]> icculus.org git repositories - divverent/darkplaces.git/blob - gl_models.c
got rid of lots of unnecessary m.transparent = lines, as well as some depthdisable...
[divverent/darkplaces.git] / gl_models.c
1
2 #include "quakedef.h"
3
4 cvar_t r_quickmodels = {0, "r_quickmodels", "1"};
5
6 typedef struct
7 {
8         float m[3][4];
9 } zymbonematrix;
10
11 // LordHavoc: vertex arrays
12
13 float *aliasvertbuf;
14 float *aliasvertcolorbuf;
15 float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend
16 float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend
17
18 float *aliasvertcolor2;
19 float *aliasvertnorm;
20 int *aliasvertusage;
21 zymbonematrix *zymbonepose;
22
23 mempool_t *gl_models_mempool;
24
25 void gl_models_start(void)
26 {
27         // allocate vertex processing arrays
28         gl_models_mempool = Mem_AllocPool("GL_Models");
29         aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
30         aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
31         aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3]));
32         aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring
33         zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256]));
34         aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS]));
35 }
36
37 void gl_models_shutdown(void)
38 {
39         Mem_FreePool(&gl_models_mempool);
40 }
41
42 void gl_models_newmap(void)
43 {
44 }
45
46 void GL_Models_Init(void)
47 {
48         Cvar_RegisterVariable(&r_quickmodels);
49
50         R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap);
51 }
52
53 void R_AliasTransformVerts(int vertcount)
54 {
55         vec3_t point;
56         float *av;
57         av = aliasvert;
58         while (vertcount >= 4)
59         {
60                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
61                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
62                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
63                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
64                 vertcount -= 4;
65         }
66         while(vertcount > 0)
67         {
68                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
69                 vertcount--;
70         }
71 }
72
73 void R_AliasLerpVerts(int vertcount,
74                 float lerp1, trivertx_t *verts1, vec3_t fscale1, vec3_t translate1,
75                 float lerp2, trivertx_t *verts2, vec3_t fscale2, vec3_t translate2,
76                 float lerp3, trivertx_t *verts3, vec3_t fscale3, vec3_t translate3,
77                 float lerp4, trivertx_t *verts4, vec3_t fscale4, vec3_t translate4)
78 {
79         int i;
80         vec3_t scale1, scale2, scale3, scale4, translate;
81         float *n1, *n2, *n3, *n4;
82         float *av, *avn;
83         av = aliasvert;
84         avn = aliasvertnorm;
85         VectorScale(fscale1, lerp1, scale1);
86         if (lerp2)
87         {
88                 VectorScale(fscale2, lerp2, scale2);
89                 if (lerp3)
90                 {
91                         VectorScale(fscale3, lerp3, scale3);
92                         if (lerp4)
93                         {
94                                 VectorScale(fscale4, lerp4, scale4);
95                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4;
96                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4;
97                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4;
98                                 // generate vertices
99                                 for (i = 0;i < vertcount;i++)
100                                 {
101                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0];
102                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1];
103                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2];
104                                         n1 = m_bytenormals[verts1->lightnormalindex];
105                                         n2 = m_bytenormals[verts2->lightnormalindex];
106                                         n3 = m_bytenormals[verts3->lightnormalindex];
107                                         n4 = m_bytenormals[verts4->lightnormalindex];
108                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4;
109                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4;
110                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4;
111                                         av += 4;
112                                         avn += 3;
113                                         verts1++;verts2++;verts3++;verts4++;
114                                 }
115                         }
116                         else
117                         {
118                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3;
119                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3;
120                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3;
121                                 // generate vertices
122                                 for (i = 0;i < vertcount;i++)
123                                 {
124                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0];
125                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1];
126                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2];
127                                         n1 = m_bytenormals[verts1->lightnormalindex];
128                                         n2 = m_bytenormals[verts2->lightnormalindex];
129                                         n3 = m_bytenormals[verts3->lightnormalindex];
