shadermodeinfo[mode].pretext;
1246         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1247
1248         // now add all the permutation pretexts
1249         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1250         {
1251                 if (permutation & (1<<i))
1252                 {
1253                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1254                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1255                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1256                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1257                 }
1258                 else
1259                 {
1260                         // keep line numbers correct
1261                         vertstrings_list[vertstrings_count++] = "\n";
1262                         geomstrings_list[geomstrings_count++] = "\n";
1263                         fragstrings_list[fragstrings_count++] = "\n";
1264                 }
1265         }
1266
1267         // now append the shader text itself
1268         vertstrings_list[vertstrings_count++] = vertexstring;
1269         geomstrings_list[geomstrings_count++] = geometrystring;
1270         fragstrings_list[fragstrings_count++] = fragmentstring;
1271
1272         // if any sources were NULL, clear the respective list
1273         if (!vertexstring)
1274                 vertstrings_count = 0;
1275         if (!geometrystring)
1276                 geomstrings_count = 0;
1277         if (!fragmentstring)
1278                 fragstrings_count = 0;
1279
1280         // compile the shader program
1281         if (vertstrings_count + geomstrings_count + fragstrings_count)
1282                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1283         if (p->program)
1284         {
1285                 CHECKGLERROR
1286                 qglUseProgramObjectARB(p->program);CHECKGLERROR
1287                 // look up all the uniform variable names we care about, so we don't
1288                 // have to look them up every time we set them
1289                 p->loc_Texture_First              = qglGetUniformLocationARB(p->program, "Texture_First");
1290                 p->loc_Texture_Second             = qglGetUniformLocationARB(p->program, "Texture_Second");
1291                 p->loc_Texture_GammaRamps         = qglGetUniformLocationARB(p->program, "Texture_GammaRamps");
1292                 p->loc_Texture_Normal             = qglGetUniformLocationARB(p->program, "Texture_Normal");
1293                 p->loc_Texture_Color              = qglGetUniformLocationARB(p->program, "Texture_Color");
1294                 p->loc_Texture_Gloss              = qglGetUniformLocationARB(p->program, "Texture_Gloss");
1295                 p->loc_Texture_Glow               = qglGetUniformLocationARB(p->program, "Texture_Glow");
1296                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocationARB(p->program, "Texture_SecondaryNormal");
1297                 p->loc_Texture_SecondaryColor     = qglGetUniformLocationARB(p->program, "Texture_SecondaryColor");
1298                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocationARB(p->program, "Texture_SecondaryGloss");
1299                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocationARB(p->program, "Texture_SecondaryGlow");
1300                 p->loc_Texture_FogMask            = qglGetUniformLocationARB(p->program, "Texture_FogMask");
1301                 p->loc_Texture_Pants              = qglGetUniformLocationARB(p->program, "Texture_Pants");
1302                 p->loc_Texture_Shirt              = qglGetUniformLocationARB(p->program, "Texture_Shirt");
1303                 p->loc_Texture_Lightmap           = qglGetUniformLocationARB(p->program, "Texture_Lightmap");
1304                 p->loc_Texture_Deluxemap          = qglGetUniformLocationARB(p->program, "Texture_Deluxemap");
1305                 p->loc_Texture_Refraction         = qglGetUniformLocationARB(p->program, "Texture_Refraction");
1306                 p->loc_Texture_Reflection         = qglGetUniformLocationARB(p->program, "Texture_Reflection");
1307                 p->loc_Texture_Attenuation        = qglGetUniformLocationARB(p->program, "Texture_Attenuation");
1308                 p->loc_Texture_Cube               = qglGetUniformLocationARB(p->program, "Texture_Cube");
1309                 p->loc_FogColor                   = qglGetUniformLocationARB(p->program, "FogColor");
1310                 p->loc_LightPosition              = qglGetUniformLocationARB(p->program, "LightPosition");
1311                 p->loc_EyePosition                = qglGetUniformLocationARB(p->program, "EyePosition");
1312                 p->loc_Color_Pants                = qglGetUniformLocationARB(p->program, "Color_Pants");
1313                 p->loc_Color_Shirt                = qglGetUniformLocationARB(p->program, "Color_Shirt");
1314                 p->loc_FogRangeRecip              = qglGetUniformLocationARB(p->program, "FogRangeRecip");
1315                 p->loc_AmbientScale               = qglGetUniformLocationARB(p->program, "AmbientScale");
1316                 p->loc_DiffuseScale               = qglGetUniformLocationARB(p->program, "DiffuseScale");
1317                 p->loc_SpecularPower              = qglGetUniformLocationARB(p->program, "SpecularPower");
1318                 p->loc_SpecularScale              = qglGetUniformLocationARB(p->program, "SpecularScale");
1319                 p->loc_GlowScale                  = qglGetUniformLocationARB(p->program, "GlowScale");
1320                 p->loc_SceneBrightness            = qglGetUniformLocationARB(p->program, "SceneBrightness");
1321                 p->loc_OffsetMapping_Scale        = qglGetUniformLocationARB(p->program, "OffsetMapping_Scale");
1322                 p->loc_TintColor                  = qglGetUniformLocationARB(p->program, "TintColor");
1323                 p->loc_AmbientColor               = qglGetUniformLocationARB(p->program, "AmbientColor");
1324                 p->loc_DiffuseColor               = qglGetUniformLocationARB(p->program, "DiffuseColor");
1325                 p->loc_SpecularColor              = qglGetUniformLocationARB(p->program, "SpecularColor");
1326                 p->loc_LightDir                   = qglGetUniformLocationARB(p->program, "LightDir");
1327                 p->loc_ContrastBoostCoeff         = qglGetUniformLocationARB(p->program, "ContrastBoostCoeff");
1328                 p->loc_DistortScaleRefractReflect = qglGetUniformLocationARB(p->program, "DistortScaleRefractReflect");
1329                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocationARB(p->program, "ScreenScaleRefractReflect");
1330                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocationARB(p->program, "ScreenCenterRefractReflect");
1331                 p->loc_RefractColor               = qglGetUniformLocationARB(p->program, "RefractColor");
1332                 p->loc_ReflectColor               = qglGetUniformLocationARB(p->program, "ReflectColor");
1333                 p->loc_ReflectFactor              = qglGetUniformLocationARB(p->program, "ReflectFactor");
1334                 p->loc_ReflectOffset              = qglGetUniformLocationARB(p->program, "ReflectOffset");
1335                 p->loc_GammaCoeff                 = qglGetUniformLocationARB(p->program, "GammaCoeff");
1336                 p->loc_UserVec1                   = qglGetUniformLocationARB(p->program, "UserVec1");
1337                 p->loc_UserVec2                   = qglGetUniformLocationARB(p->program, "UserVec2");
1338                 p->loc_UserVec3                   = qglGetUniformLocationARB(p->program, "UserVec3");
1339                 p->loc_UserVec4                   = qglGetUniformLocationARB(p->program, "UserVec4");
1340                 p->loc_ClientTime                 = qglGetUniformLocationARB(p->program, "ClientTime");
1341                 p->loc_PixelSize                  = qglGetUniformLocationARB(p->program, "PixelSize");
1342                 // initialize the samplers to refer to the texture units we use
1343                 if (p->loc_Texture_First           >= 0) qglUniform1iARB(p->loc_Texture_First          , GL20TU_FIRST);
1344                 if (p->loc_Texture_Second          >= 0) qglUniform1iARB(p->loc_Texture_Second         , GL20TU_SECOND);
1345                 if (p->loc_Texture_GammaRamps      >= 0) qglUniform1iARB(p->loc_Texture_GammaRamps     , GL20TU_GAMMARAMPS);
1346                 if (p->loc_Texture_Normal          >= 0) qglUniform1iARB(p->loc_Texture_Normal         , GL20TU_NORMAL);
1347                 if (p->loc_Texture_Color           >= 0) qglUniform1iARB(p->loc_Texture_Color          , GL20TU_COLOR);
1348                 if (p->loc_Texture_Gloss           >= 0) qglUniform1iARB(p->loc_Texture_Gloss          , GL20TU_GLOSS);
1349                 if (p->loc_Texture_Glow            >= 0) qglUniform1iARB(p->loc_Texture_Glow           , GL20TU_GLOW);
1350                 if (p->loc_Texture_SecondaryNormal >= 0) qglUniform1iARB(p->loc_Texture_SecondaryNormal, GL20TU_SECONDARY_NORMAL);
1351                 if (p->loc_Texture_SecondaryColor  >= 0) qglUniform1iARB(p->loc_Texture_SecondaryColor , GL20TU_SECONDARY_COLOR);
1352                 if (p->loc_Texture_SecondaryGloss  >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGloss , GL20TU_SECONDARY_GLOSS);
1353                 if (p->loc_Texture_SecondaryGlow   >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGlow  , GL20TU_SECONDARY_GLOW);
1354                 if (p->loc_Texture_Pants           >= 0) qglUniform1iARB(p->loc_Texture_Pants          , GL20TU_PANTS);
1355                 if (p->loc_Texture_Shirt           >= 0) qglUniform1iARB(p->loc_Texture_Shirt          , GL20TU_SHIRT);
1356                 if (p->loc_Texture_FogMask         >= 0) qglUniform1iARB(p->loc_Texture_FogMask        , GL20TU_FOGMASK);
1357                 if (p->loc_Texture_Lightmap        >= 0) qglUniform1iARB(p->loc_Texture_Lightmap       , GL20TU_LIGHTMAP);
1358                 if (p->loc_Texture_Deluxemap       >= 0) qglUniform1iARB(p->loc_Texture_Deluxemap      , GL20TU_DELUXEMAP);
1359                 if (p->loc_Texture_Attenuation     >= 0) qglUniform1iARB(p->loc_Texture_Attenuation    , GL20TU_ATTENUATION);
1360                 if (p->loc_Texture_Cube            >= 0) qglUniform1iARB(p->loc_Texture_Cube           , GL20TU_CUBE);
1361                 if (p->loc_Texture_Refraction      >= 0) qglUniform1iARB(p->loc_Texture_Refraction     , GL20TU_REFRACTION);
1362                 if (p->loc_Texture_Reflection      >= 0) qglUniform1iARB(p->loc_Texture_Reflection     , GL20TU_REFLECTION);
1363                 CHECKGLERROR
1364                 if (developer.integer)
1365                         Con_Printf("GLSL shader %s compiled.\n", permutationname);
1366         }
1367         else
1368                 Con_Printf("GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1369
1370         // free the strings
1371         if (vertexstring)
1372                 Mem_Free(vertexstring);
1373         if (geometrystring)
1374                 Mem_Free(geometrystring);
1375         if (fragmentstring)
1376                 Mem_Free(fragmentstring);
1377 }
1378
1379 void R_GLSL_Restart_f(void)
1380 {
1381         shadermode_t mode;
1382         shaderpermutation_t permutation;
1383         for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1384                 for (permutation = 0;permutation < SHADERPERMUTATION_LIMIT;permutation++)
1385                         if (r_glsl_permutations[mode][permutation].program)
1386                                 GL_Backend_FreeProgram(r_glsl_permutations[mode][permutation].program);
1387         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1388 }
1389
1390 void R_GLSL_DumpShader_f(void)
1391 {
1392         int i;
1393
1394         qfile_t *file = FS_Open("glsl/default.glsl", "w", false, false);
1395         if(!file)
1396         {
1397                 Con_Printf("failed to write to glsl/default.glsl\n");
1398                 return;
1399         }
1400
1401         FS_Print(file, "// The engine may define the following macros:\n");
1402         FS_Print(file, "// #define VERTEX_SHADER\n// #define GEOMETRY_SHADER\n// #define FRAGMENT_SHADER\n");
1403         for (i = 0;i < SHADERMODE_COUNT;i++)
1404                 FS_Printf(file, "// %s", shadermodeinfo[i].pretext);
1405         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1406                 FS_Printf(file, "// %s", shaderpermutationinfo[i].pretext);
1407         FS_Print(file, "\n");
1408         FS_Print(file, builtinshaderstring);
1409         FS_Close(file);
1410
1411         Con_Printf("glsl/default.glsl written\n");
1412 }
1413
1414 void R_SetupShader_SetPermutation(shadermode_t mode, unsigned int permutation)
1415 {
1416         r_glsl_permutation_t *perm = &r_glsl_permutations[mode][permutation];
1417         if (r_glsl_permutation != perm)
1418         {
