This is a patch from Elric greatly cleaning up the filesystem portions of the engine...
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 3] = org1[0] - width * right1[0];
65         vert[ 4] = org1[1] - width * right1[1];
66         vert[ 5] = org1[2] - width * right1[2];
67         vert[ 6] = org2[0] - width * right2[0];
68         vert[ 7] = org2[1] - width * right2[1];
69         vert[ 8] = org2[2] - width * right2[2];
70         vert[ 9] = org2[0] + width * right2[0];
71         vert[10] = org2[1] + width * right2[1];
72         vert[11] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
184 }
185 ptype_t;
186
187 #define PARTICLE_INVALID 0
188 #define PARTICLE_BILLBOARD 1
189 #define PARTICLE_SPARK 2
190 #define PARTICLE_ORIENTED_DOUBLESIDED 3
191 #define PARTICLE_BEAM 4
192
193 #define PBLEND_ALPHA 0
194 #define PBLEND_ADD 1
195 #define PBLEND_MOD 2
196
197 typedef struct particle_s
198 {
199         ptype_t         type;
200         int                     orientation;
201         int                     texnum;
202         int                     blendmode;
203         vec3_t          org;
204         vec3_t          vel;
205         float           die;
206         float           scalex;
207         float           scaley;
208         float           alpha; // 0-255
209         float           alphafade; // how much alpha reduces per second
210         float           time2; // used for various things (snow fluttering, for example)
211         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
212         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
213         vec3_t          oldorg;
214         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
215         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
216         float           pressure; // if non-zero, apply pressure to other particles
217         qbyte           color[4];
218 #ifndef WORKINGLQUAKE
219         entity_render_t *owner; // decal stuck to this entity
220         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
221         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
222         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
223 #endif
224 }
225 particle_t;
226
227 static int particlepalette[256] =
228 {
229         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
230         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
231         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
232         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
233         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
234         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
235         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
236         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
237         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
238         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
239         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
240         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
241         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
242         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
243         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
244         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
245         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
246         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
247         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
248         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
249         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
250         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
251         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
252         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
253         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
254         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
255         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
256         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
257         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
258         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
259         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
260         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
261 };
262
263 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
264
265 // texture numbers in particle font
266 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
267 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
268 static const int tex_particle = 24;
269 static const int tex_raindrop = 25;
270 static const int tex_bubble = 26;
271 static const int tex_beam = 27;
272 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
273
274 static int                      cl_maxparticles;
275 static int                      cl_numparticles;
276 static particle_t       *particles;
277 static particle_t       **freeparticles; // list used only in compacting particles array
278
279 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
280 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
281 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
282 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
283 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
284 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
285 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
286 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
287 cvar_t cl_particles_smoke_size = {CVAR_SAVE, "cl_particles_smoke_size", "7"};
288 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
289 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
290 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
291 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
292 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
293 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
294 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
295
296 #ifndef WORKINGLQUAKE
297 static mempool_t *cl_part_mempool;
298 #endif
299