130                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3;
131                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3;
132                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3;
133                                         av += 4;
134                                         avn += 3;
135                                         verts1++;verts2++;verts3++;
136                                 }
137                         }
138                 }
139                 else
140                 {
141                         translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2;
142                         translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2;
143                         translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2;
144                         // generate vertices
145                         for (i = 0;i < vertcount;i++)
146                         {
147                                 av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0];
148                                 av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1];
149                                 av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2];
150                                 n1 = m_bytenormals[verts1->lightnormalindex];
151                                 n2 = m_bytenormals[verts2->lightnormalindex];
152                                 avn[0] = n1[0] * lerp1 + n2[0] * lerp2;
153                                 avn[1] = n1[1] * lerp1 + n2[1] * lerp2;
154                                 avn[2] = n1[2] * lerp1 + n2[2] * lerp2;
155                                 av += 4;
156                                 avn += 3;
157                                 verts1++;verts2++;
158                         }
159                 }
160         }
161         else
162         {
163                 translate[0] = translate1[0] * lerp1;
164                 translate[1] = translate1[1] * lerp1;
165                 translate[2] = translate1[2] * lerp1;
166                 // generate vertices
167                 if (lerp1 != 1)
168                 {
169                         // general but almost never used case
170                         for (i = 0;i < vertcount;i++)
171                         {
172                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
173                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
174                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
175                                 n1 = m_bytenormals[verts1->lightnormalindex];
176                                 avn[0] = n1[0] * lerp1;
177                                 avn[1] = n1[1] * lerp1;
178                                 avn[2] = n1[2] * lerp1;
179                                 av += 4;
180                                 avn += 3;
181                                 verts1++;
182                         }
183                 }
184                 else
185                 {
186                         // fast normal case
187                         for (i = 0;i < vertcount;i++)
188                         {
189                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
190                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
191                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
192                                 VectorCopy(m_bytenormals[verts1->lightnormalindex], avn);
193                                 av += 4;
194                                 avn += 3;
195                                 verts1++;
196                         }
197                 }
198         }
199 }
200
201 skinframe_t *R_FetchSkinFrame(entity_render_t *ent)
202 {
203         model_t *model = ent->model;
204         if (model->skinscenes[ent->skinnum].framecount > 1)
205                 return &model->skinframes[model->skinscenes[ent->skinnum].firstframe + (int) (cl.time * 10) % model->skinscenes[ent->skinnum].framecount];
206         else
207                 return &model->skinframes[model->skinscenes[ent->skinnum].firstframe];
208 }
209
210 void R_SetupMDLMD2Frames(entity_render_t *ent, float colorr, float colorg, float colorb)
211 {
212         md2frame_t *frame1, *frame2, *frame3, *frame4;
213         trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts;
214         model_t *model;
215         model = ent->model;
216
217         frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame];
218         frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame];
219         frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame];
220         frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame];
221         frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts];
222         frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts];
223         frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts];
224         frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts];
225         R_AliasLerpVerts(model->numverts,
226                 ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate,
227                 ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate,
228                 ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate,
229                 ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate);
230
231         R_LightModel(ent, model->numverts, colorr, colorg, colorb, false);
232
233         R_AliasTransformVerts(model->numverts);
234 }
235
236 void R_DrawQ1Q2AliasModelCallback (void *calldata1, int calldata2)
237 {
238         int c, pantsfullbright, shirtfullbright, colormapped;
239         float pantscolor[3], shirtcolor[3];