1419                 r_glsl_permutation = perm;
1420                 if (!r_glsl_permutation->program)
1421                 {
1422                         if (!r_glsl_permutation->compiled)
1423                                 R_GLSL_CompilePermutation(mode, permutation);
1424                         if (!r_glsl_permutation->program)
1425                         {
1426                                 // remove features until we find a valid permutation
1427                                 int i;
1428                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1429                                 {
1430                                         // reduce i more quickly whenever it would not remove any bits
1431                                         int j = 1<<(SHADERPERMUTATION_COUNT-1-i);
1432                                         if (!(permutation & j))
1433                                                 continue;
1434                                         permutation -= j;
1435                                         r_glsl_permutation = &r_glsl_permutations[mode][permutation];
1436                                         if (!r_glsl_permutation->compiled)
1437                                                 R_GLSL_CompilePermutation(mode, permutation);
1438                                         if (r_glsl_permutation->program)
1439                                                 break;
1440                                 }
1441                                 if (i >= SHADERPERMUTATION_COUNT)
1442                                 {
1443                                         Con_Printf("OpenGL 2.0 shaders disabled - unable to find a working shader permutation fallback on this driver (set r_glsl 1 if you want to try again)\n");
1444                                         Cvar_SetValueQuick(&r_glsl, 0);
1445                                         R_GLSL_Restart_f(); // unload shaders
1446                                         return; // no bit left to clear
1447                                 }
1448                         }
1449                 }
1450                 CHECKGLERROR
1451                 qglUseProgramObjectARB(r_glsl_permutation->program);CHECKGLERROR
1452         }
1453 }
1454
1455 void R_SetupGenericShader(qboolean usetexture)
1456 {
1457         if (gl_support_fragment_shader)
1458         {
1459                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1460                         R_SetupShader_SetPermutation(SHADERMODE_GENERIC, usetexture ? SHADERPERMUTATION_DIFFUSE : 0);
1461                 else if (r_glsl_permutation)
1462                 {
1463                         r_glsl_permutation = NULL;
1464                         qglUseProgramObjectARB(0);CHECKGLERROR
1465                 }
1466         }
1467 }
1468
1469 void R_SetupGenericTwoTextureShader(int texturemode)
1470 {
1471         if (gl_support_fragment_shader)
1472         {
1473                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1474                         R_SetupShader_SetPermutation(SHADERMODE_GENERIC, SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_SPECULAR | (texturemode == GL_MODULATE ? SHADERPERMUTATION_COLORMAPPING : (texturemode == GL_ADD ? SHADERPERMUTATION_GLOW : (texturemode == GL_DECAL ? SHADERPERMUTATION_VERTEXTEXTUREBLEND : 0))));
1475                 else if (r_glsl_permutation)
1476                 {
1477                         r_glsl_permutation = NULL;
1478                         qglUseProgramObjectARB(0);CHECKGLERROR
1479                 }
1480         }
1481         if (!r_glsl_permutation)
1482         {
1483                 if (texturemode == GL_DECAL && gl_combine.integer)
1484                         texturemode = GL_INTERPOLATE_ARB;
1485                 R_Mesh_TexCombine(1, texturemode, texturemode, 1, 1);
1486         }
1487 }
1488
1489 void R_SetupDepthOrShadowShader(void)
1490 {
1491         if (gl_support_fragment_shader)
1492         {
1493                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1494                         R_SetupShader_SetPermutation(SHADERMODE_DEPTH_OR_SHADOW, 0);
1495                 else if (r_glsl_permutation)
1496                 {
1497                         r_glsl_permutation = NULL;
1498                         qglUseProgramObjectARB(0);CHECKGLERROR
1499                 }
1500         }
1501 }
1502
1503 extern rtexture_t *r_shadow_attenuationgradienttexture;
1504 extern rtexture_t *r_shadow_attenuation2dtexture;
1505 extern rtexture_t *r_shadow_attenuation3dtexture;
1506 void R_SetupSurfaceShader(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass)
1507 {
1508         // select a permutation of the lighting shader appropriate to this
1509         // combination of texture, entity, light source, and fogging, only use the
1510         // minimum features necessary to avoid wasting rendering time in the
1511         // fragment shader on features that are not being used
1512         unsigned int permutation = 0;
1513         shadermode_t mode = 0;
1514         // TODO: implement geometry-shader based shadow volumes someday
1515         if (r_glsl_offsetmapping.integer)
1516         {
1517                 permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1518                 if (r_glsl_offsetmapping_reliefmapping.integer)
1519                         permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1520         }
1521         if (rsurfacepass == RSURFPASS_BACKGROUND)
1522         {
1523                 // distorted background
1524                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1525                         mode = SHADERMODE_WATER;
1526                 else
1527                         mode = SHADERMODE_REFRACTION;
1528         }
1529         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1530         {
1531                 // light source
1532                 mode = SHADERMODE_LIGHTSOURCE;
1533                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1534                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1535                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1536                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1537                 if (diffusescale > 0)
1538                         permutation |= SHADERPERMUTATION_DIFFUSE;
1539                 if (specularscale > 0)
1540                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1541                 if (r_refdef.fogenabled)
1542                         permutation |= SHADERPERMUTATION_FOG;
1543                 if (rsurface.texture->colormapping)
1544                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1545                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1546                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1547         }
1548         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)
1549         {
1550                 // unshaded geometry (fullbright or ambient model lighting)
1551                 mode = SHADERMODE_FLATCOLOR;
1552                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1553                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1554                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1555                         permutation |= SHADERPERMUTATION_GLOW;
1556                 if (r_refdef.fogenabled)
1557                         permutation |= SHADERPERMUTATION_FOG;
1558                 if (rsurface.texture->colormapping)
1559                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1560                 if (r_glsl_offsetmapping.integer)
1561                 {
1562                         permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1563                         if (r_glsl_offsetmapping_reliefmapping.integer)
1564                                 permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1565                 }
1566                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1567                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1568                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1569                         permutation |= SHADERPERMUTATION_REFLECTION;
1570         }
1571         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT_DIRECTIONAL)
1572         {
1573                 // directional model lighting
1574                 mode = SHADERMODE_LIGHTDIRECTION;
1575                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1576                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1577                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1578                         permutation |= SHADERPERMUTATION_GLOW;
1579                 permutation |= SHADERPERMUTATION_DIFFUSE;
1580                 if (specularscale > 0)
1581                         permutation |= SHADERPERMUTATION_SPECULAR;
1582                 if (r_refdef.fogenabled)
1583                         permutation |= SHADERPERMUTATION_FOG;
1584                 if (rsurface.texture->colormapping)
1585                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1586                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1587                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1588                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1589                         permutation |= SHADERPERMUTATION_REFLECTION;
1590         }
1591         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1592         {
1593                 // ambient model lighting
1594                 mode = SHADERMODE_LIGHTDIRECTION;
1595                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1596                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1597                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1598                         permutation |= SHADERPERMUTATION_GLOW;
1599                 if (r_refdef.fogenabled)
1600                         permutation |= SHADERPERMUTATION_FOG;
1601                 if (rsurface.texture->colormapping)
1602                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1603                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1604                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1605                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1606                         permutation |= SHADERPERMUTATION_REFLECTION;
1607         }
1608         else
1609         {
1610                 // lightmapped wall
1611                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1612                 {
1613                         // deluxemapping (light direction texture)
1614                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1615                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1616                         else
1617                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1618                         permutation |= SHADERPERMUTATION_DIFFUSE;
1619                         if (specularscale > 0)
1620                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1621                 }
1622                 else if (r_glsl_deluxemapping.integer >= 2)
1623                 {
1624                         // fake deluxemapping (uniform light direction in tangentspace)
1625                         mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1626                         permutation |= SHADERPERMUTATION_DIFFUSE;
1627                         if (specularscale > 0)
1628                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1629                 }
1630                 else if (rsurface.uselightmaptexture)
1631                 {
1632                         // ordinary lightmapping (q1bsp, q3bsp)
1633                         mode = SHADERMODE_LIGHTMAP;
1634                 }
1635                 else
1636                 {
1637                         // ordinary vertex coloring (q3bsp)
1638                         mode = SHADERMODE_VERTEXCOLOR;
1639                 }
1640                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1641                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1642                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1643                         permutation |= SHADERPERMUTATION_GLOW;
1644                 if (r_refdef.fogenabled)
1645                         permutation |= SHADERPERMUTATION_FOG;
1646                 if (rsurface.texture->colormapping)
1647                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1648                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1649                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1650                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1651                         permutation |= SHADERPERMUTATION_REFLECTION;
1652         }
1653         R_SetupShader_SetPermutation(mode, permutation);
1654         if (mode == SHADERMODE_LIGHTSOURCE)