300 void CL_Particles_Clear(void)
301 {
302         cl_numparticles = 0;
303 }
304
305 /*
306 ===============
307 CL_InitParticles
308 ===============
309 */
310 void CL_ReadPointFile_f (void);
311 void CL_Particles_Init (void)
312 {
313         int             i;
314
315         i = COM_CheckParm ("-particles");
316
317         if (i && i < com_argc - 1)
318         {
319                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
320                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
321                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
322         }
323         else
324                 cl_maxparticles = MAX_PARTICLES;
325
326         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
327
328         Cvar_RegisterVariable (&cl_particles);
329         Cvar_RegisterVariable (&cl_particles_size);
330         Cvar_RegisterVariable (&cl_particles_bloodshowers);
331         Cvar_RegisterVariable (&cl_particles_blood);
332         Cvar_RegisterVariable (&cl_particles_blood_size);
333         Cvar_RegisterVariable (&cl_particles_blood_alpha);
334         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
335         Cvar_RegisterVariable (&cl_particles_smoke);
336         Cvar_RegisterVariable (&cl_particles_smoke_size);
337         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
338         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
339         Cvar_RegisterVariable (&cl_particles_sparks);
340         Cvar_RegisterVariable (&cl_particles_bubbles);
341         Cvar_RegisterVariable (&cl_decals);
342         Cvar_RegisterVariable (&cl_decals_time);
343         Cvar_RegisterVariable (&cl_decals_fadetime);
344
345 #ifdef WORKINGLQUAKE
346         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
347         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
348 #else
349         cl_part_mempool = Mem_AllocPool("CL_Part");
350         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
351         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
352 #endif
353         cl_numparticles = 0;
354 }
355
356 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
357 {\
358         if (cl_numparticles < cl_maxparticles)\
359         {\
360                 particle_t      *part;\
361                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
362                 ptempcolor = (pcolor1);\
363                 ptempcolor2 = (pcolor2);\
364                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
365                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
366                 pcb2 = (ptempcolor2) & 0xFF;\
367                 if (ptempcolor != ptempcolor2)\
368                 {\
369                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
370                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
371                         pcb1 = (ptempcolor) & 0xFF;\
372                         ptempcolor = rand() & 0xFF;\
373                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
374                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
375                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
376                 }\
377                 part = &particles[cl_numparticles++];\
378                 memset(part, 0, sizeof(*part));\
379                 part->type = (ptype);\
380                 part->color[0] = pcr2;\
381                 part->color[1] = pcg2;\
382                 part->color[2] = pcb2;\
383                 part->color[3] = 0xFF;\
384                 part->orientation = porientation;\
385                 part->texnum = ptex;\
386                 part->blendmode = pblendmode;\
387                 part->scalex = (pscalex);\
388                 part->scaley = (pscaley);\
389                 part->alpha = (palpha);\
390                 part->alphafade = (palphafade);\
391                 part->die = cl.time + (ptime);\
392                 part->gravity = (pgravity);\
393                 part->bounce = (pbounce);\
394                 part->org[0] = (px);\
395                 part->org[1] = (py);\
396                 part->org[2] = (pz);\
397                 part->vel[0] = (pvx);\
398                 part->vel[1] = (pvy);\
399                 part->vel[2] = (pvz);\
400                 part->time2 = (ptime2);\
401                 part->vel2[0] = (pvx2);\
402                 part->vel2[1] = (pvy2);\
403                 part->vel2[2] = (pvz2);\
404                 part->friction = (pfriction);\
405                 part->pressure = (ppressure);\
406         }\
407 }
408
409 /*
410 ===============
411 CL_EntityParticles
412 ===============
413 */
414 void CL_EntityParticles (entity_t *ent)
415 {
416         int                     i;
417         float           angle;
418         float           sp, sy, cp, cy;
419         vec3_t          forward;
420         float           dist;
421         float           beamlength;
422         static vec3_t avelocities[NUMVERTEXNORMALS];
423         if (!cl_particles.integer) return;
424
425         dist = 64;
426         beamlength = 16;
427
428         if (!avelocities[0][0])
429                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
430                         avelocities[0][i] = (rand()&255) * 0.01;
431
432         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
433         {
434                 angle = cl.time * avelocities[i][0];
435                 sy = sin(angle);
436                 cy = cos(angle);
437                 angle = cl.time * avelocities[i][1];
438                 sp = sin(angle);
439                 cp = cos(angle);
440
441                 forward[0] = cp*cy;
442                 forward[1] = cp*sy;
443                 forward[2] = -sp;
444
445 #ifdef WORKINGLQUAKE
446                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
447 #else
448                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
449 #endif
450         }
451 }
452
453
454 void CL_ReadPointFile_f (void)
455 {
456         vec3_t  org;
457         int             r, c;