240         float fog;
241         vec3_t diff;
242         qbyte *bcolor;
243         rmeshbufferinfo_t m;
244         model_t *model;
245         skinframe_t *skinframe;
246         entity_render_t *ent;
247
248         ent = calldata1;
249         softwaretransformforentity(ent);
250
251         fog = 0;
252         if (fogenabled)
253         {
254                 VectorSubtract(ent->origin, r_origin, diff);
255                 fog = DotProduct(diff,diff);
256                 if (fog < 0.01f)
257                         fog = 0.01f;
258                 fog = exp(fogdensity/fog);
259                 if (fog > 1)
260                         fog = 1;
261                 if (fog < 0.01f)
262                         fog = 0;
263                 // fog method: darken, additive fog
264                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
265                 // 2. render fog as additive
266         }
267
268         model = ent->model;
269
270         skinframe = R_FetchSkinFrame(ent);
271
272         colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt));
273         if (!colormapped && !fog && !skinframe->glow && !skinframe->fog)
274         {
275                 // fastpath for the normal situation (one texture)
276                 memset(&m, 0, sizeof(m));
277                 if (ent->effects & EF_ADDITIVE)
278                 {
279                         m.blendfunc1 = GL_SRC_ALPHA;
280                         m.blendfunc2 = GL_ONE;
281                 }
282                 else if (ent->alpha != 1.0 || skinframe->fog != NULL)
283                 {
284                         m.blendfunc1 = GL_SRC_ALPHA;
285                         m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
286                 }
287                 else
288                 {
289                         m.blendfunc1 = GL_ONE;
290                         m.blendfunc2 = GL_ZERO;
291                 }
292                 m.numtriangles = model->numtris;
293                 m.numverts = model->numverts;
294                 m.tex[0] = R_GetTexture(skinframe->merged);
295
296                 c_alias_polys += m.numtriangles;
297                 if (R_Mesh_Draw_GetBuffer(&m, true))
298                 {
299                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
300                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
301
302                         aliasvert = m.vertex;
303                         aliasvertcolor = m.color;
304                         R_SetupMDLMD2Frames(ent, m.colorscale * (1 - fog), m.colorscale * (1 - fog), m.colorscale * (1 - fog));
305                         aliasvert = aliasvertbuf;
306                         aliasvertcolor = aliasvertcolorbuf;
307
308                         R_Mesh_Render();
309                 }
310                 return;
311         }
312
313         R_SetupMDLMD2Frames(ent, 1 - fog, 1 - fog, 1 - fog);
314
315         if (colormapped)
316         {
317                 // 128-224 are backwards ranges
318                 c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12;
319                 bcolor = (qbyte *) (&d_8to24table[c]);
320                 pantsfullbright = c >= 224;
321                 VectorScale(bcolor, (1.0f / 255.0f), pantscolor);
322                 c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12;
323                 bcolor = (qbyte *) (&d_8to24table[c]);
324                 shirtfullbright = c >= 224;
325                 VectorScale(bcolor, (1.0f / 255.0f), shirtcolor);
326         }
327         else
328         {
329                 pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1;
330                 pantsfullbright = shirtfullbright = false;
331         }
332
333         memset(&m, 0, sizeof(m));
334         if (ent->effects & EF_ADDITIVE)
335         {
336                 m.blendfunc1 = GL_SRC_ALPHA;
337                 m.blendfunc2 = GL_ONE;
338         }
339         else if (ent->alpha != 1.0 || skinframe->fog != NULL)
340         {
341                 m.blendfunc1 = GL_SRC_ALPHA;
342                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
343         }
344         else
345         {
346                 m.blendfunc1 = GL_ONE;
347                 m.blendfunc2 = GL_ZERO;
348         }
349         m.numtriangles = model->numtris;
350         m.numverts = model->numverts;
351         m.tex[0] = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged);
352         if (R_Mesh_Draw_GetBuffer(&m, true))
353         {
354                 c_alias_polys += m.numtriangles;
355                 R_ModulateColors(aliasvertcolor, m.color, m.numverts, m.colorscale, m.colorscale, m.colorscale);
356                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
357                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
358                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
359                 R_Mesh_Render();
360         }
361
362         if (colormapped)
363         {
364                 if (skinframe->pants)
365                 {
366                         memset(&m, 0, sizeof(m));
367                         m.blendfunc1 = GL_SRC_ALPHA;
368                         m.blendfunc2 = GL_ONE;
369                         m.numtriangles = model->numtris;
370                         m.numverts = model->numverts;
371                         m.tex[0] = R_GetTexture(skinframe->pants);
372                         if (R_Mesh_Draw_GetBuffer(&m, true))
373                         {
374                                 c_alias_polys += m.numtriangles;
375                                 if (pantsfullbright)
