disabled smoke from explosions, it was a minor effect and used too much fillrate
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeamVerts (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 4] = org1[0] - width * right1[0];
65         vert[ 5] = org1[1] - width * right1[1];
66         vert[ 6] = org1[2] - width * right1[2];
67         vert[ 8] = org2[0] - width * right2[0];
68         vert[ 9] = org2[1] - width * right2[1];
69         vert[10] = org2[2] - width * right2[2];
70         vert[12] = org2[0] + width * right2[0];
71         vert[13] = org2[1] + width * right2[1];
72         vert[14] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 #else
137 #include "cl_collision.h"
138 #endif
139
140 #define MAX_PARTICLES                   8192    // default max # of particles at one time
141 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
142
143 typedef enum
144 {
145         pt_static, pt_rain, pt_bubble, pt_blood
146 }
147 ptype_t;
148
149 #define PARTICLE_INVALID 0
150 #define PARTICLE_BILLBOARD 1
151 #define PARTICLE_BEAM 2
152 #define PARTICLE_ORIENTED_DOUBLESIDED 3
153
154 #define P_TEXNUM_FIRSTBIT 0
155 #define P_TEXNUM_BITS 6
156 #define P_ORIENTATION_FIRSTBIT (P_TEXNUM_FIRSTBIT + P_TEXNUM_BITS)
157 #define P_ORIENTATION_BITS 2
158 #define P_FLAGS_FIRSTBIT (P_ORIENTATION_FIRSTBIT + P_ORIENTATION_BITS)
159 //#define P_DYNLIGHT (1 << (P_FLAGS_FIRSTBIT + 0))
160 #define P_ADDITIVE (1 << (P_FLAGS_FIRSTBIT + 1))
161
162 typedef struct particle_s
163 {
164         ptype_t         type;
165         unsigned int    flags; // dynamically lit, orientation, additive blending, texnum
166         vec3_t          org;
167         vec3_t          vel;
168         float           die;
169         float           scalex;
170         float           scaley;
171         float           alpha; // 0-255
172         float           alphafade; // how much alpha reduces per second
173         float           time2; // used for various things (snow fluttering, for example)
174         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
175         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
176         vec3_t          oldorg;
177         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
178         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
179         float           pressure; // if non-zero, apply pressure to other particles
180         qbyte           color[4];
181 }
182 particle_t;
183
184 static int particlepalette[256] =
185 {
186         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
187         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
188         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
189         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
190         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
191         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
192         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
193         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
194         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
195         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
196         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
197         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
198         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
199         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
200         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
201         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
202         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
203         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
204         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
205         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
206         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
207         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
208         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
209         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
210         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
211         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
212         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
213         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
214         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
215         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
216         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
217         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
218 };
219
220 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
221
222 // these must match r_part.c's textures
223 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
224 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
225 static const int tex_particle = 24;
226 static const int tex_rain = 25;
227 static const int tex_bubble = 26;
228
229 static int                      cl_maxparticles;
230 static int                      cl_numparticles;
231 static particle_t       *particles;
232 static particle_t       **freeparticles; // list used only in compacting particles array
233
234 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
235 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
236 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
237 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
238 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
239 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
240 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
241 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
242 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
243 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
244
245 #ifndef WORKINGLQUAKE
246 static mempool_t *cl_part_mempool;
247 #endif
248
249 void CL_Particles_Clear(void)
250 {
251         cl_numparticles = 0;
252 }
253
254 /*
255 ===============
256 CL_InitParticles
257 ===============
258 */
259 void CL_ReadPointFile_f (void);
260 void CL_Particles_Init (void)
261 {
262         int             i;
263
264         i = COM_CheckParm ("-particles");
265
266         if (i && i < com_argc - 1)
267         {
268                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
269                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
270                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
271         }
272         else
273                 cl_maxparticles = MAX_PARTICLES;
274
275         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
276
277         Cvar_RegisterVariable (&cl_particles);
278         Cvar_RegisterVariable (&cl_particles_size);
279         Cvar_RegisterVariable (&cl_particles_bloodshowers);
280         Cvar_RegisterVariable (&cl_particles_blood);
281         Cvar_RegisterVariable (&cl_particles_blood_size);
282         Cvar_RegisterVariable (&cl_particles_blood_alpha);
283         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
284         Cvar_RegisterVariable (&cl_particles_smoke);
285         Cvar_RegisterVariable (&cl_particles_sparks);
286         Cvar_RegisterVariable (&cl_particles_bubbles);
287
288 #ifdef WORKINGLQUAKE
289         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
290         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
291 #else
292         cl_part_mempool = Mem_AllocPool("CL_Part");
293         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
294         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
295 #endif
296         cl_numparticles = 0;
297 }
298
299 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, padditive, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
300 {\
301         if (cl_numparticles >= cl_maxparticles)\
302                 return;\
303         {\
304                 particle_t      *part;\