458         char    *pointfile = NULL, *pointfilepos, *t, tchar;
459 #if WORKINGLQUAKE
460         char    name[MAX_OSPATH];
461
462         sprintf (name,"maps/%s.pts", cl.worldmodel->name);
463         COM_FOpenFile (name, &f);
464         if (f)
465         {
466                 int pointfilelength;
467                 fseek(f, 0, SEEK_END);
468                 pointfilelength = ftell(f);
469                 fseek(f, 0, SEEK_SET);
470                 pointfile = malloc(pointfilelength + 1);
471                 fread(pointfile, 1, pointfilelength, f);
472                 pointfile[pointfilelength] = 0;
473                 fclose(f);
474         }
475 #else
476         pointfile = FS_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true);
477 #endif
478         if (!pointfile)
479         {
480                 Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name);
481                 return;
482         }
483
484         Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name);
485         c = 0;
486         pointfilepos = pointfile;
487         while (*pointfilepos)
488         {
489                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
490                         pointfilepos++;
491                 if (!*pointfilepos)
492                         break;
493                 t = pointfilepos;
494                 while (*t && *t != '\n' && *t != '\r')
495                         t++;
496                 tchar = *t;
497                 *t = 0;
498                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
499                 *t = tchar;
500                 pointfilepos = t;
501                 if (r != 3)
502                         break;
503                 c++;
504
505                 if (cl_numparticles >= cl_maxparticles)
506                 {
507                         Con_Printf ("Not enough free particles\n");
508                         break;
509                 }
510                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
511         }
512
513 #ifdef WORKINGLQUAKE
514         free(pointfile);
515 #else
516         Mem_Free(pointfile);
517 #endif
518         Con_Printf ("%i points read\n", c);
519 }
520
521 /*
522 ===============
523 CL_ParseParticleEffect
524
525 Parse an effect out of the server message
526 ===============
527 */
528 void CL_ParseParticleEffect (void)
529 {
530         vec3_t org, dir;
531         int i, count, msgcount, color;
532
533         for (i=0 ; i<3 ; i++)
534                 org[i] = MSG_ReadCoord ();
535         for (i=0 ; i<3 ; i++)
536                 dir[i] = MSG_ReadChar () * (1.0/16);
537         msgcount = MSG_ReadByte ();
538         color = MSG_ReadByte ();
539
540         if (msgcount == 255)
541                 count = 1024;
542         else
543                 count = msgcount;
544
545         CL_RunParticleEffect (org, dir, color, count);
546 }
547
548 /*
549 ===============
550 CL_ParticleExplosion
551
552 ===============
553 */
554 void CL_ParticleExplosion (vec3_t org)
555 {
556         int i, k;
557         //vec3_t v;
558         //vec3_t v2;
559         if (cl_stainmaps.integer)
560                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
561
562         i = Mod_PointContents(org, cl.worldmodel);
563         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
564         {
565                 for (i = 0;i < 128;i++)
566                 {
567                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
568                 }
569         }
570         else
571         {
572                 /*
573                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
574                 // smoke puff
575                 if (cl_particles.integer && cl_particles_smoke.integer)
576                 {
577                         for (i = 0;i < 64;i++)
578                         {
579 #ifdef WORKINGLQUAKE
580                                 v2[0] = lhrandom(-64, 64);
581                                 v2[1] = lhrandom(-64, 64);
582                                 v2[2] = lhrandom(-8, 24);
583 #else
584                                 for (k = 0;k < 16;k++)
585                                 {
586                                         v[0] = org[0] + lhrandom(-64, 64);
587                                         v[1] = org[1] + lhrandom(-64, 64);
588                                         v[2] = org[2] + lhrandom(-8, 24);
589                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
590                                                 break;
591                                 }
592                                 VectorSubtract(v2, org, v2);
593 #endif
594                                 VectorScale(v2, 2.0f, v2);
595                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
596                         }
597                 }
598                 */
599
600                 if (cl_particles.integer && cl_particles_sparks.integer)
601                 {
602                         // sparks
603                         for (i = 0;i < 256;i++)
604                         {
605                                 k = particlepalette[0x68 + (rand() & 7)];
606                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
607                         }
608                 }
609         }
610
611         if (cl_explosions.integer)
612                 R_NewExplosion(org);
613 }
614
615 /*
616 ===============
617 CL_ParticleExplosion2
618
619 ===============
620 */
621 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
622 {
623         int i, k;
624         if (!cl_particles.integer) return;
625
626         for (i = 0;i < 512;i++)
627         {
628                 k = particlepalette[colorStart + (i % colorLength)];
629                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
630         }
631 }
632
633 /*
634 ===============
635 CL_BlobExplosion
636
637 ===============
638 */
639 void CL_BlobExplosion (vec3_t org)
640 {
641         if (cl_stainmaps.integer)
642                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
643
644         if (cl_explosions.integer)