376                                         R_FillColors(m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale, ent->alpha);
377                                 else
378                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale);
379                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
380                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
381                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
382                                 R_Mesh_Render();
383                         }
384                 }
385                 if (skinframe->shirt)
386                 {
387                         memset(&m, 0, sizeof(m));
388                         m.blendfunc1 = GL_SRC_ALPHA;
389                         m.blendfunc2 = GL_ONE;
390                         m.numtriangles = model->numtris;
391                         m.numverts = model->numverts;
392                         m.tex[0] = R_GetTexture(skinframe->shirt);
393                         if (R_Mesh_Draw_GetBuffer(&m, true))
394                         {
395                                 c_alias_polys += m.numtriangles;
396                                 if (shirtfullbright)
397                                         R_FillColors(m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale, ent->alpha);
398                                 else
399                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale);
400                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
401                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
402                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
403                                 R_Mesh_Render();
404                         }
405                 }
406         }
407         if (skinframe->glow)
408         {
409                 memset(&m, 0, sizeof(m));
410                 m.blendfunc1 = GL_SRC_ALPHA;
411                 m.blendfunc2 = GL_ONE;
412                 m.numtriangles = model->numtris;
413                 m.numverts = model->numverts;
414                 m.tex[0] = R_GetTexture(skinframe->glow);
415                 if (R_Mesh_Draw_GetBuffer(&m, true))
416                 {
417                         c_alias_polys += m.numtriangles;
418                         R_FillColors(m.color, m.numverts, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, ent->alpha);
419                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
420                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
421                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
422                         R_Mesh_Render();
423                 }
424         }
425         if (fog)
426         {
427                 memset(&m, 0, sizeof(m));
428                 m.blendfunc1 = GL_SRC_ALPHA;
429                 m.blendfunc2 = GL_ONE;
430                 m.numtriangles = model->numtris;
431                 m.numverts = model->numverts;
432                 m.tex[0] = R_GetTexture(skinframe->fog);
433                 if (R_Mesh_Draw_GetBuffer(&m, false))
434                 {
435                         c_alias_polys += m.numtriangles;
436                         R_FillColors(m.color, m.numverts, fog * m.colorscale, fog * m.colorscale, fog * m.colorscale, ent->alpha);
437                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
438                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
439                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
440                         R_Mesh_Render();
441                 }
442         }
443 }
444
445 int ZymoticLerpBones(int count, zymbonematrix *bonebase, frameblend_t *blend, zymbone_t *bone)
446 {
447         int i;
448         float lerp1, lerp2, lerp3, lerp4;
449         zymbonematrix *out, rootmatrix, m, *bone1, *bone2, *bone3, *bone4;
450
451         // LordHavoc: combine transform from zym coordinate space to quake coordinate space with model to world transform matrix
452         rootmatrix.m[0][0] = softwaretransform_matrix[0][1];
453         rootmatrix.m[0][1] = -softwaretransform_matrix[0][0];
454         rootmatrix.m[0][2] = softwaretransform_matrix[0][2];
455         rootmatrix.m[0][3] = softwaretransform_matrix[0][3];
456         rootmatrix.m[1][0] = softwaretransform_matrix[1][1];
457         rootmatrix.m[1][1] = -softwaretransform_matrix[1][0];
458         rootmatrix.m[1][2] = softwaretransform_matrix[1][2];
459         rootmatrix.m[1][3] = softwaretransform_matrix[1][3];
460         rootmatrix.m[2][0] = softwaretransform_matrix[2][1];
461         rootmatrix.m[2][1] = -softwaretransform_matrix[2][0];
462         rootmatrix.m[2][2] = softwaretransform_matrix[2][2];
463         rootmatrix.m[2][3] = softwaretransform_matrix[2][3];
464
465         bone1 = bonebase + blend[0].frame * count;
466         lerp1 = blend[0].lerp;
467         if (blend[1].lerp)
468         {
469                 bone2 = bonebase + blend[1].frame * count;
470                 lerp2 = blend[1].lerp;
471                 if (blend[2].lerp)
472                 {
473                         bone3 = bonebase + blend[2].frame * count;
474                         lerp3 = blend[2].lerp;
475                         if (blend[3].lerp)
476                         {
477                                 // 4 poses
478                                 bone4 = bonebase + blend[3].frame * count;
479                                 lerp4 = blend[3].lerp;
480                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
481                                 {
482                                         // interpolate matrices