305                 int tempcolor, tempcolor2, cr1, cg1, cb1, cr2, cg2, cb2;\
306                 unsigned int partflags;\
307                 partflags = ((porientation) << P_ORIENTATION_FIRSTBIT) | ((ptex) << P_TEXNUM_FIRSTBIT);\
308                 if (padditive)\
309                         partflags |= P_ADDITIVE;\
310                 /*if (plight)*/\
311                 /*      partflags |= P_DYNLIGHT;*/\
312                 tempcolor = (pcolor1);\
313                 tempcolor2 = (pcolor2);\
314                 cr2 = ((tempcolor2) >> 16) & 0xFF;\
315                 cg2 = ((tempcolor2) >> 8) & 0xFF;\
316                 cb2 = (tempcolor2) & 0xFF;\
317                 if (tempcolor != tempcolor2)\
318                 {\
319                         cr1 = ((tempcolor) >> 16) & 0xFF;\
320                         cg1 = ((tempcolor) >> 8) & 0xFF;\
321                         cb1 = (tempcolor) & 0xFF;\
322                         tempcolor = rand() & 0xFF;\
323                         cr2 = (((cr2 - cr1) * tempcolor) >> 8) + cr1;\
324                         cg2 = (((cg2 - cg1) * tempcolor) >> 8) + cg1;\
325                         cb2 = (((cb2 - cb1) * tempcolor) >> 8) + cb1;\
326                 }\
327                 part = &particles[cl_numparticles++];\
328                 part->type = (ptype);\
329                 part->color[0] = cr2;\
330                 part->color[1] = cg2;\
331                 part->color[2] = cb2;\
332                 part->color[3] = 0xFF;\
333                 part->flags = partflags;\
334                 part->scalex = (pscalex);\
335                 part->scaley = (pscaley);\
336                 part->alpha = (palpha);\
337                 part->alphafade = (palphafade);\
338                 part->die = cl.time + (ptime);\
339                 part->gravity = (pgravity);\
340                 part->bounce = (pbounce);\
341                 part->org[0] = (px);\
342                 part->org[1] = (py);\
343                 part->org[2] = (pz);\
344                 part->vel[0] = (pvx);\
345                 part->vel[1] = (pvy);\
346                 part->vel[2] = (pvz);\
347                 part->time2 = (ptime2);\
348                 part->vel2[0] = (pvx2);\
349                 part->vel2[1] = (pvy2);\
350                 part->vel2[2] = (pvz2);\
351                 part->friction = (pfriction);\
352                 part->pressure = (ppressure);\
353         }\
354 }
355
356 /*
357 ===============
358 CL_EntityParticles
359 ===============
360 */
361 void CL_EntityParticles (entity_t *ent)
362 {
363         int                     i;
364         float           angle;
365         float           sp, sy, cp, cy;
366         vec3_t          forward;
367         float           dist;
368         float           beamlength;
369         static vec3_t avelocities[NUMVERTEXNORMALS];
370         if (!cl_particles.integer) return;
371
372         dist = 64;
373         beamlength = 16;
374
375         if (!avelocities[0][0])
376                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
377                         avelocities[0][i] = (rand()&255) * 0.01;
378
379         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
380         {
381                 angle = cl.time * avelocities[i][0];
382                 sy = sin(angle);
383                 cy = cos(angle);
384                 angle = cl.time * avelocities[i][1];
385                 sp = sin(angle);
386                 cp = cos(angle);
387
388                 forward[0] = cp*cy;
389                 forward[1] = cp*sy;
390                 forward[2] = -sp;
391
392 #ifdef WORKINGLQUAKE
393                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, false, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
394 #else
395                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, false, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
396 #endif
397         }
398 }
399
400
401 void CL_ReadPointFile_f (void)
402 {
403         vec3_t  org;
404         int             r, c;
405         char    *pointfile = NULL, *pointfilepos, *t, tchar;
406 #if WORKINGLQUAKE
407         char    name[MAX_OSPATH];
408         
409         sprintf (name,"maps/%s.pts", cl.worldmodel->name);
410         COM_FOpenFile (name, &f);
411         if (f)
412         {
413                 int pointfilelength;
414                 fseek(f, 0, SEEK_END);
415                 pointfilelength = ftell(f);
416                 fseek(f, 0, SEEK_SET);
417                 pointfile = malloc(pointfilelength + 1);
418                 fread(pointfile, 1, pointfilelength, f);
419                 pointfile[pointfilelength] = 0;
420                 fclose(f);
421         }
422 #else
423         pointfile = COM_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true);
424 #endif
425         if (!pointfile)
426         {
427                 Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name);
428                 return;
429         }
430
431         Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name);
432         c = 0;
433         pointfilepos = pointfile;
434         while (*pointfilepos)
435         {
436                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
437                         pointfilepos++;
438                 if (!*pointfilepos)
439                         break;
440                 t = pointfilepos;
441                 while (*t && *t != '\n' && *t != '\r')
442                         t++;
443                 tchar = *t;
444                 *t = 0;
445                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
446                 *t = tchar;
447                 pointfilepos = t;
448                 if (r != 3)
449                         break;
450                 c++;
451
452                 if (cl_numparticles >= cl_maxparticles)
453                 {
454                         Con_Printf ("Not enough free particles\n");
455                         break;
456                 }
457                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, false, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
458         }
459
460 #ifdef WORKINGLQUAKE
461         free(pointfile);
462 #else
463         Mem_Free(pointfile);
464 #endif
465         Con_Printf ("%i points read\n", c);
466 }
467
468 /*
469 ===============
470 CL_ParseParticleEffect
471
472 Parse an effect out of the server message
473 ===============
474 */
475 void CL_ParseParticleEffect (void)
476 {
477         vec3_t org, dir;
478         int i, count, msgcount, color;
479
480         for (i=0 ; i<3 ; i++)
481                 org[i] = MSG_ReadCoord ();
482         for (i=0 ; i<3 ; i++)
483                 dir[i] = MSG_ReadChar () * (1.0/16);
484         msgcount = MSG_ReadByte ();
485         color = MSG_ReadByte ();
486
487         if (msgcount == 255)
488                 count = 1024;
489         else
490                 count = msgcount;
491
492         CL_RunParticleEffect (org, dir, color, count);
493 }
494
495 /*
496 ===============
497 CL_ParticleExplosion
498
499 ===============
500 */
501 void CL_ParticleExplosion (vec3_t org)
502 {
503         int i, k;
504         //vec3_t v;
505         //vec3_t v2;
506         if (cl_stainmaps.integer)
507                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
508
509         i = Mod_PointContents(org, cl.worldmodel);
510         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
511         {
512                 for (i = 0;i < 128;i++)
513                 {
514                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, true, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
515                 }
516         }
517         else
518         {
519                 /*
520                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
521                 // smoke puff
522                 if (cl_particles_smoke.integer)
