quite possibly the smallest ever commit - deleting an obsolete comment
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define CL_PointContents(v) (Mod_PointInLeaf(v,cl.worldmodel)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 3] = org1[0] - width * right1[0];
65         vert[ 4] = org1[1] - width * right1[1];
66         vert[ 5] = org1[2] - width * right1[2];
67         vert[ 6] = org2[0] - width * right2[0];
68         vert[ 7] = org2[1] - width * right2[1];
69         vert[ 8] = org2[2] - width * right2[2];
70         vert[ 9] = org2[0] + width * right2[0];
71         vert[10] = org2[1] + width * right2[1];
72         vert[11] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->brushq1.hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->brushq1.hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
184 }
185 ptype_t;
186
187 #define PARTICLE_INVALID 0
188 #define PARTICLE_BILLBOARD 1
189 #define PARTICLE_SPARK 2
190 #define PARTICLE_ORIENTED_DOUBLESIDED 3
191 #define PARTICLE_BEAM 4
192
193 #define PBLEND_ALPHA 0
194 #define PBLEND_ADD 1
195 #define PBLEND_MOD 2
196
197 typedef struct particle_s
198 {
199         ptype_t         type;
200         int                     orientation;
201         int                     texnum;
202         int                     blendmode;
203         vec3_t          org;
204         vec3_t          vel;
205         float           die;
206         float           scalex;
207         float           scaley;
208         float           alpha; // 0-255
209         float           alphafade; // how much alpha reduces per second
210         float           time2; // used for various things (snow fluttering, for example)
211         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
212         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
213         vec3_t          oldorg;
214         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
215         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
216         float           pressure; // if non-zero, apply pressure to other particles
217         qbyte           color[4];
218 #ifndef WORKINGLQUAKE
219         entity_render_t *owner; // decal stuck to this entity
220         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
221         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
222         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
223 #endif
224 }
225 particle_t;
226
227 static int particlepalette[256] =
228 {
229         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
230         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
231         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
232         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
233         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
234         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
235         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
236         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
237         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
238         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
239         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
240         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
241         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
242         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
243         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
244         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
245         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
246         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
247         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
248         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
249         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
250         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
251         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
252         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
253         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
254         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
255         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
256         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
257         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
258         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
259         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
260         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
261 };
262
263 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
264
265 // texture numbers in particle font
266 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
267 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
268 static const int tex_particle = 24;
269 static const int tex_raindrop = 25;
270 static const int tex_bubble = 26;
271 static const int tex_beam = 27;
272 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
273
274 static int                      cl_maxparticles;
275 static int                      cl_numparticles;
276 static particle_t       *particles;
277 static particle_t       **freeparticles; // list used only in compacting particles array
278
279 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
280 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
281 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
282 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
283 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
284 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
285 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
286 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
287 cvar_t cl_particles_smoke_size = {CVAR_SAVE, "cl_particles_smoke_size", "7"};
288 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
289 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
290 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
291 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
292 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
293 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
294 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
295
296 #ifndef WORKINGLQUAKE
297 static mempool_t *cl_part_mempool;
298 #endif
299
300 void CL_Particles_Clear(void)
301 {
302         cl_numparticles = 0;
303 }
304
305 /*
306 ===============
307 CL_InitParticles
308 ===============
309 */
310 void CL_ReadPointFile_f (void);
311 void CL_Particles_Init (void)
312 {
313         int             i;
314
315         i = COM_CheckParm ("-particles");
316
317         if (i && i < com_argc - 1)
318         {
319                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
320                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
321                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
322         }
323         else
324                 cl_maxparticles = MAX_PARTICLES;
325
326         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
327
328         Cvar_RegisterVariable (&cl_particles);
329         Cvar_RegisterVariable (&cl_particles_size);
330         Cvar_RegisterVariable (&cl_particles_bloodshowers);
331         Cvar_RegisterVariable (&cl_particles_blood);
332         Cvar_RegisterVariable (&cl_particles_blood_size);
333         Cvar_RegisterVariable (&cl_particles_blood_alpha);
334         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
335         Cvar_RegisterVariable (&cl_particles_smoke);
336         Cvar_RegisterVariable (&cl_particles_smoke_size);
337         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
338         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
339         Cvar_RegisterVariable (&cl_particles_sparks);
340         Cvar_RegisterVariable (&cl_particles_bubbles);
341         Cvar_RegisterVariable (&cl_decals);
342         Cvar_RegisterVariable (&cl_decals_time);
343         Cvar_RegisterVariable (&cl_decals_fadetime);
344
345 #ifdef WORKINGLQUAKE
346         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
347         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
348 #else
349         cl_part_mempool = Mem_AllocPool("CL_Part");
350         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
351         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
352 #endif
353         cl_numparticles = 0;
354 }
355
356 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
357 {\
358         if (cl_numparticles < cl_maxparticles)\
359         {\
360                 particle_t      *part;\