483                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4;
484                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4;
485                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4;
486                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4;
487                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4;
488                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4;
489                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4;
490                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4;
491                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4;
492                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4;
493                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4;
494                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4;
495                                         if (bone->parent >= 0)
496                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
497                                         else
498                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
499                                         bone1++;
500                                         bone2++;
501                                         bone3++;
502                                         bone4++;
503                                         bone++;
504                                 }
505                         }
506                         else
507                         {
508                                 // 3 poses
509                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
510                                 {
511                                         // interpolate matrices
512                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3;
513                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3;
514                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3;
515                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3;
516                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3;
517                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3;
518                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3;
519                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3;
520                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3;
521                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3;
522                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3;
523                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3;
524                                         if (bone->parent >= 0)
525                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
526                                         else
527                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
528                                         bone1++;
529                                         bone2++;
530                                         bone3++;
531                                         bone++;
532                                 }
533                         }
534                 }
535                 else
536                 {
537                         // 2 poses
538                         for (i = 0, out = zymbonepose;i < count;i++, out++)
539                         {
540                                 // interpolate matrices
541                                 m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2;
542                                 m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2;
543                                 m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2;
544                                 m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2;
545                                 m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2;
546                                 m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2;
547                                 m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2;
548                                 m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2;
549                                 m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2;
550                                 m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2;
551                                 m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2;
552                                 m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2;
553                                 if (bone->parent >= 0)
554                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
555                                 else
556                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
557                                 bone1++;
558                                 bone2++;
559                                 bone++;
560                         }
561                 }
562         }
563         else
564         {
565                 // 1 pose
566                 if (lerp1 != 1)
567                 {
568                         // lerp != 1.0
569                         for (i = 0, out = zymbonepose;i < count;i++, out++)
570                         {
571                                 // interpolate matrices
572                                 m.m[0][0] = bone1->m[0][0] * lerp1;
573                                 m.m[0][1] = bone1->m[0][1] * lerp1;
574                                 m.m[0][2] = bone1->m[0][2] * lerp1;
575                                 m.m[0][3] = bone1->m[0][3] * lerp1;