523                 {
524                         for (i = 0;i < 64;i++)
525                         {
526                                 for (k = 0;k < 16;k++)
527                                 {
528                                         v[0] = org[0] + lhrandom(-64, 64);
529                                         v[1] = org[1] + lhrandom(-64, 64);
530                                         v[2] = org[2] + lhrandom(-8, 24);
531                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
532                                                 break;
533                                 }
534                                 VectorSubtract(v2, org, v2);
535                                 VectorScale(v2, 2.0f, v2);
536                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, true, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
537                         }
538                 }
539                 */
540
541                 if (cl_particles_sparks.integer)
542                 {
543                         // sparks
544                         for (i = 0;i < 256;i++)
545                         {
546                                 k = particlepalette[0x68 + (rand() & 7)];
547                                 particle(pt_static, PARTICLE_BEAM, k, k, tex_particle, false, true, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
548                         }
549                 }
550         }
551
552         if (cl_explosions.integer)
553                 R_NewExplosion(org);
554 }
555
556 /*
557 ===============
558 CL_ParticleExplosion2
559
560 ===============
561 */
562 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
563 {
564         int i, k;
565         if (!cl_particles.integer) return;
566
567         for (i = 0;i < 512;i++)
568         {
569                 k = particlepalette[colorStart + (i % colorLength)];
570                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, false, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
571         }
572 }
573
574 /*
575 ===============
576 CL_BlobExplosion
577
578 ===============
579 */
580 void CL_BlobExplosion (vec3_t org)
581 {
582         if (cl_stainmaps.integer)
583                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
584
585         if (cl_explosions.integer)
586                 R_NewExplosion(org);
587 }
588
589 /*
590 ===============
591 CL_RunParticleEffect
592
593 ===============
594 */
595 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
596 {
597         int k;
598
599         if (count == 1024)
600         {
601                 CL_ParticleExplosion(org);
602                 return;
603         }
604         if (!cl_particles.integer) return;
605         while (count--)
606         {
607                 k = particlepalette[color + (rand()&7)];
608                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, false, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
609         }
610 }
611
612 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
613 /*
614 ===============
615 CL_SparkShower
616 ===============
617 */
618 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
619 {
620         int k;
621         if (!cl_particles.integer) return;
622
623         if (cl_stainmaps.integer)
624                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
625
626         if (cl_particles_bulletimpacts.integer)
627         {
628                 // smoke puff
629                 if (cl_particles_smoke.integer)
630                         particle(pt_static, PARTICLE_BILLBOARD, 0x606060, 0xA0A0A0, tex_smoke[rand()&7], true, true, 4, 4, 255, 1024, 9999, -0.2, 0, org[0], org[1], org[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
631
632                 if (cl_particles_sparks.integer)
633                 {
634                         // sparks
635                         while(count--)
636                         {
637                                 k = particlepalette[0x68 + (rand() & 7)];
638                                 particle(pt_static, PARTICLE_BEAM, k, k, tex_particle, false, true, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
639                         }
640                 }
641         }
642 }
643
644 void CL_PlasmaBurn (vec3_t org)
645 {
646         if (cl_stainmaps.integer)
647                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
648 }
649
650 static float bloodcount = 0;
651 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
652 {
653         float s, r, a;
654         // bloodcount is used to accumulate counts too small to cause a blood particle
655         if (!cl_particles.integer) return;
656         if (!cl_particles_blood.integer) return;
657
658         s = count + 32.0f;
659         count *= 5.0f;
660         if (count > 1000)
661                 count = 1000;
662         bloodcount += count;
663         r = cl_particles_blood_size.value;
664         a = cl_particles_blood_alpha.value * 255;
665         while(bloodcount > 0)
666         {
667                 particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, false, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
668                 bloodcount -= r;
669         }
670 }
671
672 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
673 {
674         float r;
675         float a;
676         vec3_t diff, center, velscale;
677         if (!cl_particles.integer) return;
678         if (!cl_particles_bloodshowers.integer) return;
679         if (!cl_particles_blood.integer) return;
680
681         VectorSubtract(maxs, mins, diff);
682         center[0] = (mins[0] + maxs[0]) * 0.5;
683         center[1] = (mins[1] + maxs[1]) * 0.5;
684         center[2] = (mins[2] + maxs[2]) * 0.5;
685         // FIXME: change velspeed back to 2.0x after fixing mod
686         velscale[0] = velspeed * 2.0 / diff[0];
687         velscale[1] = velspeed * 2.0 / diff[1];
688         velscale[2] = velspeed * 2.0 / diff[2];
689
690         bloodcount += count * 5.0f;
691         r = cl_particles_blood_size.value;
692         a = cl_particles_blood_alpha.value * 255;
693         while (bloodcount > 0)
694         {
695                 vec3_t org, vel;
696                 org[0] = lhrandom(mins[0], maxs[0]);
697                 org[1] = lhrandom(mins[1], maxs[1]);
698                 org[2] = lhrandom(mins[2], maxs[2]);
699                 vel[0] = (org[0] - center[0]) * velscale[0];
700                 vel[1] = (org[1] - center[1]) * velscale[1];
701                 vel[2] = (org[2] - center[2]) * velscale[2];
702                 bloodcount -= r;
703                 particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, false, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
704         }
705 }
706
707 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
708 {
709         int k;
710         float t;
711         if (!cl_particles.integer) return;
712         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
713         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
714         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
715
716         while (count--)
717         {
718                 k = particlepalette[colorbase + (rand()&3)];
719                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, false, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
720         }
721 }
722
723 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
724 {
725         int k;
726         float t, z, minz, maxz;
727         if (!cl_particles.integer) return;
728         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
729         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
730         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
731         if (dir[2] < 0) // falling
732         {
733                 t = (maxs[2] - mins[2]) / -dir[2];
734                 z = maxs[2];
735         }
736         else // rising??