361                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
362                 ptempcolor = (pcolor1);\
363                 ptempcolor2 = (pcolor2);\
364                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
365                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
366                 pcb2 = (ptempcolor2) & 0xFF;\
367                 if (ptempcolor != ptempcolor2)\
368                 {\
369                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
370                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
371                         pcb1 = (ptempcolor) & 0xFF;\
372                         ptempcolor = rand() & 0xFF;\
373                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
374                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
375                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
376                 }\
377                 part = &particles[cl_numparticles++];\
378                 memset(part, 0, sizeof(*part));\
379                 part->type = (ptype);\
380                 part->color[0] = pcr2;\
381                 part->color[1] = pcg2;\
382                 part->color[2] = pcb2;\
383                 part->color[3] = 0xFF;\
384                 part->orientation = porientation;\
385                 part->texnum = ptex;\
386                 part->blendmode = pblendmode;\
387                 part->scalex = (pscalex);\
388                 part->scaley = (pscaley);\
389                 part->alpha = (palpha);\
390                 part->alphafade = (palphafade);\
391                 part->die = cl.time + (ptime);\
392                 part->gravity = (pgravity);\
393                 part->bounce = (pbounce);\
394                 part->org[0] = (px);\
395                 part->org[1] = (py);\
396                 part->org[2] = (pz);\
397                 part->vel[0] = (pvx);\
398                 part->vel[1] = (pvy);\
399                 part->vel[2] = (pvz);\
400                 part->time2 = (ptime2);\
401                 part->vel2[0] = (pvx2);\
402                 part->vel2[1] = (pvy2);\
403                 part->vel2[2] = (pvz2);\
404                 part->friction = (pfriction);\
405                 part->pressure = (ppressure);\
406         }\
407 }
408
409 /*
410 ===============
411 CL_EntityParticles
412 ===============
413 */
414 void CL_EntityParticles (entity_t *ent)
415 {
416         int                     i;
417         float           angle;
418         float           sp, sy, cp, cy;
419         vec3_t          forward;
420         float           dist;
421         float           beamlength;
422         static vec3_t avelocities[NUMVERTEXNORMALS];
423         if (!cl_particles.integer) return;
424
425         dist = 64;
426         beamlength = 16;
427
428         if (!avelocities[0][0])
429                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
430                         avelocities[0][i] = (rand()&255) * 0.01;
431
432         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
433         {
434                 angle = cl.time * avelocities[i][0];
435                 sy = sin(angle);
436                 cy = cos(angle);
437                 angle = cl.time * avelocities[i][1];
438                 sp = sin(angle);
439                 cp = cos(angle);
440
441                 forward[0] = cp*cy;
442                 forward[1] = cp*sy;
443                 forward[2] = -sp;
444
445 #ifdef WORKINGLQUAKE
446                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
447 #else
448                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
449 #endif
450         }
451 }
452
453
454 void CL_ReadPointFile_f (void)
455 {
456         vec3_t org, leakorg;
457         int r, c, s;
458         char *pointfile = NULL, *pointfilepos, *t, tchar;
459         char name[MAX_OSPATH];
460
461         if (!cl.worldmodel)
462                 return;
463
464         FS_StripExtension(cl.worldmodel->name, name);
465         strcat(name, ".pts");
466 #if WORKINGLQUAKE
467         pointfile = COM_LoadTempFile (name);
468 #else
469         pointfile = FS_LoadFile(name, true);
470 #endif
471         if (!pointfile)
472         {
473                 Con_Printf ("Could not open %s\n", name);
474                 return;
475         }
476
477         Con_Printf ("Reading %s...\n", name);
478         c = 0;
479         s = 0;
480         pointfilepos = pointfile;
481         while (*pointfilepos)
482         {
483                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
484                         pointfilepos++;
485                 if (!*pointfilepos)
486                         break;
487                 t = pointfilepos;
488                 while (*t && *t != '\n' && *t != '\r')
489                         t++;
490                 tchar = *t;
491                 *t = 0;
492                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
493                 *t = tchar;
494                 pointfilepos = t;
495                 if (r != 3)
496                         break;
497                 if (c == 0)
498                         VectorCopy(org, leakorg);
499                 c++;
500
501                 if (cl_numparticles < cl_maxparticles - 3)
502                 {
503                         s++;
504                         particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
505                 }
506         }
507 #ifndef WORKINGLQUAKE
508         Mem_Free(pointfile);
509 #endif
510         VectorCopy(leakorg, org);
511         Con_Printf ("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]);
512
513         particle(pt_static, PARTICLE_BEAM, 0xFF0000, 0xFF0000, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0] - 4096, org[1], org[2], 0, 0, 0, 0, org[0] + 4096, org[1], org[2], 0, 0);
514         particle(pt_static, PARTICLE_BEAM, 0x00FF00, 0x00FF00, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1] - 4096, org[2], 0, 0, 0, 0, org[0], org[1] + 4096, org[2], 0, 0);
515         particle(pt_static, PARTICLE_BEAM, 0x0000FF, 0x0000FF, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1], org[2] - 4096, 0, 0, 0, 0, org[0], org[1], org[2] + 4096, 0, 0);
516 }
517
518 /*
519 ===============
520 CL_ParseParticleEffect
521
522 Parse an effect out of the server message
523 ===============
524 */
525 void CL_ParseParticleEffect (void)
526 {
527         vec3_t org, dir;
528         int i, count, msgcount, color;
529
530         for (i=0 ; i<3 ; i++)
531                 org[i] = MSG_ReadCoord ();
532         for (i=0 ; i<3 ; i++)
533                 dir[i] = MSG_ReadChar () * (1.0/16);
534         msgcount = MSG_ReadByte ();
535         color = MSG_ReadByte ();
536
537         if (msgcount == 255)
538                 count = 1024;
539         else
540                 count = msgcount;
541
542         CL_RunParticleEffect (org, dir, color, count);
543 }
544
545 /*
546 ===============
547 CL_ParticleExplosion
548
549 ===============
550 */
551 void CL_ParticleExplosion (vec3_t org)
552 {
553         int i, k;
554         //vec3_t v;
555         //vec3_t v2;
556         if (cl_stainmaps.integer)
557                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
558
559         i = CL_PointContents(org);
560         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
561         {
562                 for (i = 0;i < 128;i++)
563                 {
564                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
565                 }
566         }
567         else
568         {
569                 /*
570                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
571                 // smoke puff
572                 if (cl_particles.integer && cl_particles_smoke.integer)
573                 {
574                         for (i = 0;i < 64;i++)
575                         {
576 #ifdef WORKINGLQUAKE
577                                 v2[0] = lhrandom(-64, 64);
578                                 v2[1] = lhrandom(-64, 64);
579                                 v2[2] = lhrandom(-8, 24);
580 #else
581                                 for (k = 0;k < 16;k++)
582                                 {
583                                         v[0] = org[0] + lhrandom(-64, 64);
584                                         v[1] = org[1] + lhrandom(-64, 64);
585                                         v[2] = org[2] + lhrandom(-8, 24);
586                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
587                                                 break;
588                                 }