1655         {
1656                 if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1657                 if (permutation & SHADERPERMUTATION_DIFFUSE)
1658                 {
1659                         if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2], rsurface.texture->lightmapcolor[3]);
1660                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, ambientscale);
1661                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, diffusescale);
1662                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, specularscale);
1663                 }
1664                 else
1665                 {
1666                         // ambient only is simpler
1667                         if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, lightcolorbase[0] * ambientscale, lightcolorbase[1] * ambientscale, lightcolorbase[2] * ambientscale, rsurface.texture->lightmapcolor[3]);
1668                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, 1);
1669                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, 0);
1670                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, 0);
1671                 }
1672                 // additive passes are only darkened by fog, not tinted
1673                 if (r_glsl_permutation->loc_FogColor >= 0)
1674                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1675         }
1676         else
1677         {
1678                 if (mode == SHADERMODE_LIGHTDIRECTION)
1679                 {
1680                         if (r_glsl_permutation->loc_AmbientColor  >= 0) qglUniform3fARB(r_glsl_permutation->loc_AmbientColor , rsurface.modellight_ambient[0] * ambientscale  * 0.5f, rsurface.modellight_ambient[1] * ambientscale  * 0.5f, rsurface.modellight_ambient[2] * ambientscale  * 0.5f);
1681                         if (r_glsl_permutation->loc_DiffuseColor  >= 0) qglUniform3fARB(r_glsl_permutation->loc_DiffuseColor , rsurface.modellight_diffuse[0] * diffusescale  * 0.5f, rsurface.modellight_diffuse[1] * diffusescale  * 0.5f, rsurface.modellight_diffuse[2] * diffusescale  * 0.5f);
1682                         if (r_glsl_permutation->loc_SpecularColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_SpecularColor, rsurface.modellight_diffuse[0] * specularscale * 0.5f, rsurface.modellight_diffuse[1] * specularscale * 0.5f, rsurface.modellight_diffuse[2] * specularscale * 0.5f);
1683                         if (r_glsl_permutation->loc_LightDir      >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);
1684                 }
1685                 else
1686                 {
1687                         if (r_glsl_permutation->loc_AmbientScale  >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, r_refdef.scene.ambient * 1.0f / 128.0f);
1688                         if (r_glsl_permutation->loc_DiffuseScale  >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, r_refdef.lightmapintensity);
1689                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, r_refdef.lightmapintensity * specularscale);
1690                 }
1691                 if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, rsurface.texture->lightmapcolor[0], rsurface.texture->lightmapcolor[1], rsurface.texture->lightmapcolor[2], rsurface.texture->lightmapcolor[3]);
1692                 if (r_glsl_permutation->loc_GlowScale     >= 0) qglUniform1fARB(r_glsl_permutation->loc_GlowScale, r_hdr_glowintensity.value);
1693                 // additive passes are only darkened by fog, not tinted
1694                 if (r_glsl_permutation->loc_FogColor >= 0)
1695                 {
1696                         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD)
1697                                 qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1698                         else
1699                                 qglUniform3fARB(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1700                 }
1701                 if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor);
1702                 if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]);
1703                 if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]);
1704                 if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_RefractColor, 1, rsurface.texture->refractcolor4f);
1705                 if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_ReflectColor, 1, rsurface.texture->reflectcolor4f);
1706                 if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin);
1707                 if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectOffset, rsurface.texture->reflectmin);
1708         }
1709         if (r_glsl_permutation->loc_ContrastBoostCoeff >= 0)
1710         {
1711                 // The formula used is actually:
1712                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1713                 //   color.rgb *= SceneBrightness;
1714                 // simplified:
1715                 //   color.rgb = [[SceneBrightness * ContrastBoost]] * color.rgb / ([[ContrastBoost - 1]] * color.rgb + 1);
1716                 // and do [[calculations]] here in the engine
1717                 qglUniform1fARB(r_glsl_permutation->loc_ContrastBoostCoeff, r_glsl_contrastboost.value - 1);
1718                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_refdef.view.colorscale * r_glsl_contrastboost.value);
1719         }
1720         else
1721                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_refdef.view.colorscale);
1722         if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_EyePosition, rsurface.modelorg[0], rsurface.modelorg[1], rsurface.modelorg[2]);
1723         if (r_glsl_permutation->loc_Color_Pants >= 0)
1724         {
1725                 if (rsurface.texture->currentskinframe->pants)
1726                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]);
1727                 else
1728                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1729         }
1730         if (r_glsl_permutation->loc_Color_Shirt >= 0)
1731         {
1732                 if (rsurface.texture->currentskinframe->shirt)
1733                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]);
1734                 else
1735                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
1736         }
1737         if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogRangeRecip, r_refdef.fograngerecip);
1738         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower);
1739         if (r_glsl_permutation->loc_OffsetMapping_Scale >= 0) qglUniform1fARB(r_glsl_permutation->loc_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value);
1740         CHECKGLERROR
1741 }
1742
1743 #define SKINFRAME_HASH 1024
1744
1745 struct
1746 {
1747         int loadsequence; // incremented each level change
1748         memexpandablearray_t array;
1749         skinframe_t *hash[SKINFRAME_HASH];
1750 }
1751 r_skinframe;
1752
1753 void R_SkinFrame_PrepareForPurge(void)
1754 {
1755         r_skinframe.loadsequence++;
1756         // wrap it without hitting zero
1757         if (r_skinframe.loadsequence >= 200)
1758                 r_skinframe.loadsequence = 1;
1759 }
1760
1761 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
1762 {
1763         if (!skinframe)
1764                 return;
1765         // mark the skinframe as used for the purging code
1766         skinframe->loadsequence = r_skinframe.loadsequence;
1767 }
1768
1769 void R_SkinFrame_Purge(void)
1770 {
1771         int i;
1772         skinframe_t *s;
1773         for (i = 0;i < SKINFRAME_HASH;i++)
1774         {
1775                 for (s = r_skinframe.hash[i];s;s = s->next)
1776                 {
1777                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
1778                         {
1779                                 if (s->merged == s->base)
1780                                         s->merged = NULL;
1781                                 // FIXME: maybe pass a pointer to the pointer to R_PurgeTexture and reset it to NULL inside? [11/29/2007 Black]
1782                                 R_PurgeTexture(s->stain );s->stain  = NULL;
1783                                 R_PurgeTexture(s->merged);s->merged = NULL;
1784                                 R_PurgeTexture(s->base  );s->base   = NULL;
1785                                 R_PurgeTexture(s->pants );s->pants  = NULL;
1786                                 R_PurgeTexture(s->shirt );s->shirt  = NULL;
1787                                 R_PurgeTexture(s->nmap  );s->nmap   = NULL;
1788                                 R_PurgeTexture(s->gloss );s->gloss  = NULL;
1789                                 R_PurgeTexture(s->glow  );s->glow   = NULL;
1790                                 R_PurgeTexture(s->fog   );s->fog    = NULL;
1791                                 s->loadsequence = 0;
1792                         }
1793                 }
1794         }
1795 }
1796
1797 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
1798         skinframe_t *item;
1799         char basename[MAX_QPATH];
1800
1801         Image_StripImageExtension(name, basename, sizeof(basename));
1802
1803         if( last == NULL ) {
1804                 int hashindex;
1805                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1806                 item = r_skinframe.hash[hashindex];
1807         } else {
1808                 item = last->next;
1809         }
1810
1811         // linearly search through the hash bucket
1812         for( ; item ; item = item->next ) {
1813                 if( !strcmp( item->basename, basename ) ) {
1814                         return item;
1815                 }
1816         }
1817         return NULL;
1818 }
1819
1820 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add)
1821 {
1822         skinframe_t *item;
1823         int hashindex;
1824         char basename[MAX_QPATH];
1825
1826         Image_StripImageExtension(name, basename, sizeof(basename));
1827
1828         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1829         for (item = r_skinframe.hash[hashindex];item;item = item->next)
1830                 if (!strcmp(item->basename, basename) && item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc)
1831                         break;
1832
1833         if (!item) {
1834                 rtexture_t *dyntexture;
1835                 // check whether its a dynamic texture
1836                 dyntexture = CL_GetDynTexture( basename );
1837                 if (!add && !dyntexture)
1838                         return NULL;
1839                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
1840                 memset(item, 0, sizeof(*item));
1841                 strlcpy(item->basename, basename, sizeof(item->basename));
1842                 item->base = dyntexture; // either NULL or dyntexture handle
1843                 item->textureflags = textureflags;
1844                 item->comparewidth = comparewidth;
1845                 item->compareheight = compareheight;
1846                 item->comparecrc = comparecrc;
1847                 item->next = r_skinframe.hash[hashindex];
1848                 r_skinframe.hash[hashindex] = item;
1849         }
1850         else if( item->base == NULL )
1851         {
1852                 rtexture_t *dyntexture;
1853                 // check whether its a dynamic texture
1854                 // this only needs to be done because Purge doesnt delete skinframes - only sets the texture pointers to NULL and we need to restore it before returing.. [11/29/2007 Black]
1855                 dyntexture = CL_GetDynTexture( basename );
1856                 item->base = dyntexture; // either NULL or dyntexture handle
1857         }
1858
1859         R_SkinFrame_MarkUsed(item);
1860         return item;
1861 }
1862
1863 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain)
1864 {
1865         // FIXME: it should be possible to disable loading various layers using
1866         // cvars, to prevent wasted loading time and memory usage if the user does
1867         // not want them
1868         qboolean loadnormalmap = true;
1869         qboolean loadgloss = true;
1870         qboolean loadpantsandshirt = true;
1871         qboolean loadglow = true;
1872         int j;
1873         unsigned char *pixels;
1874         unsigned char *bumppixels;
1875         unsigned char *basepixels = NULL;
1876         int basepixels_width;
1877         int basepixels_height;
1878         skinframe_t *skinframe;
1879
1880         if (cls.state == ca_dedicated)
1881                 return NULL;
1882
1883         // return an existing skinframe if already loaded
1884         // if loading of the first image fails, don't make a new skinframe as it
1885         // would cause all future lookups of this to be missing
1886         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
1887         if (skinframe && skinframe->base)
1888                 return skinframe;
1889