737         {
738                 t = (maxs[2] - mins[2]) / dir[2];
739                 z = mins[2];
740         }
741         if (t < 0 || t > 2) // sanity check
742                 t = 2;
743
744         minz = z - fabs(dir[2]) * 0.1;
745         maxz = z + fabs(dir[2]) * 0.1;
746         minz = bound(mins[2], minz, maxs[2]);
747         maxz = bound(mins[2], maxz, maxs[2]);
748
749         switch(type)
750         {
751         case 0:
752                 count *= 4; // ick, this should be in the mod or maps?
753
754                 while(count--)
755                 {
756                         k = particlepalette[colorbase + (rand()&3)];
757                         particle(pt_rain, PARTICLE_BEAM, k, k, tex_particle, true, true, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
758                 }
759                 break;
760         case 1:
761                 while(count--)
762                 {
763                         k = particlepalette[colorbase + (rand()&3)];
764                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
765                 }
766                 break;
767         default:
768                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
769         }
770 }
771
772 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
773 {
774         int k;
775         float t;
776         vec3_t o, v, center;
777         if (!cl_particles.integer) return;
778
779         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
780         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
781         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
782
783         center[0] = (mins[0] + maxs[0]) * 0.5f;
784         center[1] = (mins[1] + maxs[1]) * 0.5f;
785         center[2] = (mins[2] + maxs[2]) * 0.5f;
786
787         while (count--)
788         {
789                 k = particlepalette[224 + (rand()&15)];
790                 o[0] = lhrandom(mins[0], maxs[0]);
791                 o[1] = lhrandom(mins[1], maxs[1]);
792                 o[2] = lhrandom(mins[2], maxs[2]);
793                 VectorSubtract(o, center, v);
794                 VectorNormalizeFast(v);
795                 VectorScale(v, 100, v);
796                 v[2] += sv_gravity.value * 0.15f;
797                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, true, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
798         }
799 }
800
801 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
802 {
803         int k;
804         float t;
805         if (!cl_particles.integer) return;
806         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
807         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
808         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
809
810         while (count--)
811         {
812                 k = particlepalette[224 + (rand()&15)];
813                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
814                 if (count & 1)
815                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, true, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
816         }
817 }
818
819 void CL_Flames (vec3_t org, vec3_t vel, int count)
820 {
821         int k;
822         if (!cl_particles.integer) return;
823
824         while (count--)
825         {
826                 k = particlepalette[224 + (rand()&15)];
827                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
828         }
829 }
830
831
832
833 /*
834 ===============
835 CL_LavaSplash
836
837 ===============
838 */
839 void CL_LavaSplash (vec3_t origin)
840 {
841         int                     i, j, k;
842         float           vel;
843         vec3_t          dir, org;
844         if (!cl_particles.integer) return;
845
846         for (i=-128 ; i<128 ; i+=16)
847         {
848                 for (j=-128 ; j<128 ; j+=16)
849                 {
850                         dir[0] = j + lhrandom(0, 8);
851                         dir[1] = i + lhrandom(0, 8);
852                         dir[2] = 256;
853                         org[0] = origin[0] + dir[0];
854                         org[1] = origin[1] + dir[1];
855                         org[2] = origin[2] + lhrandom(0, 64);
856                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
857                         k = particlepalette[224 + (rand()&7)];
858                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
859                 }
860         }
861 }
862
863 /*
864 ===============
865 CL_TeleportSplash
866
867 ===============
868 */
869 #if WORKINGLQUAKE
870 void R_TeleportSplash (vec3_t org)
871 {
872         int i, j, k;
873         if (!cl_particles.integer) return;
874
875         for (i=-16 ; i<16 ; i+=8)
876                 for (j=-16 ; j<16 ; j+=8)
877                         for (k=-24 ; k<32 ; k+=8)
878                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, true, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
879 }
880 #endif
881
882 #ifdef WORKINGLQUAKE
883 void R_RocketTrail (vec3_t start, vec3_t end, int type)
884 #else
885 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
886 #endif
887 {
888         vec3_t vec, dir, vel, pos;
889         float len, dec, speed, r;
890         int contents, smoke, blood, bubbles;
891
892         VectorSubtract(end, start, dir);
893         VectorNormalize(dir);
894
895         VectorSubtract (end, start, vec);
896 #ifdef WORKINGLQUAKE
897         len = VectorNormalize (vec);
898         dec = 0;
899         speed = 1.0f / cl.frametime;
900         VectorSubtract(end, start, vel);
901 #else
902         len = VectorNormalizeLength (vec);
903         dec = -ent->persistent.trail_time;
904         ent->persistent.trail_time += len;
905         if (ent->persistent.trail_time < 0.01f)
906                 return;
907
908         // if we skip out, leave it reset
909         ent->persistent.trail_time = 0.0f;
910
911         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
912         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
913 #endif
914         VectorScale(vel, speed, vel);
915
916         // advance into this frame to reach the first puff location
917         VectorMA(start, dec, vec, pos);
918         len -= dec;
919
920         contents = Mod_PointContents(pos, cl.worldmodel);
921         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
922                 return;
923
924         smoke = cl_particles.integer && cl_particles_smoke.integer;