589                                 VectorSubtract(v2, org, v2);
590 #endif
591                                 VectorScale(v2, 2.0f, v2);
592                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
593                         }
594                 }
595                 */
596
597                 if (cl_particles.integer && cl_particles_sparks.integer)
598                 {
599                         // sparks
600                         for (i = 0;i < 256;i++)
601                         {
602                                 k = particlepalette[0x68 + (rand() & 7)];
603                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
604                         }
605                 }
606         }
607
608         if (cl_explosions.integer)
609                 R_NewExplosion(org);
610 }
611
612 /*
613 ===============
614 CL_ParticleExplosion2
615
616 ===============
617 */
618 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
619 {
620         int i, k;
621         if (!cl_particles.integer) return;
622
623         for (i = 0;i < 512;i++)
624         {
625                 k = particlepalette[colorStart + (i % colorLength)];
626                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
627         }
628 }
629
630 /*
631 ===============
632 CL_BlobExplosion
633
634 ===============
635 */
636 void CL_BlobExplosion (vec3_t org)
637 {
638         if (cl_stainmaps.integer)
639                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
640
641         if (cl_explosions.integer)
642                 R_NewExplosion(org);
643 }
644
645 /*
646 ===============
647 CL_RunParticleEffect
648
649 ===============
650 */
651 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
652 {
653         int k;
654
655         if (count == 1024)
656         {
657                 CL_ParticleExplosion(org);
658                 return;
659         }
660         if (!cl_particles.integer) return;
661         while (count--)
662         {
663                 k = particlepalette[color + (rand()&7)];
664                 if (gamemode == GAME_GOODVSBAD2)
665                 {
666                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 5, 5, 255, 300, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-10, 10), lhrandom(-10, 10), lhrandom(-10, 10), 0, 0, 0, 0, 0, 0);
667                 }
668                 else
669                 {
670                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), dir[0] + lhrandom(-15, 15), dir[1] + lhrandom(-15, 15), dir[2] + lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
671                 }
672         }
673 }
674
675 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
676 /*
677 ===============
678 CL_SparkShower
679 ===============
680 */
681 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
682 {
683         vec3_t org2, org3;
684         int k;
685
686         if (cl_stainmaps.integer)
687                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
688
689         if (!cl_particles.integer) return;
690
691         if (cl_particles_bulletimpacts.integer)
692         {
693                 // smoke puff
694                 if (cl_particles_smoke.integer)
695                 {
696                         k = count / 4;
697                         while(k--)
698                         {
699                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
700                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
701                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
702                                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
703                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
704                         }
705                 }
706
707                 if (cl_particles_sparks.integer)
708                 {
709                         // sparks
710                         while(count--)
711                         {
712                                 k = particlepalette[0x68 + (rand() & 7)];
713                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
714                         }
715                 }
716         }
717 }
718
719 void CL_PlasmaBurn (vec3_t org)
720 {
721         if (cl_stainmaps.integer)
722                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
723 }
724
725 static float bloodcount = 0;
726 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
727 {
728         float s, r, a;
729         vec3_t org2, org3;
730         // bloodcount is used to accumulate counts too small to cause a blood particle
731         if (!cl_particles.integer) return;
732         if (!cl_particles_blood.integer) return;
733
734         s = count + 32.0f;
735         count *= 5.0f;
736         if (count > 1000)
737                 count = 1000;
738         bloodcount += count;
739         r = cl_particles_blood_size.value;
740         a = cl_particles_blood_alpha.value * 255;
741         while(bloodcount > 0)
742         {
743                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
744                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
745                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
746                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
747                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
748                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
749                 bloodcount -= r;
750         }
751 }
752
753 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
754 {
755         float r;
756         float a;
757         vec3_t diff, center, velscale;
758         if (!cl_particles.integer) return;
759         if (!cl_particles_bloodshowers.integer) return;
760         if (!cl_particles_blood.integer) return;
761
762         VectorSubtract(maxs, mins, diff);
763         center[0] = (mins[0] + maxs[0]) * 0.5;
764         center[1] = (mins[1] + maxs[1]) * 0.5;
765         center[2] = (mins[2] + maxs[2]) * 0.5;
766         velscale[0] = velspeed * 2.0 / diff[0];
767         velscale[1] = velspeed * 2.0 / diff[1];
768         velscale[2] = velspeed * 2.0 / diff[2];
769
770         bloodcount += count * 5.0f;
771         r = cl_particles_blood_size.value;
772         a = cl_particles_blood_alpha.value * 255;
773         while (bloodcount > 0)
774         {
775                 vec3_t org, vel;
776                 org[0] = lhrandom(mins[0], maxs[0]);
777                 org[1] = lhrandom(mins[1], maxs[1]);
778                 org[2] = lhrandom(mins[2], maxs[2]);
779                 vel[0] = (org[0] - center[0]) * velscale[0];
780                 vel[1] = (org[1] - center[1]) * velscale[1];
781                 vel[2] = (org[2] - center[2]) * velscale[2];
782                 bloodcount -= r;
783                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
784                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
785         }
786 }
787
788 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
789 {
790         int k;
791         float t;
792         if (!cl_particles.integer) return;
793         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
794         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
795         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
796
797         while (count--)
798         {
799                 k = particlepalette[colorbase + (rand()&3)];
800                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
801         }
802 }
803
804 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
805 {
806         int k;
807         float t, z, minz, maxz;
808         if (!cl_particles.integer) return;
809         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
810         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
811         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
812         if (dir[2] < 0) // falling
813         {
814                 t = (maxs[2] - mins[2]) / -dir[2];
815                 z = maxs[2];
816         }
817         else // rising??
818         {
819                 t = (maxs[2] - mins[2]) / dir[2];
820                 z = mins[2];
821         }
822         if (t < 0 || t > 2) // sanity check
823                 t = 2;
824
825         minz = z - fabs(dir[2]) * 0.1;
826         maxz = z + fabs(dir[2]) * 0.1;
827         minz = bound(mins[2], minz, maxs[2]);
828         maxz = bound(mins[2], maxz, maxs[2]);
829
830         switch(type)
831         {
832         case 0:
833                 count *= 4; // ick, this should be in the mod or maps?