1890         basepixels = loadimagepixelsbgra(name, complain, true);
1891         if (basepixels == NULL)
1892                 return NULL;
1893
1894         if (developer_loading.integer)
1895                 Con_Printf("loading skin \"%s\"\n", name);
1896
1897         // we've got some pixels to store, so really allocate this new texture now
1898         if (!skinframe)
1899                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
1900         skinframe->stain = NULL;
1901         skinframe->merged = NULL;
1902         skinframe->base = r_texture_notexture;
1903         skinframe->pants = NULL;
1904         skinframe->shirt = NULL;
1905         skinframe->nmap = r_texture_blanknormalmap;
1906         skinframe->gloss = NULL;
1907         skinframe->glow = NULL;
1908         skinframe->fog = NULL;
1909
1910         basepixels_width = image_width;
1911         basepixels_height = image_height;
1912         skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1913
1914         if (textureflags & TEXF_ALPHA)
1915         {
1916                 for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
1917                         if (basepixels[j] < 255)
1918                                 break;
1919                 if (j < basepixels_width * basepixels_height * 4)
1920                 {
1921                         // has transparent pixels
1922                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1923                         for (j = 0;j < image_width * image_height * 4;j += 4)
1924                         {
1925                                 pixels[j+0] = 255;
1926                                 pixels[j+1] = 255;
1927                                 pixels[j+2] = 255;
1928                                 pixels[j+3] = basepixels[j+3];
1929                         }
1930                         skinframe->fog = R_LoadTexture2D (r_main_texturepool, va("%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1931                         Mem_Free(pixels);
1932                 }
1933         }
1934
1935         // _norm is the name used by tenebrae and has been adopted as standard
1936         if (loadnormalmap)
1937         {
1938                 if ((pixels = loadimagepixelsbgra(va("%s_norm", skinframe->basename), false, false)) != NULL)
1939                 {
1940                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1941                         Mem_Free(pixels);
1942                         pixels = NULL;
1943                 }
1944                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va("%s_bump", skinframe->basename), false, false)) != NULL)
1945                 {
1946                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1947                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
1948                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1949                         Mem_Free(pixels);
1950                         Mem_Free(bumppixels);
1951                 }
1952                 else if (r_shadow_bumpscale_basetexture.value > 0)
1953                 {
1954                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
1955                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
1956                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1957                         Mem_Free(pixels);
1958                 }
1959         }
1960         // _luma is supported for tenebrae compatibility
1961         // (I think it's a very stupid name, but oh well)
1962         // _glow is the preferred name
1963         if (loadglow          && ((pixels = loadimagepixelsbgra(va("%s_glow", skinframe->basename), false, false)) != NULL || (pixels = loadimagepixelsbgra(va("%s_luma", skinframe->basename), false, false)) != NULL)) {skinframe->glow = R_LoadTexture2D (r_main_texturepool, va("%s_glow", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_glow.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1964         if (loadgloss         && (pixels = loadimagepixelsbgra(va("%s_gloss", skinframe->basename), false, false)) != NULL) {skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va("%s_gloss", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_gloss.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1965         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_pants", skinframe->basename), false, false)) != NULL) {skinframe->pants = R_LoadTexture2D (r_main_texturepool, va("%s_pants", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1966         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_shirt", skinframe->basename), false, false)) != NULL) {skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va("%s_shirt", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1967
1968         if (basepixels)
1969                 Mem_Free(basepixels);
1970
1971         return skinframe;
1972 }
1973
1974 static rtexture_t *R_SkinFrame_TextureForSkinLayer(const unsigned char *in, int width, int height, const char *name, const unsigned int *palette, int textureflags, qboolean force)
1975 {
1976         int i;
1977         if (!force)
1978         {
1979                 for (i = 0;i < width*height;i++)
1980                         if (((unsigned char *)&palette[in[i]])[3] > 0)
1981                                 break;
1982                 if (i == width*height)
1983                         return NULL;
1984         }
1985         return R_LoadTexture2D (r_main_texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette);
1986 }
1987
1988 // this is only used by .spr32 sprites, HL .spr files, HL .bsp files
1989 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height)
1990 {
1991         int i;
1992         unsigned char *temp1, *temp2;
1993         skinframe_t *skinframe;
1994
1995         if (cls.state == ca_dedicated)
1996                 return NULL;
1997
1998         // if already loaded just return it, otherwise make a new skinframe
1999         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height*4) : 0, true);
2000         if (skinframe && skinframe->base)
2001                 return skinframe;
2002
2003         skinframe->stain = NULL;
2004         skinframe->merged = NULL;
2005         skinframe->base = r_texture_notexture;
2006         skinframe->pants = NULL;
2007         skinframe->shirt = NULL;
2008         skinframe->nmap = r_texture_blanknormalmap;
2009         skinframe->gloss = NULL;
2010         skinframe->glow = NULL;
2011         skinframe->fog = NULL;
2012
2013         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2014         if (!skindata)
2015                 return NULL;
2016
2017         if (developer_loading.integer)
2018                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2019
2020         if (r_shadow_bumpscale_basetexture.value > 0)
2021         {
2022                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2023                 temp2 = temp1 + width * height * 4;
2024                 Image_HeightmapToNormalmap_BGRA(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
2025                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
2026                 Mem_Free(temp1);
2027         }
2028         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_BGRA, skinframe->textureflags, NULL);
2029         if (textureflags & TEXF_ALPHA)
2030         {
2031                 for (i = 3;i < width * height * 4;i += 4)
2032                         if (skindata[i] < 255)
2033                                 break;
2034                 if (i < width * height * 4)
2035                 {
2036                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2037                         memcpy(fogpixels, skindata, width * height * 4);
2038                         for (i = 0;i < width * height * 4;i += 4)
2039                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2040                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, skinframe->textureflags, NULL);
2041                         Mem_Free(fogpixels);
2042                 }
2043         }
2044
2045         return skinframe;
2046 }
2047
2048 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2049 {
2050         int i;
2051         unsigned char *temp1, *temp2;
2052         skinframe_t *skinframe;
2053
2054         if (cls.state == ca_dedicated)
2055                 return NULL;
2056
2057         // if already loaded just return it, otherwise make a new skinframe
2058         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2059         if (skinframe && skinframe->base)
2060                 return skinframe;
2061
2062         skinframe->stain = NULL;
2063         skinframe->merged = NULL;
2064         skinframe->base = r_texture_notexture;
2065         skinframe->pants = NULL;
2066         skinframe->shirt = NULL;
2067         skinframe->nmap = r_texture_blanknormalmap;
2068         skinframe->gloss = NULL;
2069         skinframe->glow = NULL;
2070         skinframe->fog = NULL;
2071
2072         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2073         if (!skindata)
2074                 return NULL;
2075
2076         if (developer_loading.integer)
2077                 Con_Printf("loading quake skin \"%s\"\n", name);
2078
2079         if (r_shadow_bumpscale_basetexture.value > 0)
2080         {
2081                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2082                 temp2 = temp1 + width * height * 4;
2083                 // use either a custom palette or the quake palette
2084                 Image_Copy8bitBGRA(skindata, temp1, width * height, palette_bgra_complete);
2085                 Image_HeightmapToNormalmap_BGRA(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
2086                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
2087                 Mem_Free(temp1);
2088         }
2089         // use either a custom palette, or the quake palette
2090         skinframe->base = skinframe->merged = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_merged", skinframe->basename), (loadglowtexture ? palette_bgra_nofullbrights : ((skinframe->textureflags & TEXF_ALPHA) ? palette_bgra_transparent : palette_bgra_complete)), skinframe->textureflags, true); // all
2091         if (loadglowtexture)
2092                 skinframe->glow = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_glow", skinframe->basename), palette_bgra_onlyfullbrights, skinframe->textureflags, false); // glow
2093         if (loadpantsandshirt)
2094         {
2095                 skinframe->pants = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_pants", skinframe->basename), palette_bgra_pantsaswhite, skinframe->textureflags, false); // pants
2096                 skinframe->shirt = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_shirt", skinframe->basename), palette_bgra_shirtaswhite, skinframe->textureflags, false); // shirt
2097         }
2098         if (skinframe->pants || skinframe->shirt)
2099                 skinframe->base = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", skinframe->basename), loadglowtexture ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap, skinframe->textureflags, false); // no special colors
2100         if (textureflags & TEXF_ALPHA)
2101         {
2102                 for (i = 0;i < width * height;i++)
2103                         if (((unsigned char *)palette_bgra_alpha)[skindata[i]*4+3] < 255)
2104                                 break;
2105                 if (i < width * height)
2106                         skinframe->fog = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_fog", skinframe->basename), palette_bgra_alpha, skinframe->textureflags, true); // fog mask
2107         }
2108
2109         return skinframe;
2110 }
2111
2112 skinframe_t *R_SkinFrame_LoadMissing(void)
2113 {
2114         skinframe_t *skinframe;
2115
2116         if (cls.state == ca_dedicated)
2117                 return NULL;
2118
2119         skinframe = R_SkinFrame_Find("missing", TEXF_PRECACHE, 0, 0, 0, true);
2120         skinframe->stain = NULL;
2121         skinframe->merged = NULL;
2122         skinframe->base = r_texture_notexture;
2123         skinframe->pants = NULL;
2124         skinframe->shirt = NULL;
2125         skinframe->nmap = r_texture_blanknormalmap;
2126         skinframe->gloss = NULL;
2127         skinframe->glow = NULL;
2128         skinframe->fog = NULL;
2129
2130         return skinframe;
2131 }
2132
2133 void gl_main_start(void)
2134 {
2135         memset(r_qwskincache, 0, sizeof(r_qwskincache));
2136         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
2137
2138         // set up r_skinframe loading system for textures
2139         memset(&r_skinframe, 0, sizeof(r_skinframe));
2140         r_skinframe.loadsequence = 1;
2141         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
2142
2143         r_main_texturepool = R_AllocTexturePool();
2144         R_BuildBlankTextures();
2145         R_BuildNoTexture();
2146         if (gl_texturecubemap)
2147         {
2148                 R_BuildWhiteCube();