925         blood = cl_particles.integer && cl_particles_blood.integer;
926         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
927
928         while (len >= 0)
929         {
930                 switch (type)
931                 {
932                         case 0: // rocket trail
933                                 dec = 3;
934                                 if (smoke)
935                                 {
936                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, true, dec, dec, 32, 64, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0, 0, 0, 0, 0, 0);
937                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, true, dec, dec, 128, 768, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
938                                 }
939                                 if (bubbles)
940                                 {
941                                         r = lhrandom(1, 2);
942                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, true, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
943                                 }
944                                 break;
945
946                         case 1: // grenade trail
947                                 // FIXME: make it gradually stop smoking
948                                 dec = 3;
949                                 if (cl_particles.integer && cl_particles_smoke.integer)
950                                 {
951                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, true, dec, dec, 32, 96, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0, 0, 0, 0, 0, 0);
952                                 }
953                                 break;
954
955
956                         case 2: // blood
957                         case 4: // slight blood
958                                 dec = cl_particles_blood_size.value;
959                                 if (blood)
960                                 {
961                                         particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, false, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
962                                 }
963                                 break;
964
965                         case 3: // green tracer
966                                 dec = 6;
967                                 if (smoke)
968                                 {
969                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, true, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
970                                 }
971                                 break;
972
973                         case 5: // flame tracer
974                                 dec = 6;
975                                 if (smoke)
976                                 {
977                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, true, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
978                                 }
979                                 break;
980
981                         case 6: // voor trail
982                                 dec = 6;
983                                 if (smoke)
984                                 {
985                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, true, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
986                                 }
987                                 break;
988
989                         case 7: // Nehahra smoke tracer
990                                 dec = 7;
991                                 if (smoke)
992                                 {
993                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, false, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
994                                 }
995                                 break;
996                 }
997
998                 // advance to next time and position
999                 len -= dec;
1000                 VectorMA (pos, dec, vec, pos);
1001         }
1002 #ifndef WORKINGLQUAKE
1003         ent->persistent.trail_time = len;
1004 #endif
1005 }
1006
1007 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1008 {
1009         vec3_t vec, pos;
1010         int len;
1011         if (!cl_particles.integer) return;
1012         if (!cl_particles_smoke.integer) return;
1013
1014         VectorCopy(start, pos);
1015         VectorSubtract (end, start, vec);
1016 #ifdef WORKINGLQUAKE
1017         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1018 #else
1019         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1020 #endif
1021         VectorScale(vec, 3, vec);
1022         color = particlepalette[color];
1023         while (len--)
1024         {
1025                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, false, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1026                 VectorAdd (pos, vec, pos);
1027         }
1028 }
1029
1030
1031 /*
1032 ===============
1033 CL_MoveParticles
1034 ===============
1035 */
1036 void CL_MoveParticles (void)
1037 {
1038         particle_t *p;
1039         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1040         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1041
1042         // LordHavoc: early out condition
1043         if (!cl_numparticles)
1044                 return;
1045
1046 #ifdef WORKINGLQUAKE
1047         frametime = cl.frametime;
1048 #else
1049         frametime = cl.time - cl.oldtime;
1050 #endif
1051         gravity = frametime * sv_gravity.value;
1052         dvel = 1+4*frametime;
1053         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1054
1055         activeparticles = 0;
1056         maxparticle = -1;
1057         j = 0;
1058         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1059         {
1060                 content = 0;
1061                 VectorCopy(p->org, p->oldorg);
1062                 VectorMA(p->org, frametime, p->vel, p->org);
1063                 VectorCopy(p->org, org);
1064 #ifndef WORKINGLQUAKE
1065                 if (p->bounce)
1066                 {
1067                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, NULL) < 1)
1068                         {
1069                                 VectorCopy(v, p->org);
1070                                 if (p->bounce < 0)
1071                                 {
1072                                         // assume it's blood (lame, but...)