834
835                 while(count--)
836                 {
837                         k = particlepalette[colorbase + (rand()&3)];
838                         if (gamemode == GAME_GOODVSBAD2)
839                         {
840                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 20, 20, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
841                         }
842                         else
843                         {
844                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
845                         }
846                 }
847                 break;
848         case 1:
849                 while(count--)
850                 {
851                         k = particlepalette[colorbase + (rand()&3)];
852                         if (gamemode == GAME_GOODVSBAD2)
853                         {
854                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 20, 20, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
855                         }
856                         else
857                         {
858                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
859                         }
860                 }
861                 break;
862         default:
863                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
864         }
865 }
866
867 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
868 {
869         int k;
870         float t;
871         vec3_t o, v, center;
872         if (!cl_particles.integer) return;
873
874         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
875         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
876         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
877
878         center[0] = (mins[0] + maxs[0]) * 0.5f;
879         center[1] = (mins[1] + maxs[1]) * 0.5f;
880         center[2] = (mins[2] + maxs[2]) * 0.5f;
881
882         while (count--)
883         {
884                 k = particlepalette[224 + (rand()&15)];
885                 o[0] = lhrandom(mins[0], maxs[0]);
886                 o[1] = lhrandom(mins[1], maxs[1]);
887                 o[2] = lhrandom(mins[2], maxs[2]);
888                 VectorSubtract(o, center, v);
889                 VectorNormalizeFast(v);
890                 VectorScale(v, 100, v);
891                 v[2] += sv_gravity.value * 0.15f;
892                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
893         }
894 }
895
896 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
897 {
898         int k;
899         float t;
900         if (!cl_particles.integer) return;
901         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
902         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
903         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
904
905         while (count--)
906         {
907                 k = particlepalette[224 + (rand()&15)];
908                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
909                 if (count & 1)
910                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
911         }
912 }
913
914 void CL_Flames (vec3_t org, vec3_t vel, int count)
915 {
916         int k;
917         if (!cl_particles.integer) return;
918
919         while (count--)
920         {
921                 k = particlepalette[224 + (rand()&15)];
922                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
923         }
924 }
925
926
927
928 /*
929 ===============
930 CL_LavaSplash
931
932 ===============
933 */
934 void CL_LavaSplash (vec3_t origin)
935 {
936         int                     i, j, k, l, inc;
937         float           vel;
938         vec3_t          dir, org;
939         if (!cl_particles.integer) return;
940
941         inc = 32;
942         for (i = -128;i < 128;i += inc)
943         {
944                 for (j = -128;j < 128;j += inc)
945                 {
946                         dir[0] = j + lhrandom(0, 8);
947                         dir[1] = i + lhrandom(0, 8);
948                         dir[2] = 256;
949                         org[0] = origin[0] + dir[0];
950                         org[1] = origin[1] + dir[1];
951                         org[2] = origin[2] + lhrandom(0, 64);
952                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
953                         if (gamemode == GAME_GOODVSBAD2)
954                         {
955                                 k = particlepalette[0 + (rand()&255)];
956                                 l = particlepalette[0 + (rand()&255)];
957                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, 255, 240, 9999, 0.05, 1, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
958                         }
959                         else
960                         {
961                                 k = l = particlepalette[224 + (rand()&7)];
962                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, 255, 240, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
963                         }
964                 }
965         }
966 }
967
968 /*
969 ===============
970 CL_TeleportSplash
971
972 ===============
973 */
974 #if WORKINGLQUAKE
975 void R_TeleportSplash (vec3_t org)
976 {
977         int i, j, k;
978         if (!cl_particles.integer) return;
979
980         for (i=-16 ; i<16 ; i+=8)
981                 for (j=-16 ; j<16 ; j+=8)
982                         for (k=-24 ; k<32 ; k+=8)
983                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
984 }
985 #endif
986
987 #ifdef WORKINGLQUAKE
988 void R_RocketTrail (vec3_t start, vec3_t end, int type)
989 #else
990 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
991 #endif
992 {
993         vec3_t vec, dir, vel, pos;
994         float len, dec, speed, r;
995         int contents, smoke, blood, bubbles;
996
997         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
998                 return;
999
1000         VectorSubtract(end, start, dir);
1001         VectorNormalize(dir);
1002
1003         VectorSubtract (end, start, vec);
1004 #ifdef WORKINGLQUAKE
1005         len = VectorNormalize (vec);
1006         dec = 0;
1007         speed = 1.0f / cl.frametime;
1008         VectorSubtract(end, start, vel);
1009 #else
1010         len = VectorNormalizeLength (vec);
1011         dec = -ent->persistent.trail_time;
1012         ent->persistent.trail_time += len;
1013         if (ent->persistent.trail_time < 0.01f)
1014                 return;
1015
1016         // if we skip out, leave it reset
1017         ent->persistent.trail_time = 0.0f;
1018
1019         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
1020         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
1021 #endif
1022         VectorScale(vel, speed, vel);
1023
1024         // advance into this frame to reach the first puff location
1025         VectorMA(start, dec, vec, pos);
1026         len -= dec;
1027
1028         contents = CL_PointContents(pos);
1029         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
1030                 return;
1031
1032         smoke = cl_particles.integer && cl_particles_smoke.integer;
1033         blood = cl_particles.integer && cl_particles_blood.integer;
1034         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1035
1036         while (len >= 0)
1037         {
1038                 switch (type)
1039                 {
1040                         case 0: // rocket trail
1041                                 dec = 3;
1042                                 if (smoke)
1043                                 {
1044                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*125, cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1045                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1046                                 }
1047                                 if (bubbles)
1048                                 {
1049                                         r = lhrandom(1, 2);
1050                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1051                                 }