2149                 R_BuildNormalizationCube();
2150         }
2151         r_texture_fogattenuation = NULL;
2152         r_texture_gammaramps = NULL;
2153         //r_texture_fogintensity = NULL;
2154         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2155         memset(&r_waterstate, 0, sizeof(r_waterstate));
2156         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
2157         memset(&r_svbsp, 0, sizeof (r_svbsp));
2158
2159         r_refdef.fogmasktable_density = 0;
2160 }
2161
2162 void gl_main_shutdown(void)
2163 {
2164         memset(r_qwskincache, 0, sizeof(r_qwskincache));
2165         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
2166
2167         // clear out the r_skinframe state
2168         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
2169         memset(&r_skinframe, 0, sizeof(r_skinframe));
2170
2171         if (r_svbsp.nodes)
2172                 Mem_Free(r_svbsp.nodes);
2173         memset(&r_svbsp, 0, sizeof (r_svbsp));
2174         R_FreeTexturePool(&r_main_texturepool);
2175         r_texture_blanknormalmap = NULL;
2176         r_texture_white = NULL;
2177         r_texture_grey128 = NULL;
2178         r_texture_black = NULL;
2179         r_texture_whitecube = NULL;
2180         r_texture_normalizationcube = NULL;
2181         r_texture_fogattenuation = NULL;
2182         r_texture_gammaramps = NULL;
2183         //r_texture_fogintensity = NULL;
2184         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2185         memset(&r_waterstate, 0, sizeof(r_waterstate));
2186         R_GLSL_Restart_f();
2187 }
2188
2189 extern void CL_ParseEntityLump(char *entitystring);
2190 void gl_main_newmap(void)
2191 {
2192         // FIXME: move this code to client
2193         int l;
2194         char *entities, entname[MAX_QPATH];
2195         if (cl.worldmodel)
2196         {
2197                 strlcpy(entname, cl.worldmodel->name, sizeof(entname));
2198                 l = (int)strlen(entname) - 4;
2199                 if (l >= 0 && !strcmp(entname + l, ".bsp"))
2200                 {
2201                         memcpy(entname + l, ".ent", 5);
2202                         if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
2203                         {
2204                                 CL_ParseEntityLump(entities);
2205                                 Mem_Free(entities);
2206                                 return;
2207                         }
2208                 }
2209                 if (cl.worldmodel->brush.entities)
2210                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
2211         }
2212 }
2213
2214 void GL_Main_Init(void)
2215 {
2216         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
2217
2218         Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
2219         Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
2220         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
2221         if (gamemode == GAME_NEHAHRA)
2222         {
2223                 Cvar_RegisterVariable (&gl_fogenable);
2224                 Cvar_RegisterVariable (&gl_fogdensity);
2225                 Cvar_RegisterVariable (&gl_fogred);
2226                 Cvar_RegisterVariable (&gl_foggreen);
2227                 Cvar_RegisterVariable (&gl_fogblue);
2228                 Cvar_RegisterVariable (&gl_fogstart);
2229                 Cvar_RegisterVariable (&gl_fogend);
2230                 Cvar_RegisterVariable (&gl_skyclip);
2231         }
2232         Cvar_RegisterVariable(&r_depthfirst);
2233         Cvar_RegisterVariable(&r_nearclip);
2234         Cvar_RegisterVariable(&r_showbboxes);
2235         Cvar_RegisterVariable(&r_showsurfaces);
2236         Cvar_RegisterVariable(&r_showtris);
2237         Cvar_RegisterVariable(&r_shownormals);
2238         Cvar_RegisterVariable(&r_showlighting);
2239         Cvar_RegisterVariable(&r_showshadowvolumes);
2240         Cvar_RegisterVariable(&r_showcollisionbrushes);
2241         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
2242         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
2243         Cvar_RegisterVariable(&r_showdisabledepthtest);
2244         Cvar_RegisterVariable(&r_drawportals);
2245         Cvar_RegisterVariable(&r_drawentities);
2246         Cvar_RegisterVariable(&r_cullentities_trace);
2247         Cvar_RegisterVariable(&r_cullentities_trace_samples);
2248         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
2249         Cvar_RegisterVariable(&r_cullentities_trace_delay);
2250         Cvar_RegisterVariable(&r_drawviewmodel);
2251         Cvar_RegisterVariable(&r_speeds);
2252         Cvar_RegisterVariable(&r_fullbrights);
2253         Cvar_RegisterVariable(&r_wateralpha);
2254         Cvar_RegisterVariable(&r_dynamic);
2255         Cvar_RegisterVariable(&r_fullbright);
2256         Cvar_RegisterVariable(&r_shadows);
2257         Cvar_RegisterVariable(&r_shadows_throwdistance);
2258         Cvar_RegisterVariable(&r_q1bsp_skymasking);
2259         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
2260         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
2261         Cvar_RegisterVariable(&r_fog_exp2);
2262         Cvar_RegisterVariable(&r_textureunits);
2263         Cvar_RegisterVariable(&r_glsl);
2264         Cvar_RegisterVariable(&r_glsl_contrastboost);
2265         Cvar_RegisterVariable(&r_glsl_deluxemapping);
2266         Cvar_RegisterVariable(&r_glsl_offsetmapping);
2267         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
2268         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
2269         Cvar_RegisterVariable(&r_glsl_postprocess);
2270         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
2271         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
2272         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
2273         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
2274         Cvar_RegisterVariable(&r_glsl_usegeneric);
2275         Cvar_RegisterVariable(&r_water);
2276         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
2277         Cvar_RegisterVariable(&r_water_clippingplanebias);
2278         Cvar_RegisterVariable(&r_water_refractdistort);
2279         Cvar_RegisterVariable(&r_water_reflectdistort);
2280         Cvar_RegisterVariable(&r_lerpsprites);
2281         Cvar_RegisterVariable(&r_lerpmodels);
2282         Cvar_RegisterVariable(&r_lerplightstyles);
2283         Cvar_RegisterVariable(&r_waterscroll);
2284         Cvar_RegisterVariable(&r_bloom);
2285         Cvar_RegisterVariable(&r_bloom_colorscale);
2286         Cvar_RegisterVariable(&r_bloom_brighten);
2287         Cvar_RegisterVariable(&r_bloom_blur);
2288         Cvar_RegisterVariable(&r_bloom_resolution);
2289         Cvar_RegisterVariable(&r_bloom_colorexponent);
2290         Cvar_RegisterVariable(&r_bloom_colorsubtract);
2291         Cvar_RegisterVariable(&r_hdr);
2292         Cvar_RegisterVariable(&r_hdr_scenebrightness);
2293         Cvar_RegisterVariable(&r_hdr_glowintensity);
2294         Cvar_RegisterVariable(&r_hdr_range);
2295         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
2296         Cvar_RegisterVariable(&developer_texturelogging);
2297         Cvar_RegisterVariable(&gl_lightmaps);
2298         Cvar_RegisterVariable(&r_test);
2299         Cvar_RegisterVariable(&r_batchmode);
2300         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
2301                 Cvar_SetValue("r_fullbrights", 0);
2302         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap);
2303
2304         Cvar_RegisterVariable(&r_track_sprites);
2305         Cvar_RegisterVariable(&r_track_sprites_flags);
2306         Cvar_RegisterVariable(&r_track_sprites_scalew);
2307         Cvar_RegisterVariable(&r_track_sprites_scaleh);
2308 }
2309
2310 extern void R_Textures_Init(void);
2311 extern void GL_Draw_Init(void);
2312 extern void GL_Main_Init(void);
2313 extern void R_Shadow_Init(void);
2314 extern void R_Sky_Init(void);
2315 extern void GL_Surf_Init(void);
2316 extern void R_Particles_Init(void);
2317 extern void R_Explosion_Init(void);
2318 extern void gl_backend_init(void);
2319 extern void Sbar_Init(void);
2320 extern void R_LightningBeams_Init(void);
2321 extern void Mod_RenderInit(void);
2322
2323 void Render_Init(void)
2324 {
2325         gl_backend_init();
2326         R_Textures_Init();
2327         GL_Main_Init();
2328         GL_Draw_Init();
2329         R_Shadow_Init();
2330         R_Sky_Init();
2331         GL_Surf_Init();
2332         Sbar_Init();
2333         R_Particles_Init();
2334         R_Explosion_Init();
2335         R_LightningBeams_Init();
2336         Mod_RenderInit();
2337 }
2338
2339 /*
2340 ===============
2341 GL_Init
2342 ===============
2343 */
2344 extern char *ENGINE_EXTENSIONS;
2345 void GL_Init (void)
2346 {
2347         VID_CheckExtensions();
2348
2349         // LordHavoc: report supported extensions
2350         Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions );
2351
2352         // clear to black (loading plaque will be seen over this)
2353         CHECKGLERROR
2354         qglClearColor(0,0,0,1);CHECKGLERROR
2355         qglClear(GL_COLOR_BUFFER_BIT);CHECKGLERROR
2356 }
2357
2358 int R_CullBox(const vec3_t mins, const vec3_t maxs)
2359 {
2360         int i;
2361         mplane_t *p;
2362         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
2363         {
2364                 // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
2365                 if (i == 4)
2366                         continue;
2367                 p = r_refdef.view.frustum + i;
2368                 switch(p->signbits)
2369                 {
2370                 default:
2371                 case 0:
2372                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2373                                 return true;
2374                         break;
2375                 case 1:
2376                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2377                                 return true;
2378                         break;
2379                 case 2:
2380                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2381                                 return true;
2382                         break;
2383                 case 3:
2384                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2385                                 return true;
2386                         break;
2387                 case 4:
2388                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2389                                 return true;
2390                         break;
2391                 case 5:
2392                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2393                                 return true;
2394                         break;
2395                 case 6:
2396                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2397                                 return true;
2398                         break;
2399                 case 7:
2400                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2401                                 return true;
2402                         break;
2403                 }
2404         }
2405         return false;
2406 }
2407
2408 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
2409 {
2410         int i;
2411         const mplane_t *p;
2412         for (i = 0;i < numplanes;i++)
2413         {
2414                 p = planes + i;
2415                 switch(p->signbits)
2416                 {
2417                 default:
2418                 case 0:
2419                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2420                                 return true;
2421                         break;
2422                 case 1:
2423                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2424                                 return true;
2425                         break;
2426                 case 2:
2427                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2428                                 return true;
2429                         break;
2430                 case 3:
2431                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2432                                 return true;
2433                         break;
2434                 case 4:
2435                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2436                                 return true;
2437                         break;
2438                 case 5:
2439                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2440                                 return true;
2441                         break;
2442                 case 6:
2443                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2444                                 return true;
2445                         break;
2446                 case 7:
2447                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2448                                 return true;