576                                 m.m[1][0] = bone1->m[1][0] * lerp1;
577                                 m.m[1][1] = bone1->m[1][1] * lerp1;
578                                 m.m[1][2] = bone1->m[1][2] * lerp1;
579                                 m.m[1][3] = bone1->m[1][3] * lerp1;
580                                 m.m[2][0] = bone1->m[2][0] * lerp1;
581                                 m.m[2][1] = bone1->m[2][1] * lerp1;
582                                 m.m[2][2] = bone1->m[2][2] * lerp1;
583                                 m.m[2][3] = bone1->m[2][3] * lerp1;
584                                 if (bone->parent >= 0)
585                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
586                                 else
587                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
588                                 bone1++;
589                                 bone++;
590                         }
591                 }
592                 else
593                 {
594                         // lerp == 1.0
595                         for (i = 0, out = zymbonepose;i < count;i++, out++)
596                         {
597                                 if (bone->parent >= 0)
598                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]);
599                                 else
600                                         R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]);
601                                 bone1++;
602                                 bone++;
603                         }
604                 }
605         }
606         return true;
607 }
608
609 void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert)
610 {
611         int c;
612         float *out = aliasvert;
613         zymbonematrix *matrix;
614         while(vertcount--)
615         {
616                 c = *bonecounts++;
617                 // FIXME: validate bonecounts at load time (must be >= 1)
618                 // FIXME: need 4th component in origin, for how much of the translate to blend in
619                 if (c == 1)
620                 {
621                         matrix = &zymbonepose[vert->bonenum];
622                         out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
623                         out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
624                         out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
625                         vert++;
626                 }
627                 else
628                 {
629                         VectorClear(out);
630                         while(c--)
631                         {
632                                 matrix = &zymbonepose[vert->bonenum];
633                                 out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
634                                 out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
635                                 out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
636                                 vert++;
637                         }
638                 }
639                 out += 4;
640         }
641 }
642
643 void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist)
644 {
645         int a, b, c, d;
646         float *out, v1[3], v2[3], normal[3], s;
647         int *u;
648         // clear normals
649         memset(aliasvertnorm, 0, sizeof(float) * vertcount * 3);
650         memset(aliasvertusage, 0, sizeof(int) * vertcount);
651         // parse render list and accumulate surface normals
652         while(shadercount--)
653         {
654                 d = *renderlist++;
655                 while (d--)
656                 {
657                         a = renderlist[0]*4;
658                         b = renderlist[1]*4;
659                         c = renderlist[2]*4;
660                         v1[0] = aliasvert[a+0] - aliasvert[b+0];
661                         v1[1] = aliasvert[a+1] - aliasvert[b+1];
662                         v1[2] = aliasvert[a+2] - aliasvert[b+2];
663                         v2[0] = aliasvert[c+0] - aliasvert[b+0];
664                         v2[1] = aliasvert[c+1] - aliasvert[b+1];
665                         v2[2] = aliasvert[c+2] - aliasvert[b+2];
666                         CrossProduct(v1, v2, normal);
667                         VectorNormalizeFast(normal);
668                         // add surface normal to vertices
669                         a = renderlist[0] * 3;
670                         aliasvertnorm[a+0] += normal[0];
671                         aliasvertnorm[a+1] += normal[1];
672                         aliasvertnorm[a+2] += normal[2];
673                         aliasvertusage[renderlist[0]]++;
674                         a = renderlist[1] * 3;
675                         aliasvertnorm[a+0] += normal[0];
676                         aliasvertnorm[a+1] += normal[1];
677                         aliasvertnorm[a+2] += normal[2];
678                         aliasvertusage[renderlist[1]]++;
679                         a = renderlist[2] * 3;
680                         aliasvertnorm[a+0] += normal[0];
681                         aliasvertnorm[a+1] += normal[1];
682                         aliasvertnorm[a+2] += normal[2];
683                         aliasvertusage[renderlist[2]]++;
684                         renderlist += 3;
685                 }
686         }
687         // FIXME: precalc this
688         // average surface normals
689         out = aliasvertnorm;
690         u = aliasvertusage;
691         while(vertcount--)
692         {
693                 if (*u > 1)
694                 {
695                         s = ixtable[*u];