645                 R_NewExplosion(org);
646 }
647
648 /*
649 ===============
650 CL_RunParticleEffect
651
652 ===============
653 */
654 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
655 {
656         int k;
657
658         if (count == 1024)
659         {
660                 CL_ParticleExplosion(org);
661                 return;
662         }
663         if (!cl_particles.integer) return;
664         while (count--)
665         {
666                 k = particlepalette[color + (rand()&7)];
667                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
668         }
669 }
670
671 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
672 /*
673 ===============
674 CL_SparkShower
675 ===============
676 */
677 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
678 {
679         vec3_t org2, org3;
680         int k;
681
682         if (cl_stainmaps.integer)
683                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
684
685         if (!cl_particles.integer) return;
686
687         if (cl_particles_bulletimpacts.integer)
688         {
689                 // smoke puff
690                 if (cl_particles_smoke.integer)
691                 {
692                         k = count / 4;
693                         while(k--)
694                         {
695                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
696                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
697                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
698                                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
699                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
700                         }
701                 }
702
703                 if (cl_particles_sparks.integer)
704                 {
705                         // sparks
706                         while(count--)
707                         {
708                                 k = particlepalette[0x68 + (rand() & 7)];
709                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
710                         }
711                 }
712         }
713 }
714
715 void CL_PlasmaBurn (vec3_t org)
716 {
717         if (cl_stainmaps.integer)
718                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
719 }
720
721 static float bloodcount = 0;
722 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
723 {
724         float s, r, a;
725         vec3_t org2, org3;
726         // bloodcount is used to accumulate counts too small to cause a blood particle
727         if (!cl_particles.integer) return;
728         if (!cl_particles_blood.integer) return;
729
730         s = count + 32.0f;
731         count *= 5.0f;
732         if (count > 1000)
733                 count = 1000;
734         bloodcount += count;
735         r = cl_particles_blood_size.value;
736         a = cl_particles_blood_alpha.value * 255;
737         while(bloodcount > 0)
738         {
739                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
740                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
741                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
742                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
743                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
744                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
745                 bloodcount -= r;
746         }
747 }
748
749 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
750 {
751         float r;
752         float a;
753         vec3_t diff, center, velscale;
754         if (!cl_particles.integer) return;
755         if (!cl_particles_bloodshowers.integer) return;
756         if (!cl_particles_blood.integer) return;
757
758         VectorSubtract(maxs, mins, diff);
759         center[0] = (mins[0] + maxs[0]) * 0.5;
760         center[1] = (mins[1] + maxs[1]) * 0.5;
761         center[2] = (mins[2] + maxs[2]) * 0.5;
762         // FIXME: change velspeed back to 2.0x after fixing mod
763         velscale[0] = velspeed * 2.0 / diff[0];
764         velscale[1] = velspeed * 2.0 / diff[1];
765         velscale[2] = velspeed * 2.0 / diff[2];
766
767         bloodcount += count * 5.0f;
768         r = cl_particles_blood_size.value;
769         a = cl_particles_blood_alpha.value * 255;
770         while (bloodcount > 0)
771         {
772                 vec3_t org, vel;
773                 org[0] = lhrandom(mins[0], maxs[0]);
774                 org[1] = lhrandom(mins[1], maxs[1]);
775                 org[2] = lhrandom(mins[2], maxs[2]);
776                 vel[0] = (org[0] - center[0]) * velscale[0];
777                 vel[1] = (org[1] - center[1]) * velscale[1];
778                 vel[2] = (org[2] - center[2]) * velscale[2];
779                 bloodcount -= r;
780                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
781                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
782         }
783 }
784
785 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
786 {
787         int k;
788         float t;
789         if (!cl_particles.integer) return;
790         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
791         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
792         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
793
794         while (count--)
795         {
796                 k = particlepalette[colorbase + (rand()&3)];
797                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
798         }
799 }
800
801 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
802 {
803         int k;
804         float t, z, minz, maxz;
805         if (!cl_particles.integer) return;
806         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
807         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
808         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
809         if (dir[2] < 0) // falling
810         {
811                 t = (maxs[2] - mins[2]) / -dir[2];
812                 z = maxs[2];
813         }
814         else // rising??