2449                         break;
2450                 }
2451         }
2452         return false;
2453 }
2454
2455 //==================================================================================
2456
2457 static void R_View_UpdateEntityVisible (void)
2458 {
2459         int i, renderimask;
2460         entity_render_t *ent;
2461
2462         if (!r_drawentities.integer)
2463                 return;
2464
2465         renderimask = r_refdef.envmap ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : ((chase_active.integer || r_waterstate.renderingscene) ? RENDER_VIEWMODEL : RENDER_EXTERIORMODEL);
2466         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
2467         {
2468                 // worldmodel can check visibility
2469                 for (i = 0;i < r_refdef.scene.numentities;i++)
2470                 {
2471                         ent = r_refdef.scene.entities[i];
2472                         r_refdef.viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs)) && ((ent->effects & EF_NODEPTHTEST) || (ent->flags & RENDER_VIEWMODEL) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs));
2473
2474                 }
2475                 if(r_cullentities_trace.integer && r_refdef.scene.worldmodel->brush.TraceLineOfSight)
2476                 {
2477                         for (i = 0;i < r_refdef.scene.numentities;i++)
2478                         {
2479                                 ent = r_refdef.scene.entities[i];
2480                                 if(r_refdef.viewcache.entityvisible[i] && !(ent->effects & EF_NODEPTHTEST) && !(ent->flags & RENDER_VIEWMODEL) && !(ent->model && (ent->model->name[0] == '*')))
2481                                 {
2482                                         if(Mod_CanSeeBox_Trace(r_cullentities_trace_samples.integer, r_cullentities_trace_enlarge.value, r_refdef.scene.worldmodel, r_refdef.view.origin, ent->mins, ent->maxs))
2483                                                 ent->last_trace_visibility = realtime;
2484                                         if(ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value)
2485                                                 r_refdef.viewcache.entityvisible[i] = 0;
2486                                 }
2487                         }
2488                 }
2489         }
2490         else
2491         {
2492                 // no worldmodel or it can't check visibility
2493                 for (i = 0;i < r_refdef.scene.numentities;i++)
2494                 {
2495                         ent = r_refdef.scene.entities[i];
2496                         r_refdef.viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs));
2497                 }
2498         }
2499 }
2500
2501 // only used if skyrendermasked, and normally returns false
2502 int R_DrawBrushModelsSky (void)
2503 {
2504         int i, sky;
2505         entity_render_t *ent;
2506
2507         if (!r_drawentities.integer)
2508                 return false;
2509
2510         sky = false;
2511         for (i = 0;i < r_refdef.scene.numentities;i++)
2512         {
2513                 if (!r_refdef.viewcache.entityvisible[i])
2514                         continue;
2515                 ent = r_refdef.scene.entities[i];
2516                 if (!ent->model || !ent->model->DrawSky)
2517                         continue;
2518                 ent->model->DrawSky(ent);
2519                 sky = true;
2520         }
2521         return sky;
2522 }
2523
2524 static void R_DrawNoModel(entity_render_t *ent);
2525 static void R_DrawModels(void)
2526 {
2527         int i;
2528         entity_render_t *ent;
2529
2530         if (!r_drawentities.integer)
2531                 return;
2532
2533         for (i = 0;i < r_refdef.scene.numentities;i++)
2534         {
2535                 if (!r_refdef.viewcache.entityvisible[i])
2536                         continue;
2537                 ent = r_refdef.scene.entities[i];
2538                 r_refdef.stats.entities++;
2539                 if (ent->model && ent->model->Draw != NULL)
2540                         ent->model->Draw(ent);
2541                 else
2542                         R_DrawNoModel(ent);
2543         }
2544 }
2545
2546 static void R_DrawModelsDepth(void)
2547 {
2548         int i;
2549         entity_render_t *ent;
2550
2551         if (!r_drawentities.integer)
2552                 return;
2553
2554         for (i = 0;i < r_refdef.scene.numentities;i++)
2555         {
2556                 if (!r_refdef.viewcache.entityvisible[i])
2557                         continue;
2558                 ent = r_refdef.scene.entities[i];
2559                 if (ent->model && ent->model->DrawDepth != NULL)
2560                         ent->model->DrawDepth(ent);
2561         }
2562 }
2563
2564 static void R_DrawModelsDebug(void)
2565 {
2566         int i;
2567         entity_render_t *ent;
2568
2569         if (!r_drawentities.integer)
2570                 return;
2571
2572         for (i = 0;i < r_refdef.scene.numentities;i++)
2573         {
2574                 if (!r_refdef.viewcache.entityvisible[i])
2575                         continue;
2576                 ent = r_refdef.scene.entities[i];
2577                 if (ent->model && ent->model->DrawDebug != NULL)
2578                         ent->model->DrawDebug(ent);
2579         }
2580 }
2581
2582 static void R_DrawModelsAddWaterPlanes(void)
2583 {
2584         int i;
2585         entity_render_t *ent;
2586
2587         if (!r_drawentities.integer)
2588                 return;
2589
2590         for (i = 0;i < r_refdef.scene.numentities;i++)
2591         {
2592                 if (!r_refdef.viewcache.entityvisible[i])
2593                         continue;
2594                 ent = r_refdef.scene.entities[i];
2595                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
2596                         ent->model->DrawAddWaterPlanes(ent);
2597         }
2598 }
2599
2600 static void R_View_SetFrustum(void)
2601 {
2602         int i;
2603         double slopex, slopey;
2604         vec3_t forward, left, up, origin;
2605
2606         // we can't trust r_refdef.view.forward and friends in reflected scenes
2607         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
2608
2609 #if 0
2610         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
2611         r_refdef.view.frustum[0].normal[1] = 0 - 0;
2612         r_refdef.view.frustum[0].normal[2] = -1 - 0;
2613         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
2614         r_refdef.view.frustum[1].normal[1] = 0 + 0;
2615         r_refdef.view.frustum[1].normal[2] = -1 + 0;
2616         r_refdef.view.frustum[2].normal[0] = 0 - 0;
2617         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
2618         r_refdef.view.frustum[2].normal[2] = -1 - 0;
2619         r_refdef.view.frustum[3].normal[0] = 0 + 0;
2620         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
2621         r_refdef.view.frustum[3].normal[2] = -1 + 0;
2622 #endif
2623
2624 #if 0
2625         zNear = r_refdef.nearclip;
2626         nudge = 1.0 - 1.0 / (1<<23);
2627         r_refdef.view.frustum[4].normal[0] = 0 - 0;
2628         r_refdef.view.frustum[4].normal[1] = 0 - 0;
2629         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
2630         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
2631         r_refdef.view.frustum[5].normal[0] = 0 + 0;
2632         r_refdef.view.frustum[5].normal[1] = 0 + 0;
2633         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
2634         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
2635 #endif
2636
2637
2638
2639 #if 0
2640         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
2641         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
2642         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
2643         r_refdef.view.frustum[0].dist = m[15] - m[12];
2644
2645         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
2646         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
2647         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
2648         r_refdef.view.frustum[1].dist = m[15] + m[12];
2649
2650         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
2651         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
2652         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
2653         r_refdef.view.frustum[2].dist = m[15] - m[13];
2654
2655         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
2656         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
2657         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
2658         r_refdef.view.frustum[3].dist = m[15] + m[13];
2659
2660         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
2661         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
2662         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
2663         r_refdef.view.frustum[4].dist = m[15] - m[14];
2664
2665         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
2666         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
2667         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
2668         r_refdef.view.frustum[5].dist = m[15] + m[14];
2669 #endif
2670
2671         if (r_refdef.view.useperspective)
2672         {
2673                 slopex = 1.0 / r_refdef.view.frustum_x;
2674                 slopey = 1.0 / r_refdef.view.frustum_y;
2675                 VectorMA(forward, -slopex, left, r_refdef.view.frustum[0].normal);
2676                 VectorMA(forward,  slopex, left, r_refdef.view.frustum[1].normal);
2677                 VectorMA(forward, -slopey, up  , r_refdef.view.frustum[2].normal);
2678                 VectorMA(forward,  slopey, up  , r_refdef.view.frustum[3].normal);
2679                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
2680
2681                 // Leaving those out was a mistake, those were in the old code, and they
2682                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
2683                 // I couldn't reproduce it after adding those normalizations. --blub
2684                 VectorNormalize(r_refdef.view.frustum[0].normal);
2685                 VectorNormalize(r_refdef.view.frustum[1].normal);
2686                 VectorNormalize(r_refdef.view.frustum[2].normal);
2687                 VectorNormalize(r_refdef.view.frustum[3].normal);
2688
2689                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
2690                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward, -1024 * slopex, left, -1024 * slopey, up, r_refdef.view.frustumcorner[0]);
2691                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward,  1024 * slopex, left, -1024 * slopey, up, r_refdef.view.frustumcorner[1]);
2692                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward, -1024 * slopex, left,  1024 * slopey, up, r_refdef.view.frustumcorner[2]);
2693                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward,  1024 * slopex, left,  1024 * slopey, up, r_refdef.view.frustumcorner[3]);
2694
2695                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
2696                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
2697                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
2698                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
2699                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
2700         }
2701         else
2702         {
2703                 VectorScale(left, -r_refdef.view.ortho_x, r_refdef.view.frustum[0].normal);
2704                 VectorScale(left,  r_refdef.view.ortho_x, r_refdef.view.frustum[1].normal);
2705                 VectorScale(up, -r_refdef.view.ortho_y, r_refdef.view.frustum[2].normal);
2706                 VectorScale(up,  r_refdef.view.ortho_y, r_refdef.view.frustum[3].normal);
2707                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
2708                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) + r_refdef.view.ortho_x;
2709                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) + r_refdef.view.ortho_x;
2710                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) + r_refdef.view.ortho_y;
2711                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) + r_refdef.view.ortho_y;
2712                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
2713         }
2714         r_refdef.view.numfrustumplanes = 5;
2715
2716         if (r_refdef.view.useclipplane)
2717         {
2718                 r_refdef.view.numfrustumplanes = 6;
2719                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
2720         }
2721
2722         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
2723                 PlaneClassify(r_refdef.view.frustum + i);
2724
2725         // LordHavoc: note to all quake engine coders, Quake had a special case
2726         // for 90 degrees which assumed a square view (wrong), so I removed it,
2727         // Quake2 has it disabled as well.