1073                                         if (cl_stainmaps.integer)
1074                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1075                                         p->die = -1;
1076                                         freeparticles[j++] = p;
1077                                         continue;
1078                                 }
1079                                 else
1080                                 {
1081                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1082                                         VectorMA(p->vel, dist, normal, p->vel);
1083                                         if (DotProduct(p->vel, p->vel) < 0.03)
1084                                                 VectorClear(p->vel);
1085                                 }
1086                         }
1087                 }
1088 #endif
1089                 p->vel[2] -= p->gravity * gravity;
1090                 p->alpha -= p->alphafade * frametime;
1091                 if (p->friction)
1092                 {
1093                         f = p->friction * frametime;
1094                         if (!content)
1095                                 content = Mod_PointContents(p->org, cl.worldmodel);
1096                         if (content != CONTENTS_EMPTY)
1097                                 f *= 4;
1098                         f = 1.0f - f;
1099                         VectorScale(p->vel, f, p->vel);
1100                 }
1101
1102                 if (p->type != pt_static)
1103                 {
1104                         switch (p->type)
1105                         {
1106                         case pt_blood:
1107                                 if (!content)
1108                                         content = Mod_PointContents(p->org, cl.worldmodel);
1109                                 a = content;
1110                                 if (a != CONTENTS_EMPTY)
1111                                 {
1112                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1113                                         {
1114                                                 p->scalex += frametime * cl_particles_blood_size.value;
1115                                                 p->scaley += frametime * cl_particles_blood_size.value;
1116                                                 //p->alpha -= bloodwaterfade;
1117                                         }
1118                                         else
1119                                                 p->die = -1;
1120                                 }
1121                                 else
1122                                         p->vel[2] -= gravity;
1123                                 break;
1124                         case pt_bubble:
1125                                 if (!content)
1126                                         content = Mod_PointContents(p->org, cl.worldmodel);
1127                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1128                                 {
1129                                         p->die = -1;
1130                                         break;
1131                                 }
1132                                 break;
1133                         case pt_rain:
1134                                 if (cl.time > p->time2)
1135                                 {
1136                                         // snow flutter
1137                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1138                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1139                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1140                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1141                                 }
1142                                 if (!content)
1143                                         content = Mod_PointContents(p->org, cl.worldmodel);
1144                                 a = content;
1145                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1146                                         p->die = -1;
1147                                 break;
1148                         default:
1149                                 printf("unknown particle type %i\n", p->type);
1150                                 p->die = -1;
1151                                 break;
1152                         }
1153                 }
1154
1155                 // remove dead particles
1156                 if (p->alpha < 1 || p->die < cl.time)
1157                         freeparticles[j++] = p;
1158                 else
1159                 {
1160                         maxparticle = i;
1161                         activeparticles++;
1162                         if (p->pressure)
1163                                 pressureused = true;
1164                 }
1165         }
1166         // fill in gaps to compact the array
1167         i = 0;
1168         while (maxparticle >= activeparticles)
1169         {
1170                 *freeparticles[i++] = particles[maxparticle--];
1171                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1172                         maxparticle--;
1173         }
1174         cl_numparticles = activeparticles;
1175
1176         if (pressureused)
1177         {
1178                 activeparticles = 0;
1179                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1180                         if (p->pressure)
1181                                 freeparticles[activeparticles++] = p;
1182
1183                 if (activeparticles)
1184                 {
1185                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1186                         {
1187                                 for (j = 0;j < activeparticles;j++)
1188                                 {
1189                                         if (freeparticles[j] != p)
1190                                         {
1191                                                 float dist, diff[3];
1192                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1193                                                 dist = DotProduct(diff, diff);
1194                                                 if (dist < 4096 && dist >= 1)
1195                                                 {
1196                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1197                                                         VectorMA(p->vel, dist, diff, p->vel);
1198                                                 }
1199                                         }
1200                                 }
1201                         }
1202                 }
1203         }
1204 }
1205
1206 #define MAX_PARTICLETEXTURES 64
1207 // particletexture_t is a rectangle in the particlefonttexture
1208 typedef struct
1209 {
1210         float s1, t1, s2, t2;
1211 }
1212 particletexture_t;
1213
1214 #if WORKINGLQUAKE
1215 static int particlefonttexture;
1216 #else
1217 static rtexturepool_t *particletexturepool;
1218 static rtexture_t *particlefonttexture;
1219 #endif
1220 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1221
1222 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1223
1224 static qbyte shadebubble(float dx, float dy, vec3_t light)
1225 {
1226         float dz, f, dot;
1227         vec3_t normal;
1228         dz = 1 - (dx*dx+dy*dy);
1229         if (dz > 0) // it does hit the sphere
1230         {
1231                 f = 0;
1232                 // back side