1052                                 break;
1053
1054                         case 1: // grenade trail
1055                                 // FIXME: make it gradually stop smoking
1056                                 dec = 3;
1057                                 if (smoke)
1058                                 {
1059                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*100, cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1060                                 }
1061                                 break;
1062
1063
1064                         case 2: // blood
1065                         case 4: // slight blood
1066                                 dec = cl_particles_blood_size.value;
1067                                 if (blood)
1068                                 {
1069                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1070                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1071                                 }
1072                                 break;
1073
1074                         case 3: // green tracer
1075                                 dec = 6;
1076                                 if (smoke)
1077                                 {
1078                                         if (gamemode == GAME_GOODVSBAD2)
1079                                         {
1080                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x00002E, 0x000030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1081                                         }
1082                                         else
1083                                         {
1084                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1085                                         }
1086                                 }
1087                                 break;
1088
1089                         case 5: // flame tracer
1090                                 dec = 6;
1091                                 if (smoke)
1092                                 {
1093                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1094                                 }
1095                                 break;
1096
1097                         case 6: // voor trail
1098                                 dec = 6;
1099                                 if (smoke)
1100                                 {
1101                                         if (gamemode == GAME_GOODVSBAD2)
1102                                         {
1103                                                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, false, PBLEND_ALPHA, dec, dec, 255, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1104                                         }
1105                                         else
1106                                         {
1107                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1108                                         }
1109                                 }
1110                                 break;
1111
1112                         case 7: // Nehahra smoke tracer
1113                                 dec = 7;
1114                                 if (smoke)
1115                                 {
1116                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1117                                 }
1118                                 break;
1119                         case 8: // Nexuiz plasma trail
1120                                 dec = 4;
1121                                 if (smoke)
1122                                 {
1123                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1124                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1125                                 }
1126                 }
1127
1128                 // advance to next time and position
1129                 len -= dec;
1130                 VectorMA (pos, dec, vec, pos);
1131         }
1132 #ifndef WORKINGLQUAKE
1133         ent->persistent.trail_time = len;
1134 #endif
1135 }
1136
1137 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1138 {
1139         vec3_t vec, pos;
1140         int len;
1141         if (!cl_particles.integer) return;
1142         if (!cl_particles_smoke.integer) return;
1143
1144         VectorCopy(start, pos);
1145         VectorSubtract (end, start, vec);
1146 #ifdef WORKINGLQUAKE
1147         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1148 #else
1149         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1150 #endif
1151         VectorScale(vec, 3, vec);
1152         color = particlepalette[color];
1153         while (len--)
1154         {
1155                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1156                 VectorAdd (pos, vec, pos);
1157         }
1158 }
1159
1160 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1161 {
1162         int tempcolor2, cr, cg, cb;
1163         cr = red * 255;
1164         cg = green * 255;
1165         cb = blue * 255;
1166         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1167         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1168 }
1169
1170 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1171 {
1172         int k;
1173         if (!cl_particles.integer) return;
1174
1175         // smoke puff
1176         if (cl_particles_smoke.integer)
1177         {
1178                 k = count / 4;
1179                 while(k--)
1180                 {
1181                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1182                 }
1183         }
1184 }
1185
1186 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1187 {
1188         int k;
1189         if (!cl_particles.integer) return;
1190
1191         if (cl_stainmaps.integer)
1192                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1193
1194         // smoke puff
1195         if (cl_particles_smoke.integer)
1196         {
1197                 k = count / 4;
1198                 while(k--)
1199                 {
1200                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1201                 }
1202         }
1203
1204         if (cl_particles_sparks.integer)
1205         {
1206                 // sparks
1207                 while(count--)
1208                 {
1209                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1210                 }
1211         }
1212 }
1213
1214 /*
1215 ===============
1216 CL_MoveParticles
1217 ===============
1218 */
1219 void CL_MoveParticles (void)
1220 {
1221         particle_t *p;
1222         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1223         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1224 #ifdef WORKINGLQUAKE
1225         void *hitent;
1226 #else
1227         entity_render_t *hitent;
1228 #endif
1229
1230         // LordHavoc: early out condition
1231         if (!cl_numparticles)
1232                 return;
1233
1234 #ifdef WORKINGLQUAKE
1235         frametime = cl.frametime;
1236 #else
1237         frametime = cl.time - cl.oldtime;
1238 #endif
1239         gravity = frametime * sv_gravity.value;
1240         dvel = 1+4*frametime;
1241         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1242
1243         activeparticles = 0;
1244         maxparticle = -1;
1245         j = 0;
1246         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1247         {
1248                 content = 0;
1249                 VectorCopy(p->org, p->oldorg);
1250                 VectorMA(p->org, frametime, p->vel, p->org);
1251                 VectorCopy(p->org, org);
1252                 if (p->bounce)
1253                 {
1254                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, &hitent) < 1)
1255                         {
1256                                 VectorCopy(v, p->org);
1257                                 if (p->bounce < 0)
1258                                 {
1259                                         // assume it's blood (lame, but...)