2728
2729         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
2730         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
2731         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
2732         //PlaneClassify(&frustum[0]);
2733
2734         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
2735         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
2736         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
2737         //PlaneClassify(&frustum[1]);
2738
2739         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
2740         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
2741         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
2742         //PlaneClassify(&frustum[2]);
2743
2744         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
2745         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
2746         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
2747         //PlaneClassify(&frustum[3]);
2748
2749         // nearclip plane
2750         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
2751         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
2752         //PlaneClassify(&frustum[4]);
2753 }
2754
2755 void R_View_Update(void)
2756 {
2757         R_View_SetFrustum();
2758         R_View_WorldVisibility(r_refdef.view.useclipplane);
2759         R_View_UpdateEntityVisible();
2760 }
2761
2762 void R_SetupView(qboolean allowwaterclippingplane)
2763 {
2764         if (!r_refdef.view.useperspective)
2765                 GL_SetupView_Mode_Ortho(-r_refdef.view.ortho_x, -r_refdef.view.ortho_y, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip);
2766         else if (r_refdef.scene.rtworldshadows || r_refdef.scene.rtdlightshadows)
2767                 GL_SetupView_Mode_PerspectiveInfiniteFarClip(r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip);
2768         else
2769                 GL_SetupView_Mode_Perspective(r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip);
2770
2771         GL_SetupView_Orientation_FromEntity(&r_refdef.view.matrix);
2772
2773         if (r_refdef.view.useclipplane && allowwaterclippingplane)
2774         {
2775                 // LordHavoc: couldn't figure out how to make this approach the
2776                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
2777                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
2778                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
2779                         dist = r_refdef.view.clipplane.dist;
2780                 GL_SetupView_ApplyCustomNearClipPlane(r_refdef.view.clipplane.normal[0], r_refdef.view.clipplane.normal[1], r_refdef.view.clipplane.normal[2], dist);
2781         }
2782 }
2783
2784 void R_ResetViewRendering2D(void)
2785 {
2786         DrawQ_Finish();
2787
2788         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
2789         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
2790         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
2791         GL_Scissor(r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
2792         GL_Color(1, 1, 1, 1);
2793         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2794         GL_BlendFunc(GL_ONE, GL_ZERO);
2795         GL_AlphaTest(false);
2796         GL_ScissorTest(false);
2797         GL_DepthMask(false);
2798         GL_DepthRange(0, 1);
2799         GL_DepthTest(false);
2800         R_Mesh_Matrix(&identitymatrix);
2801         R_Mesh_ResetTextureState();
2802         GL_PolygonOffset(0, 0);
2803         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2804         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2805         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2806         qglStencilMask(~0);CHECKGLERROR
2807         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2808         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2809         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2810         R_SetupGenericShader(true);
2811 }
2812
2813 void R_ResetViewRendering3D(void)
2814 {
2815         DrawQ_Finish();
2816
2817         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
2818         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
2819         R_SetupView(true);
2820         GL_Scissor(r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
2821         GL_Color(1, 1, 1, 1);
2822         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2823         GL_BlendFunc(GL_ONE, GL_ZERO);
2824         GL_AlphaTest(false);
2825         GL_ScissorTest(true);
2826         GL_DepthMask(true);
2827         GL_DepthRange(0, 1);
2828         GL_DepthTest(true);
2829         R_Mesh_Matrix(&identitymatrix);
2830         R_Mesh_ResetTextureState();
2831         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
2832         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2833         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2834         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2835         qglStencilMask(~0);CHECKGLERROR
2836         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2837         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2838         GL_CullFace(r_refdef.view.cullface_back);
2839         R_SetupGenericShader(true);
2840 }
2841
2842 void R_RenderScene(qboolean addwaterplanes);
2843
2844 static void R_Water_StartFrame(void)
2845 {
2846         int i;
2847         int waterwidth, waterheight, texturewidth, textureheight;
2848         r_waterstate_waterplane_t *p;
2849
2850         // set waterwidth and waterheight to the water resolution that will be
2851         // used (often less than the screen resolution for faster rendering)
2852         waterwidth = (int)bound(1, r_refdef.view.width * r_water_resolutionmultiplier.value, r_refdef.view.width);
2853         waterheight = (int)bound(1, r_refdef.view.height * r_water_resolutionmultiplier.value, r_refdef.view.height);
2854
2855         // calculate desired texture sizes
2856         // can't use water if the card does not support the texture size
2857         if (!r_water.integer || !r_glsl.integer || !gl_support_fragment_shader || waterwidth > gl_max_texture_size || waterheight > gl_max_texture_size)
2858                 texturewidth = textureheight = waterwidth = waterheight = 0;
2859         else if (gl_support_arb_texture_non_power_of_two)
2860         {
2861                 texturewidth = waterwidth;
2862                 textureheight = waterheight;
2863         }
2864         else
2865         {
2866                 for (texturewidth   = 1;texturewidth   < waterwidth ;texturewidth   *= 2);
2867                 for (textureheight  = 1;textureheight  < waterheight;textureheight  *= 2);
2868         }
2869
2870         // allocate textures as needed
2871         if (r_waterstate.waterwidth != waterwidth || r_waterstate.waterheight != waterheight || r_waterstate.texturewidth != texturewidth || r_waterstate.textureheight != textureheight)
2872         {
2873                 r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2874                 for (i = 0, p = r_waterstate.waterplanes;i < r_waterstate.maxwaterplanes;i++, p++)
2875                 {
2876                         if (p->texture_refraction)
2877                                 R_FreeTexture(p->texture_refraction);
2878                         p->texture_refraction = NULL;
2879                         if (p->texture_reflection)
2880                                 R_FreeTexture(p->texture_reflection);
2881                         p->texture_reflection = NULL;
2882                 }
2883                 memset(&r_waterstate, 0, sizeof(r_waterstate));
2884                 r_waterstate.waterwidth = waterwidth;
2885                 r_waterstate.waterheight = waterheight;
2886                 r_waterstate.texturewidth = texturewidth;
2887                 r_waterstate.textureheight = textureheight;
2888         }
2889
2890         if (r_waterstate.waterwidth)
2891         {
2892                 r_waterstate.enabled = true;
2893
2894                 // set up variables that will be used in shader setup
2895                 r_waterstate.screenscale[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2896                 r_waterstate.screenscale[1] = 0.5f * (float)waterheight / (float)textureheight;
2897                 r_waterstate.screencenter[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2898                 r_waterstate.screencenter[1] = 0.5f * (float)waterheight / (float)textureheight;
2899         }
2900
2901         r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2902         r_waterstate.numwaterplanes = 0;
2903 }
2904
2905 static void R_Water_AddWaterPlane(msurface_t *surface)
2906 {
2907         int triangleindex, planeindex;
2908         const int *e;
2909         vec3_t vert[3];
2910         vec3_t normal;
2911         vec3_t center;
2912         mplane_t plane;
2913         r_waterstate_waterplane_t *p;
2914         // just use the first triangle with a valid normal for any decisions
2915         VectorClear(normal);
2916         for (triangleindex = 0, e = rsurface.modelelement3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
2917         {
2918                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[0]*3, vert[0]);
2919                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[1]*3, vert[1]);
2920                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[2]*3, vert[2]);
2921                 TriangleNormal(vert[0], vert[1], vert[2], normal);
2922                 if (VectorLength2(normal) >= 0.001)
2923                         break;
2924         }
2925
2926         VectorCopy(normal, plane.normal);
2927         VectorNormalize(plane.normal);
2928         plane.dist = DotProduct(vert[0], plane.normal);
2929         PlaneClassify(&plane);
2930         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
2931         {
2932                 // skip backfaces (except if nocullface is set)
2933                 if (!(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
2934                         return;
2935                 VectorNegate(plane.normal, plane.normal);
2936                 plane.dist *= -1;
2937                 PlaneClassify(&plane);
2938         }
2939
2940
2941         // find a matching plane if there is one
2942         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2943                 if (fabs(PlaneDiff(vert[0], &p->plane)) < 1 && fabs(PlaneDiff(vert[1], &p->plane)) < 1 && fabs(PlaneDiff(vert[2], &p->plane)) < 1)
2944                         break;
2945         if (planeindex >= r_waterstate.maxwaterplanes)
2946                 return; // nothing we can do, out of planes
2947
2948         // if this triangle does not fit any known plane rendered this frame, add one
2949         if (planeindex >= r_waterstate.numwaterplanes)
2950         {
2951                 // store the new plane
2952                 r_waterstate.numwaterplanes++;
2953                 p->plane = plane;
2954                 // clear materialflags and pvs
2955                 p->materialflags = 0;
2956                 p->pvsvalid = false;
2957         }
2958         // merge this surface's materialflags into the waterplane
2959         p->materialflags |= surface->texture->currentframe->currentmaterialflags;
2960         // merge this surface's PVS into the waterplane
2961         VectorMAM(0.5f, surface->mins, 0.5f, surface->maxs, center);
2962         if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
2963          && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
2964         {
2965                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
2966                 p->pvsvalid = true;
2967         }
2968 }
2969
2970 static void R_Water_ProcessPlanes(void)
2971 {
2972         r_refdef_view_t originalview;
2973         int planeindex;
2974         r_waterstate_waterplane_t *p;
2975