1233                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1234                 VectorNormalize(normal);
1235                 dot = DotProduct(normal, light);
1236                 if (dot > 0.5) // interior reflection
1237                         f += ((dot *  2) - 1);
1238                 else if (dot < -0.5) // exterior reflection
1239                         f += ((dot * -2) - 1);
1240                 // front side
1241                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1242                 VectorNormalize(normal);
1243                 dot = DotProduct(normal, light);
1244                 if (dot > 0.5) // interior reflection
1245                         f += ((dot *  2) - 1);
1246                 else if (dot < -0.5) // exterior reflection
1247                         f += ((dot * -2) - 1);
1248                 f *= 128;
1249                 f += 16; // just to give it a haze so you can see the outline
1250                 f = bound(0, f, 255);
1251                 return (qbyte) f;
1252         }
1253         else
1254                 return 0;
1255 }
1256
1257 static void setuptex(int cltexnum, int rtexnum, qbyte *data, qbyte *particletexturedata)
1258 {
1259         int basex, basey, y;
1260         basex = ((rtexnum >> 0) & 7) * 32;
1261         basey = ((rtexnum >> 3) & 7) * 32;
1262         particletexture[cltexnum].s1 = (basex + 1) / 256.0f;
1263         particletexture[cltexnum].t1 = (basey + 1) / 256.0f;
1264         particletexture[cltexnum].s2 = (basex + 31) / 256.0f;
1265         particletexture[cltexnum].t2 = (basey + 31) / 256.0f;
1266         for (y = 0;y < 32;y++)
1267                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1268 }
1269
1270 static void R_InitParticleTexture (void)
1271 {
1272         int x,y,d,i,m;
1273         float dx, dy, radius, f, f2;
1274         qbyte data[32][32][4], noise1[64][64], noise2[64][64];
1275         vec3_t light;
1276         qbyte particletexturedata[256*256*4];
1277
1278         memset(particletexturedata, 255, sizeof(particletexturedata));
1279
1280         // the particletexture[][] array numbers must match the cl_part.c textures
1281         // smoke/blood
1282         for (i = 0;i < 8;i++)
1283         {
1284                 do
1285                 {
1286                         fractalnoise(&noise1[0][0], 64, 4);
1287                         fractalnoise(&noise2[0][0], 64, 8);
1288                         m = 0;
1289                         for (y = 0;y < 32;y++)
1290                         {
1291                                 dy = y - 16;
1292                                 for (x = 0;x < 32;x++)
1293                                 {
1294                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1295                                         dx = x - 16;
1296                                         d = (noise2[y][x] - 128) * 3 + 192;
1297                                         if (d > 0)
1298                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1299                                         d = (d * noise1[y][x]) >> 7;
1300                                         d = bound(0, d, 255);
1301                                         data[y][x][3] = (qbyte) d;
1302                                         if (m < d)
1303                                                 m = d;
1304                                 }
1305                         }
1306                 }
1307                 while (m < 224);
1308
1309                 setuptex(i + 0, i + 0, &data[0][0][0], particletexturedata);
1310         }
1311
1312         // rain splash
1313         for (i = 0;i < 16;i++)
1314         {
1315                 radius = i * 3.0f / 16.0f;
1316                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1317                 for (y = 0;y < 32;y++)
1318                 {
1319                         dy = (y - 16) * 0.25f;
1320                         for (x = 0;x < 32;x++)
1321                         {
1322                                 dx = (x - 16) * 0.25f;
1323                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1324                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1325                                 f = bound(0.0f, f, 255.0f);
1326                                 data[y][x][3] = (int) f;
1327                         }
1328                 }
1329                 setuptex(i + 8, i + 16, &data[0][0][0], particletexturedata);
1330         }
1331
1332         // normal particle
1333         for (y = 0;y < 32;y++)
1334         {
1335                 dy = y - 16;
1336                 for (x = 0;x < 32;x++)
1337                 {
1338                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1339                         dx = x - 16;
1340                         d = (256 - (dx*dx+dy*dy));
1341                         d = bound(0, d, 255);
1342                         data[y][x][3] = (qbyte) d;
1343                 }
1344         }
1345         setuptex(24, 32, &data[0][0][0], particletexturedata);
1346
1347         // rain
1348         light[0] = 1;light[1] = 1;light[2] = 1;
1349         VectorNormalize(light);
1350         for (y = 0;y < 32;y++)
1351         {
1352                 for (x = 0;x < 32;x++)
1353                 {
1354                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1355                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1356                 }
1357         }
1358         setuptex(25, 33, &data[0][0][0], particletexturedata);
1359
1360         // bubble
1361         light[0] = 1;light[1] = 1;light[2] = 1;
1362         VectorNormalize(light);
1363         for (y = 0;y < 32;y++)
1364         {
1365                 for (x = 0;x < 32;x++)
1366                 {
1367                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1368                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1369                 }
1370         }
1371         setuptex(26, 34, &data[0][0][0], particletexturedata);
1372
1373 #if WORKINGLQUAKE
1374         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1375         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1376         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1377 #else
1378         particlefonttexture = R_LoadTexture (particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE);
1379 #endif
1380 }
1381
1382 static void r_part_start(void)
1383 {
1384         particletexturepool = R_AllocTexturePool();
1385         R_InitParticleTexture ();
1386 }
1387
1388 static void r_part_shutdown(void)
1389 {
1390         R_FreeTexturePool(&particletexturepool);
1391 }
1392
1393 static void r_part_newmap(void)
1394 {
1395 }
1396
1397 void R_Particles_Init (void)
1398 {
1399         Cvar_RegisterVariable(&r_drawparticles);
1400 #ifdef WORKINGLQUAKE
1401         r_part_start();
1402 #else
1403         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1404 #endif
1405 }
1406
1407 #ifdef WORKINGLQUAKE
1408 void R_InitParticles(void)
1409 {
1410         CL_Particles_Init();
1411         R_Particles_Init();
1412 }
1413
1414 float varray_vertex[16];
1415 #endif
1416
1417 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1418 {
1419         int additive, texnum, orientation;
1420         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1421         particletexture_t *tex;
1422 #ifndef WORKINGLQUAKE
1423         rmeshstate_t m;
1424 #endif
1425         const particle_t *p = calldata1;