1260 #ifndef WORKINGLQUAKE
1261                                         if (cl_stainmaps.integer)
1262                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1263 #endif
1264                                         if (cl_decals.integer)
1265                                         {
1266                                                 p->type = pt_decal;
1267                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1268 #ifndef WORKINGLQUAKE
1269                                                 p->owner = hitent;
1270                                                 p->ownermodel = hitent->model;
1271                                                 Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1272                                                 Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1273                                                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1274 #endif
1275                                                 p->time2 = cl.time + cl_decals_time.value;
1276                                                 p->die = p->time2 + cl_decals_fadetime.value;
1277                                                 p->alphafade = 0;
1278                                                 VectorCopy(normal, p->vel2);
1279                                                 VectorClear(p->vel);
1280                                                 VectorAdd(p->org, normal, p->org);
1281                                                 p->bounce = 0;
1282                                                 p->friction = 0;
1283                                                 p->gravity = 0;
1284                                                 p->scalex *= 1.25f;
1285                                                 p->scaley *= 1.25f;
1286                                         }
1287                                         else
1288                                         {
1289                                                 p->die = -1;
1290                                                 freeparticles[j++] = p;
1291                                                 continue;
1292                                         }
1293                                 }
1294                                 else
1295                                 {
1296                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1297                                         VectorMA(p->vel, dist, normal, p->vel);
1298                                         if (DotProduct(p->vel, p->vel) < 0.03)
1299                                                 VectorClear(p->vel);
1300                                 }
1301                         }
1302                 }
1303                 p->vel[2] -= p->gravity * gravity;
1304                 p->alpha -= p->alphafade * frametime;
1305                 if (p->friction)
1306                 {
1307                         f = p->friction * frametime;
1308                         if (!content)
1309                                 content = CL_PointContents(p->org);
1310                         if (content != CONTENTS_EMPTY)
1311                                 f *= 4;
1312                         f = 1.0f - f;
1313                         VectorScale(p->vel, f, p->vel);
1314                 }
1315
1316                 if (p->type != pt_static)
1317                 {
1318                         switch (p->type)
1319                         {
1320                         case pt_blood:
1321                                 if (!content)
1322                                         content = CL_PointContents(p->org);
1323                                 a = content;
1324                                 if (a != CONTENTS_EMPTY)
1325                                 {
1326                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1327                                         {
1328                                                 p->scalex += frametime * cl_particles_blood_size.value;
1329                                                 p->scaley += frametime * cl_particles_blood_size.value;
1330                                                 //p->alpha -= bloodwaterfade;
1331                                         }
1332                                         else
1333                                                 p->die = -1;
1334                                 }
1335                                 else
1336                                         p->vel[2] -= gravity;
1337                                 break;
1338                         case pt_bubble:
1339                                 if (!content)
1340                                         content = CL_PointContents(p->org);
1341                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1342                                 {
1343                                         p->die = -1;
1344                                         break;
1345                                 }
1346                                 break;
1347                         case pt_rain:
1348                                 if (cl.time > p->time2)
1349                                 {
1350                                         // snow flutter
1351                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1352                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1353                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1354                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1355                                 }
1356                                 if (!content)
1357                                         content = CL_PointContents(p->org);
1358                                 a = content;
1359                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1360                                         p->die = -1;
1361                                 break;
1362                         case pt_grow:
1363                                 p->scalex += frametime * p->time2;
1364                                 p->scaley += frametime * p->time2;
1365                                 break;
1366                         case pt_decal:
1367 #ifndef WORKINGLQUAKE
1368                                 if (p->owner->model == p->ownermodel)
1369                                 {
1370                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1371                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1372                                 }
1373                                 else
1374                                         p->die = -1;
1375 #endif
1376                                 if (cl.time > p->time2)
1377                                 {
1378                                         p->alphafade = p->alpha / (p->die - cl.time);
1379                                         p->time2 += 10000;
1380                                 }
1381                                 break;
1382                         default:
1383                                 Con_Printf("unknown particle type %i\n", p->type);
1384                                 p->die = -1;
1385                                 break;
1386                         }
1387                 }
1388
1389                 // remove dead particles
1390                 if (p->alpha < 1 || p->die < cl.time)
1391                         freeparticles[j++] = p;
1392                 else
1393                 {
1394                         maxparticle = i;
1395                         activeparticles++;
1396                         if (p->pressure)
1397                                 pressureused = true;
1398                 }
1399         }
1400         // fill in gaps to compact the array
1401         i = 0;
1402         while (maxparticle >= activeparticles)
1403         {
1404                 *freeparticles[i++] = particles[maxparticle--];
1405                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1406                         maxparticle--;
1407         }
1408         cl_numparticles = activeparticles;
1409
1410         if (pressureused)
1411         {
1412                 activeparticles = 0;
1413                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1414                         if (p->pressure)
1415                                 freeparticles[activeparticles++] = p;
1416
1417                 if (activeparticles)
1418                 {
1419                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1420                         {
1421                                 for (j = 0;j < activeparticles;j++)
1422                                 {
1423                                         if (freeparticles[j] != p)
1424                                         {
1425                                                 float dist, diff[3];
1426                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1427                                                 dist = DotProduct(diff, diff);
1428                                                 if (dist < 4096 && dist >= 1)
1429                                                 {
1430                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1431                                                         VectorMA(p->vel, dist, diff, p->vel);
1432                                                 }
1433                                         }
1434                                 }
1435                         }
1436                 }