2976         originalview = r_refdef.view;
2977
2978         // make sure enough textures are allocated
2979         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2980         {
2981                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2982                 {
2983                         if (!p->texture_refraction)
2984                                 p->texture_refraction = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_refraction", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2985                         if (!p->texture_refraction)
2986                                 goto error;
2987                 }
2988
2989                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2990                 {
2991                         if (!p->texture_reflection)
2992                                 p->texture_reflection = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_reflection", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2993                         if (!p->texture_reflection)
2994                                 goto error;
2995                 }
2996         }
2997
2998         // render views
2999         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
3000         {
3001                 r_refdef.view.showdebug = false;
3002                 r_refdef.view.width = r_waterstate.waterwidth;
3003                 r_refdef.view.height = r_waterstate.waterheight;
3004                 r_refdef.view.useclipplane = true;
3005                 r_waterstate.renderingscene = true;
3006
3007                 // render the normal view scene and copy into texture
3008                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
3009                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
3010                 {
3011                         r_refdef.view.clipplane = p->plane;
3012                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
3013                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
3014                         PlaneClassify(&r_refdef.view.clipplane);
3015
3016                         R_RenderScene(false);
3017
3018                         // copy view into the screen texture
3019                         R_Mesh_TexBind(0, R_GetTexture(p->texture_refraction));
3020                         GL_ActiveTexture(0);
3021                         CHECKGLERROR
3022                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
3023                 }
3024
3025                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
3026                 {
3027                         // render reflected scene and copy into texture
3028                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
3029                         // update the r_refdef.view.origin because otherwise the sky renders at the wrong location (amongst other problems)
3030                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
3031                         r_refdef.view.clipplane = p->plane;
3032                         // reverse the cullface settings for this render
3033                         r_refdef.view.cullface_front = GL_FRONT;
3034                         r_refdef.view.cullface_back = GL_BACK;
3035                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
3036                         {
3037                                 r_refdef.view.usecustompvs = true;
3038                                 if (p->pvsvalid)
3039                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
3040                                 else
3041                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
3042                         }
3043
3044                         R_ResetViewRendering3D();
3045                         R_ClearScreen(r_refdef.fogenabled);
3046                         if (r_timereport_active)
3047                                 R_TimeReport("viewclear");
3048
3049                         R_RenderScene(false);
3050
3051                         R_Mesh_TexBind(0, R_GetTexture(p->texture_reflection));
3052                         GL_ActiveTexture(0);
3053                         CHECKGLERROR
3054                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
3055
3056                         R_ResetViewRendering3D();
3057                         R_ClearScreen(r_refdef.fogenabled);
3058                         if (r_timereport_active)
3059                                 R_TimeReport("viewclear");
3060                 }
3061
3062                 r_refdef.view = originalview;
3063                 r_refdef.view.clear = true;
3064                 r_waterstate.renderingscene = false;
3065         }
3066         return;
3067 error:
3068         r_refdef.view = originalview;
3069         r_waterstate.renderingscene = false;
3070         Cvar_SetValueQuick(&r_water, 0);
3071         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
3072         return;
3073 }
3074
3075 void R_Bloom_StartFrame(void)
3076 {
3077         int bloomtexturewidth, bloomtextureheight, screentexturewidth, screentextureheight;
3078
3079         // set bloomwidth and bloomheight to the bloom resolution that will be
3080         // used (often less than the screen resolution for faster rendering)
3081         r_bloomstate.bloomwidth = bound(1, r_bloom_resolution.integer, r_refdef.view.width);
3082         r_bloomstate.bloomheight = r_bloomstate.bloomwidth * r_refdef.view.height / r_refdef.view.width;
3083         r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, r_refdef.view.height);
3084         r_bloomstate.bloomwidth = min(r_bloomstate.bloomwidth, gl_max_texture_size);
3085         r_bloomstate.bloomheight = min(r_bloomstate.bloomheight, gl_max_texture_size);
3086
3087         // calculate desired texture sizes
3088         if (gl_support_arb_texture_non_power_of_two)
3089         {
3090                 screentexturewidth = r_refdef.view.width;
3091                 screentextureheight = r_refdef.view.height;
3092                 bloomtexturewidth = r_bloomstate.bloomwidth;
3093                 bloomtextureheight = r_bloomstate.bloomheight;
3094         }
3095         else
3096         {
3097                 for (screentexturewidth  = 1;screentexturewidth  < vid.width               ;screentexturewidth  *= 2);
3098                 for (screentextureheight = 1;screentextureheight < vid.height              ;screentextureheight *= 2);
3099                 for (bloomtexturewidth   = 1;bloomtexturewidth   < r_bloomstate.bloomwidth ;bloomtexturewidth   *= 2);
3100                 for (bloomtextureheight  = 1;bloomtextureheight  < r_bloomstate.bloomheight;bloomtextureheight  *= 2);
3101         }
3102
3103         if ((r_hdr.integer || r_bloom.integer) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > gl_max_texture_size || r_refdef.view.height > gl_max_texture_size))
3104         {
3105                 Cvar_SetValueQuick(&r_hdr, 0);
3106                 Cvar_SetValueQuick(&r_bloom, 0);
3107         }
3108
3109         if (!(r_glsl.integer && (r_glsl_postprocess.integer || (v_glslgamma.integer && !vid_gammatables_trivial) || r_bloom.integer || r_hdr.integer)) && !r_bloom.integer)
3110                 screentexturewidth = screentextureheight = 0;
3111         if (!r_hdr.integer && !r_bloom.integer)
3112                 bloomtexturewidth = bloomtextureheight = 0;
3113
3114         // allocate textures as needed
3115         if (r_bloomstate.screentexturewidth != screentexturewidth || r_bloomstate.screentextureheight != screentextureheight)
3116         {
3117                 if (r_bloomstate.texture_screen)
3118                         R_FreeTexture(r_bloomstate.texture_screen);
3119                 r_bloomstate.texture_screen = NULL;
3120                 r_bloomstate.screentexturewidth = screentexturewidth;
3121                 r_bloomstate.screentextureheight = screentextureheight;
3122                 if (r_bloomstate.screentexturewidth && r_bloomstate.screentextureheight)
3123                         r_bloomstate.texture_screen = R_LoadTexture2D(r_main_texturepool, "screen", r_bloomstate.screentexturewidth, r_bloomstate.screentextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
3124         }
3125         if (r_bloomstate.bloomtexturewidth != bloomtexturewidth || r_bloomstate.bloomtextureheight != bloomtextureheight)
3126         {
3127                 if (r_bloomstate.texture_bloom)
3128                         R_FreeTexture(r_bloomstate.texture_bloom);
3129                 r_bloomstate.texture_bloom = NULL;
3130                 r_bloomstate.bloomtexturewidth = bloomtexturewidth;
3131                 r_bloomstate.bloomtextureheight = bloomtextureheight;
3132                 if (r_bloomstate.bloomtexturewidth && r_bloomstate.bloomtextureheight)
3133                         r_bloomstate.texture_bloom = R_LoadTexture2D(r_main_texturepool, "bloom", r_bloomstate.bloomtexturewidth, r_bloomstate.bloomtextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
3134         }
3135
3136         // set up a texcoord array for the full resolution screen image
3137         // (we have to keep this around to copy back during final render)
3138         r_bloomstate.screentexcoord2f[0] = 0;
3139         r_bloomstate.screentexcoord2f[1] = (float)r_refdef.view.height    / (float)r_bloomstate.screentextureheight;
3140         r_bloomstate.screentexcoord2f[2] = (float)r_refdef.view.width     / (float)r_bloomstate.screentexturewidth;
3141         r_bloomstate.screentexcoord2f[3] = (float)r_refdef.view.height    / (float)r_bloomstate.screentextureheight;
3142         r_bloomstate.screentexcoord2f[4] = (float)r_refdef.view.width     / (float)r_bloomstate.screentexturewidth;
3143         r_bloomstate.screentexcoord2f[5] = 0;
3144         r_bloomstate.screentexcoord2f[6] = 0;
3145         r_bloomstate.screentexcoord2f[7] = 0;
3146
3147         // set up a texcoord array for the reduced resolution bloom image
3148         // (which will be additive blended over the screen image)
3149         r_bloomstate.bloomtexcoord2f[0] = 0;
3150         r_bloomstate.bloomtexcoord2f[1] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3151         r_bloomstate.bloomtexcoord2f[2] = (float)r_bloomstate.bloomwidth  / (float)r_bloomstate.bloomtexturewidth;
3152         r_bloomstate.bloomtexcoord2f[3] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3153         r_bloomstate.bloomtexcoord2f[4] = (float)r_bloomstate.bloomwidth  / (float)r_bloomstate.bloomtexturewidth;
3154         r_bloomstate.bloomtexcoord2f[5] = 0;
3155         r_bloomstate.bloomtexcoord2f[6] = 0;
3156         r_bloomstate.bloomtexcoord2f[7] = 0;
3157
3158         if (r_hdr.integer || r_bloom.integer)
3159         {
3160                 r_bloomstate.enabled = true;
3161                 r_bloomstate.hdr = r_hdr.integer != 0;
3162         }
3163 }
3164
3165 void R_Bloom_CopyBloomTexture(float colorscale)
3166 {
3167         r_refdef.stats.bloom++;
3168
3169         // scale down screen texture to the bloom texture size
3170         CHECKGLERROR
3171         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3172         GL_BlendFunc(GL_ONE, GL_ZERO);
3173         GL_Color(colorscale, colorscale, colorscale, 1);
3174         // TODO: optimize with multitexture or GLSL
3175         R_SetupGenericShader(true);
3176         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
3177         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3178         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3179         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3180
3181         // we now have a bloom image in the framebuffer
3182         // copy it into the bloom image texture for later processing
3183         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3184         GL_ActiveTexture(0);
3185         CHECKGLERROR
3186         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3187         r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3188 }