696                         out[0] *= s;
697                         out[1] *= s;
698                         out[2] *= s;
699                 }
700                 u++;
701                 out += 3;
702         }
703 }
704
705 void R_DrawZymoticModelMeshCallback (void *calldata1, int calldata2)
706 {
707         float fog;
708         vec3_t diff;
709         int i, *renderlist;
710         zymtype1header_t *m;
711         rtexture_t *texture;
712         rmeshbufferinfo_t mbuf;
713         entity_render_t *ent;
714         int shadernum;
715
716         ent = calldata1;
717         shadernum = calldata2;
718
719         // find the vertex index list and texture
720         m = ent->model->zymdata_header;
721         renderlist = (int *)(m->lump_render.start + (int) m);
722         for (i = 0;i < shadernum;i++)
723                 renderlist += renderlist[0] * 3 + 1;
724         texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum];
725
726         fog = 0;
727         if (fogenabled)
728         {
729                 VectorSubtract(ent->origin, r_origin, diff);
730                 fog = DotProduct(diff,diff);
731                 if (fog < 0.01f)
732                         fog = 0.01f;
733                 fog = exp(fogdensity/fog);
734                 if (fog > 1)
735                         fog = 1;
736                 if (fog < 0.01f)
737                         fog = 0;
738                 // fog method: darken, additive fog
739                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
740                 // 2. render fog as additive
741         }
742
743         softwaretransformforentity(ent);
744         ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m));
745         ZymoticTransformVerts(m->numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m));
746         ZymoticCalcNormals(m->numverts, m->numshaders, (int *)(m->lump_render.start + (int) m));
747
748         R_LightModel(ent, m->numverts, 1 - fog, 1 - fog, 1 - fog, true);
749
750         memset(&mbuf, 0, sizeof(mbuf));
751         mbuf.numverts = m->numverts;
752         mbuf.numtriangles = renderlist[0];
753         if (ent->effects & EF_ADDITIVE)
754         {
755                 mbuf.blendfunc1 = GL_SRC_ALPHA;
756                 mbuf.blendfunc2 = GL_ONE;
757         }
758         else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture))
759         {
760                 mbuf.blendfunc1 = GL_SRC_ALPHA;
761                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
762         }
763         else
764         {
765                 mbuf.blendfunc1 = GL_ONE;
766                 mbuf.blendfunc2 = GL_ZERO;
767         }
768         mbuf.tex[0] = R_GetTexture(texture);
769         if (R_Mesh_Draw_GetBuffer(&mbuf, true))
770         {
771                 c_alias_polys += mbuf.numtriangles;
772                 memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
773                 memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
774                 R_ModulateColors(aliasvertcolor, mbuf.color, mbuf.numverts, mbuf.colorscale, mbuf.colorscale, mbuf.colorscale);
775                 //memcpy(mbuf.color, aliasvertcolor, mbuf.numverts * sizeof(float[4]));
776                 memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
777                 R_Mesh_Render();
778         }
779
780         if (fog)
781         {
782                 memset(&mbuf, 0, sizeof(mbuf));
783                 mbuf.numverts = m->numverts;
784                 mbuf.numtriangles = renderlist[0];
785                 mbuf.blendfunc1 = GL_SRC_ALPHA;
786                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
787                 // FIXME: need alpha mask for fogging...
788                 //mbuf.tex[0] = R_GetTexture(texture);
789                 if (R_Mesh_Draw_GetBuffer(&mbuf, false))
790                 {
791                         c_alias_polys += mbuf.numtriangles;
792                         memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
793                         memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
794                         R_FillColors(mbuf.color, mbuf.numverts, fogcolor[0] * mbuf.colorscale, fogcolor[1] * mbuf.colorscale, fogcolor[2] * mbuf.colorscale, ent->alpha * fog);
795                         //memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
796                         R_Mesh_Render();
797                 }
798         }
799 }
800
801 void R_DrawZymoticModel (entity_render_t *ent)
802 {
803         int i;
804         zymtype1header_t *m;
805         rtexture_t *texture;
806
807         if (ent->alpha < (1.0f / 64.0f))
808                 return; // basically completely transparent
809
810         c_models++;
811
812         m = ent->model->zymdata_header;
813         for (i = 0;i < m->numshaders;i++)
814         {
815                 texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i];
816                 if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture))
817                         R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i);
818                 else
819                         R_MeshQueue_Add(R_DrawZymoticModelMeshCallback, ent, i);
820         }
821 }
822
823 void R_DrawQ1Q2AliasModel(entity_render_t *ent)
824 {
825         if (ent->alpha < (1.0f / 64.0f))
826                 return; // basically completely transparent
827
828         c_models++;
829
830         if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL)
831                 R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0);
832         else
833                 R_MeshQueue_Add(R_DrawQ1Q2AliasModelCallback, ent, 0);
834 }
835