1437         }
1438 }
1439
1440 #define MAX_PARTICLETEXTURES 64
1441 // particletexture_t is a rectangle in the particlefonttexture
1442 typedef struct
1443 {
1444         rtexture_t *texture;
1445         float s1, t1, s2, t2;
1446 }
1447 particletexture_t;
1448
1449 #if WORKINGLQUAKE
1450 static int particlefonttexture;
1451 #else
1452 static rtexturepool_t *particletexturepool;
1453 static rtexture_t *particlefonttexture;
1454 #endif
1455 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1456
1457 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1458
1459 static qbyte shadebubble(float dx, float dy, vec3_t light)
1460 {
1461         float dz, f, dot;
1462         vec3_t normal;
1463         dz = 1 - (dx*dx+dy*dy);
1464         if (dz > 0) // it does hit the sphere
1465         {
1466                 f = 0;
1467                 // back side
1468                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1469                 VectorNormalize(normal);
1470                 dot = DotProduct(normal, light);
1471                 if (dot > 0.5) // interior reflection
1472                         f += ((dot *  2) - 1);
1473                 else if (dot < -0.5) // exterior reflection
1474                         f += ((dot * -2) - 1);
1475                 // front side
1476                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1477                 VectorNormalize(normal);
1478                 dot = DotProduct(normal, light);
1479                 if (dot > 0.5) // interior reflection
1480                         f += ((dot *  2) - 1);
1481                 else if (dot < -0.5) // exterior reflection
1482                         f += ((dot * -2) - 1);
1483                 f *= 128;
1484                 f += 16; // just to give it a haze so you can see the outline
1485                 f = bound(0, f, 255);
1486                 return (qbyte) f;
1487         }
1488         else
1489                 return 0;
1490 }
1491
1492 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1493 {
1494         int basex, basey, y;
1495         basex = ((texnum >> 0) & 7) * 32;
1496         basey = ((texnum >> 3) & 7) * 32;
1497         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1498         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1499         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1500         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1501         for (y = 0;y < 32;y++)
1502                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1503 }
1504
1505 static void R_InitParticleTexture (void)
1506 {
1507         int x, y, d, i, j, k, m;
1508         float cx, cy, dx, dy, radius, f, f2;
1509         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1510         vec3_t light;
1511         qbyte particletexturedata[256*256*4];
1512
1513         memset(particletexturedata, 255, sizeof(particletexturedata));
1514
1515         // smoke/blood
1516         for (i = 0;i < 8;i++)
1517         {
1518                 do
1519                 {
1520                         fractalnoise(&noise1[0][0], 64, 4);
1521                         fractalnoise(&noise2[0][0], 64, 8);
1522                         m = 0;
1523                         for (y = 0;y < 32;y++)
1524                         {
1525                                 dy = y - 16;
1526                                 for (x = 0;x < 32;x++)
1527                                 {
1528                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1529                                         dx = x - 16;
1530                                         d = (noise2[y][x] - 128) * 3 + 192;
1531                                         if (d > 0)
1532                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1533                                         d = (d * noise1[y][x]) >> 7;
1534                                         d = bound(0, d, 255);
1535                                         data[y][x][3] = (qbyte) d;
1536                                         if (m < d)
1537                                                 m = d;
1538                                 }
1539                         }
1540                 }
1541                 while (m < 224);
1542
1543                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1544         }
1545
1546         // rain splash
1547         for (i = 0;i < 16;i++)
1548         {
1549                 radius = i * 3.0f / 16.0f;
1550                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1551                 for (y = 0;y < 32;y++)
1552                 {
1553                         dy = (y - 16) * 0.25f;
1554                         for (x = 0;x < 32;x++)
1555                         {
1556                                 dx = (x - 16) * 0.25f;
1557                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1558                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1559                                 f = bound(0.0f, f, 255.0f);
1560                                 data[y][x][3] = (int) f;
1561                         }
1562                 }
1563                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1564         }
1565
1566         // normal particle
1567         for (y = 0;y < 32;y++)
1568         {
1569                 dy = y - 16;
1570                 for (x = 0;x < 32;x++)
1571                 {
1572                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1573                         dx = x - 16;
1574                         d = (256 - (dx*dx+dy*dy));
1575                         d = bound(0, d, 255);
1576                         data[y][x][3] = (qbyte) d;
1577                 }
1578         }
1579         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1580
1581         // rain
1582         light[0] = 1;light[1] = 1;light[2] = 1;
1583         VectorNormalize(light);
1584         for (y = 0;y < 32;y++)
1585         {
1586                 for (x = 0;x < 32;x++)
1587                 {
1588                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1589                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1590                 }
1591         }
1592         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1593
1594         // bubble
1595         light[0] = 1;light[1] = 1;light[2] = 1;
1596         VectorNormalize(light);
1597         for (y = 0;y < 32;y++)
1598         {
1599                 for (x = 0;x < 32;x++)
1600                 {
1601                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1602                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1603                 }
1604         }
1605         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1606
1607         // smoke/blood
1608         for (i = 0;i < 8;i++)
1609         {
1610                 memset(&data[0][0][0], 255, sizeof(data));
1611                 for (j = 1;j < 8;j++)
1612                 {
1613                         for (k = 0;k < 3;k++)
1614                         {
1615                                 cx = lhrandom(j + 1, 30 - j);
1616                                 cy = lhrandom(j + 1, 30 - j);
1617                                 for (y = 0;y < 32;y++)
1618                                 {
1619                                         for (x = 0;x < 32;x++)
1620                                         {
1621                                                 dx = (x - cx);
1622                                                 dy = (y - cy);
1623                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1624                                                 if (f > 0)
1625                                                 {
1626                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1627                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1628                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1629                                                 }
1630                                         }
1631                                 }
1632                         }
1633                 }
1634                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1635                 for (y = 0;y < 32;y++)
1636                 {
1637                         for (x = 0;x < 32;x++)
1638                         {
1639                                 data[y][x][0] = 255 - data[y][x][0];
1640                                 data[y][x][1] = 255 - data[y][x][1];
1641                                 data[y][x][2] = 255 - data[y][x][2];
1642                         }
1643                 }
1644                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1645         }
1646
1647 #if WORKINGLQUAKE
1648         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1649         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1650         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1651 #else
1652         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1653         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1654                 particletexture[i].texture = particlefonttexture;
1655
1656         // beam
1657         fractalnoise(&noise1[0][0], 64, 4);
1658         m = 0;
1659         for (y = 0;y < 64;y++)
1660         {
1661                 for (x = 0;x < 16;x++)
1662                 {
1663                         if (x < 8)
1664                                 d = x;
1665                         else
1666                                 d = (15 - x);