1426
1427         VectorCopy(p->org, org);
1428         orientation = (p->flags >> P_ORIENTATION_FIRSTBIT) & ((1 << P_ORIENTATION_BITS) - 1);
1429         texnum = (p->flags >> P_TEXNUM_FIRSTBIT) & ((1 << P_TEXNUM_BITS) - 1);
1430         //dynlight = p->flags & P_DYNLIGHT;
1431         additive = p->flags & P_ADDITIVE;
1432
1433 #ifdef WORKINGLQUAKE
1434         if (additive)
1435                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1436         else
1437                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1438 #else
1439         memset(&m, 0, sizeof(m));
1440         m.blendfunc1 = GL_SRC_ALPHA;
1441         if (additive)
1442                 m.blendfunc2 = GL_ONE;
1443         else
1444                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
1445         m.tex[0] = R_GetTexture(particlefonttexture);
1446         R_Mesh_Matrix(&r_identitymatrix);
1447         R_Mesh_State(&m);
1448 #endif
1449
1450         tex = &particletexture[texnum];
1451         cr = p->color[0] * (1.0f / 255.0f);
1452         cg = p->color[1] * (1.0f / 255.0f);
1453         cb = p->color[2] * (1.0f / 255.0f);
1454         ca = p->alpha * (1.0f / 255.0f);
1455 #ifndef WORKINGLQUAKE
1456         if (fogenabled)
1457         {
1458                 VectorSubtract(org, r_origin, fogvec);
1459                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1460                 ifog = 1 - fog;
1461                 cr = cr * ifog;
1462                 cg = cg * ifog;
1463                 cb = cb * ifog;
1464                 if (!additive)
1465                 {
1466                         cr += fogcolor[0] * fog;
1467                         cg += fogcolor[1] * fog;
1468                         cb += fogcolor[2] * fog;
1469                 }
1470         }
1471         cr *= r_colorscale;
1472         cg *= r_colorscale;
1473         cb *= r_colorscale;
1474
1475         varray_color[ 0] = varray_color[ 4] = varray_color[ 8] = varray_color[12] = cr;
1476         varray_color[ 1] = varray_color[ 5] = varray_color[ 9] = varray_color[13] = cg;
1477         varray_color[ 2] = varray_color[ 6] = varray_color[10] = varray_color[14] = cb;
1478         varray_color[ 3] = varray_color[ 7] = varray_color[11] = varray_color[15] = ca;
1479         varray_texcoord[0][0] = tex->s2;varray_texcoord[0][1] = tex->t1;
1480         varray_texcoord[0][2] = tex->s1;varray_texcoord[0][3] = tex->t1;
1481         varray_texcoord[0][4] = tex->s1;varray_texcoord[0][5] = tex->t2;
1482         varray_texcoord[0][6] = tex->s2;varray_texcoord[0][7] = tex->t2;
1483 #endif
1484
1485         if (orientation == PARTICLE_BEAM)
1486         {
1487                 VectorMA(p->org, -p->scaley, p->vel, v);
1488                 VectorMA(p->org, p->scaley, p->vel, up2);
1489                 R_CalcBeamVerts(varray_vertex, v, up2, p->scalex);
1490         }
1491         else if (orientation == PARTICLE_BILLBOARD)
1492         {
1493                 VectorScale(vright, p->scalex, right);
1494                 VectorScale(vup, p->scaley, up);
1495                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1496                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1497                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1498                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1499                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1500                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1501                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1502                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1503                 varray_vertex[10] = org[2] - right[2] + up[2];
1504                 varray_vertex[12] = org[0] + right[0] + up[0];
1505                 varray_vertex[13] = org[1] + right[1] + up[1];
1506                 varray_vertex[14] = org[2] + right[2] + up[2];
1507         }
1508         else if (orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1509         {
1510                 // double-sided
1511                 if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1512                 {
1513                         VectorNegate(p->vel2, v);
1514                         VectorVectors(v, right, up);
1515                 }
1516                 else
1517                         VectorVectors(p->vel2, right, up);
1518                 VectorScale(right, p->scalex, right);
1519                 VectorScale(up, p->scaley, up);
1520                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1521                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1522                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1523                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1524                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1525                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1526                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1527                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1528                 varray_vertex[10] = org[2] - right[2] + up[2];
1529                 varray_vertex[12] = org[0] + right[0] + up[0];
1530                 varray_vertex[13] = org[1] + right[1] + up[1];
1531                 varray_vertex[14] = org[2] + right[2] + up[2];
1532         }
1533         else
1534                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", orientation);
1535 #if WORKINGLQUAKE
1536         glBegin(GL_QUADS);
1537         glColor4f(cr, cg, cb, ca);
1538         glTexCoord2f(tex->s2, tex->t1);glVertex3f(varray_vertex[ 0], varray_vertex[ 1], varray_vertex[ 2]);
1539         glTexCoord2f(tex->s1, tex->t1);glVertex3f(varray_vertex[ 4], varray_vertex[ 5], varray_vertex[ 6]);
1540         glTexCoord2f(tex->s1, tex->t2);glVertex3f(varray_vertex[ 8], varray_vertex[ 9], varray_vertex[10]);
1541         glTexCoord2f(tex->s2, tex->t2);glVertex3f(varray_vertex[12], varray_vertex[13], varray_vertex[14]);
1542         glEnd();
1543 #else
1544         R_Mesh_Draw(4, 2, polygonelements);
1545 #endif
1546 }
1547
1548 void R_DrawParticles (void)
1549 {
1550         int i;
1551         float minparticledist;
1552         particle_t *p;
1553
1554         // LordHavoc: early out conditions
1555         if ((!cl_numparticles) || (!r_drawparticles.integer))
1556                 return;
1557
1558         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1559
1560 #ifdef WORKINGLQUAKE
1561         // helper code if anyone wants to port this to stock glquake engines
1562         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1563         glEnable(GL_BLEND);
1564         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1565         // LordHavoc: only render if not too close
1566         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1567                 if (DotProduct(p->org, vpn) >= minparticledist)
1568                         R_DrawParticleCallback(p, 0);
1569         // helper code if anyone wants to port this to stock glquake engines
1570         glDisable(GL_BLEND);
1571 #else
1572         // LordHavoc: only render if not too close
1573         c_particles += cl_numparticles;
1574         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1575                 if (DotProduct(p->org, vpn) >= minparticledist)
1576                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1577 #endif
1578 }
1579