1667                         d = d * d * noise1[y][x] / (7 * 7);
1668                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1669                         data2[y][x][3] = 255;
1670                 }
1671         }
1672
1673         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1674         particletexture[tex_beam].s1 = 0;
1675         particletexture[tex_beam].t1 = 0;
1676         particletexture[tex_beam].s2 = 1;
1677         particletexture[tex_beam].t2 = 1;
1678 #endif
1679 }
1680
1681 static void r_part_start(void)
1682 {
1683         particletexturepool = R_AllocTexturePool();
1684         R_InitParticleTexture ();
1685 }
1686
1687 static void r_part_shutdown(void)
1688 {
1689         R_FreeTexturePool(&particletexturepool);
1690 }
1691
1692 static void r_part_newmap(void)
1693 {
1694         cl_numparticles = 0;
1695 }
1696
1697 void R_Particles_Init (void)
1698 {
1699         Cvar_RegisterVariable(&r_drawparticles);
1700 #ifdef WORKINGLQUAKE
1701         r_part_start();
1702 #else
1703         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1704 #endif
1705 }
1706
1707 #ifdef WORKINGLQUAKE
1708 void R_InitParticles(void)
1709 {
1710         CL_Particles_Init();
1711         R_Particles_Init();
1712 }
1713 #endif
1714
1715 float particle_vertex3f[12], particle_texcoord2f[8];
1716
1717 #ifdef WORKINGLQUAKE
1718 void R_DrawParticle(particle_t *p)
1719 {
1720 #else
1721 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1722 {
1723         const particle_t *p = calldata1;
1724         rmeshstate_t m;
1725 #endif
1726         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1727         particletexture_t *tex;
1728
1729         VectorCopy(p->org, org);
1730
1731         tex = &particletexture[p->texnum];
1732         cr = p->color[0] * (1.0f / 255.0f);
1733         cg = p->color[1] * (1.0f / 255.0f);
1734         cb = p->color[2] * (1.0f / 255.0f);
1735         ca = p->alpha * (1.0f / 255.0f);
1736         if (p->blendmode == PBLEND_MOD)
1737         {
1738                 cr *= ca;
1739                 cg *= ca;
1740                 cb *= ca;
1741                 cr = min(cr, 1);
1742                 cg = min(cg, 1);
1743                 cb = min(cb, 1);
1744                 ca = 1;
1745         }
1746
1747 #ifndef WORKINGLQUAKE
1748         if (fogenabled && p->blendmode != PBLEND_MOD)
1749         {
1750                 VectorSubtract(org, r_origin, fogvec);
1751                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1752                 ifog = 1 - fog;
1753                 cr = cr * ifog;
1754                 cg = cg * ifog;
1755                 cb = cb * ifog;
1756                 if (p->blendmode == 0)
1757                 {
1758                         cr += fogcolor[0] * fog;
1759                         cg += fogcolor[1] * fog;
1760                         cb += fogcolor[2] * fog;
1761                 }
1762         }
1763         cr *= r_colorscale;
1764         cg *= r_colorscale;
1765         cb *= r_colorscale;
1766
1767         GL_Color(cr, cg, cb, ca);
1768
1769         R_Mesh_Matrix(&r_identitymatrix);
1770
1771         memset(&m, 0, sizeof(m));
1772         m.tex[0] = R_GetTexture(tex->texture);
1773         m.pointer_texcoord[0] = particle_texcoord2f;
1774         R_Mesh_State_Texture(&m);
1775
1776         if (p->blendmode == 0)
1777                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1778         else if (p->blendmode == 1)
1779                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1780         else
1781                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1782         GL_DepthMask(false);
1783         GL_DepthTest(true);
1784         GL_VertexPointer(particle_vertex3f);
1785 #endif
1786         if (p->orientation == PARTICLE_BILLBOARD || p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1787         {
1788                 if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1789                 {
1790                         // double-sided
1791                         if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1792                         {
1793                                 VectorNegate(p->vel2, v);
1794                                 VectorVectors(v, right, up);
1795                         }
1796                         else
1797                                 VectorVectors(p->vel2, right, up);
1798                         VectorScale(right, p->scalex, right);
1799                         VectorScale(up, p->scaley, up);
1800                 }
1801                 else
1802                 {
1803                         VectorScale(vright, p->scalex, right);
1804                         VectorScale(vup, p->scaley, up);
1805                 }
1806                 particle_vertex3f[ 0] = org[0] - right[0] - up[0];
1807                 particle_vertex3f[ 1] = org[1] - right[1] - up[1];
1808                 particle_vertex3f[ 2] = org[2] - right[2] - up[2];
1809                 particle_vertex3f[ 3] = org[0] - right[0] + up[0];
1810                 particle_vertex3f[ 4] = org[1] - right[1] + up[1];
1811                 particle_vertex3f[ 5] = org[2] - right[2] + up[2];
1812                 particle_vertex3f[ 6] = org[0] + right[0] + up[0];
1813                 particle_vertex3f[ 7] = org[1] + right[1] + up[1];
1814                 particle_vertex3f[ 8] = org[2] + right[2] + up[2];
1815                 particle_vertex3f[ 9] = org[0] + right[0] - up[0];
1816                 particle_vertex3f[10] = org[1] + right[1] - up[1];
1817                 particle_vertex3f[11] = org[2] + right[2] - up[2];
1818                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1819                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1820                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1821                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1822         }
1823         else if (p->orientation == PARTICLE_SPARK)
1824         {
1825                 VectorMA(p->org, -p->scaley, p->vel, v);
1826                 VectorMA(p->org, p->scaley, p->vel, up2);
1827                 R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, p->scalex);
1828                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1829                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1830                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1831                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1832         }
1833         else if (p->orientation == PARTICLE_BEAM)
1834         {
1835                 R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel2, p->scalex);
1836                 VectorSubtract(p->vel2, p->org, up);
1837                 VectorNormalizeFast(up);
1838                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1839                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1840                 particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0];
1841                 particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0];
1842                 particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1];
1843                 particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1];
1844         }
1845         else
1846                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1847
1848 #if WORKINGLQUAKE
1849         if (p->blendmode == 0)
1850                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1851         else if (p->blendmode == 1)
1852                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1853         else
1854                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1855         glColor4f(cr, cg, cb, ca);
1856         glBegin(GL_QUADS);
1857         glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]);
1858         glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]);
1859         glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]);
1860         glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]);
1861         glEnd();
1862 #else
1863         R_Mesh_Draw(4, 2, polygonelements);
1864 #endif
1865 }
1866
1867 void R_DrawParticles (void)
1868 {
1869         int i;
1870         float minparticledist;
1871         particle_t *p;
1872
1873 #ifdef WORKINGLQUAKE
1874         CL_MoveParticles();
1875 #endif
1876
1877         // LordHavoc: early out conditions
1878         if ((!cl_numparticles) || (!r_drawparticles.integer))
1879                 return;
1880
1881         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1882
1883 #ifdef WORKINGLQUAKE
1884         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1885         glEnable(GL_BLEND);
1886         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1887         glDepthMask(0);
1888         // LordHavoc: only render if not too close
1889         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1890                 if (DotProduct(p->org, vpn) >= minparticledist)
1891                         R_DrawParticle(p);
1892         glDepthMask(1);
1893         glDisable(GL_BLEND);
1894         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1895 #else
1896         // LordHavoc: only render if not too close
1897         c_particles += cl_numparticles;
1898         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1899                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1900                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1901 #endif
1902 }
1903