815         {
816                 t = (maxs[2] - mins[2]) / dir[2];
817                 z = mins[2];
818         }
819         if (t < 0 || t > 2) // sanity check
820                 t = 2;
821
822         minz = z - fabs(dir[2]) * 0.1;
823         maxz = z + fabs(dir[2]) * 0.1;
824         minz = bound(mins[2], minz, maxs[2]);
825         maxz = bound(mins[2], maxz, maxs[2]);
826
827         switch(type)
828         {
829         case 0:
830                 count *= 4; // ick, this should be in the mod or maps?
831
832                 while(count--)
833                 {
834                         k = particlepalette[colorbase + (rand()&3)];
835                         particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
836                 }
837                 break;
838         case 1:
839                 while(count--)
840                 {
841                         k = particlepalette[colorbase + (rand()&3)];
842                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
843                 }
844                 break;
845         default:
846                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
847         }
848 }
849
850 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
851 {
852         int k;
853         float t;
854         vec3_t o, v, center;
855         if (!cl_particles.integer) return;
856
857         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
858         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
859         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
860
861         center[0] = (mins[0] + maxs[0]) * 0.5f;
862         center[1] = (mins[1] + maxs[1]) * 0.5f;
863         center[2] = (mins[2] + maxs[2]) * 0.5f;
864
865         while (count--)
866         {
867                 k = particlepalette[224 + (rand()&15)];
868                 o[0] = lhrandom(mins[0], maxs[0]);
869                 o[1] = lhrandom(mins[1], maxs[1]);
870                 o[2] = lhrandom(mins[2], maxs[2]);
871                 VectorSubtract(o, center, v);
872                 VectorNormalizeFast(v);
873                 VectorScale(v, 100, v);
874                 v[2] += sv_gravity.value * 0.15f;
875                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
876         }
877 }
878
879 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
880 {
881         int k;
882         float t;
883         if (!cl_particles.integer) return;
884         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
885         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
886         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
887
888         while (count--)
889         {
890                 k = particlepalette[224 + (rand()&15)];
891                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
892                 if (count & 1)
893                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
894         }
895 }
896
897 void CL_Flames (vec3_t org, vec3_t vel, int count)
898 {
899         int k;
900         if (!cl_particles.integer) return;
901
902         while (count--)
903         {
904                 k = particlepalette[224 + (rand()&15)];
905                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
906         }
907 }
908
909
910
911 /*
912 ===============
913 CL_LavaSplash
914
915 ===============
916 */
917 void CL_LavaSplash (vec3_t origin)
918 {
919         int                     i, j, k;
920         float           vel;
921         vec3_t          dir, org;
922         if (!cl_particles.integer) return;
923
924         for (i=-128 ; i<128 ; i+=16)
925         {
926                 for (j=-128 ; j<128 ; j+=16)
927                 {
928                         dir[0] = j + lhrandom(0, 8);
929                         dir[1] = i + lhrandom(0, 8);
930                         dir[2] = 256;
931                         org[0] = origin[0] + dir[0];
932                         org[1] = origin[1] + dir[1];
933                         org[2] = origin[2] + lhrandom(0, 64);
934                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
935                         k = particlepalette[224 + (rand()&7)];
936                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
937                 }
938         }
939 }
940
941 /*
942 ===============
943 CL_TeleportSplash
944
945 ===============
946 */
947 #if WORKINGLQUAKE
948 void R_TeleportSplash (vec3_t org)
949 {
950         int i, j, k;
951         if (!cl_particles.integer) return;
952
953         for (i=-16 ; i<16 ; i+=8)
954                 for (j=-16 ; j<16 ; j+=8)
955                         for (k=-24 ; k<32 ; k+=8)
956                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
957 }
958 #endif
959
960 #ifdef WORKINGLQUAKE
961 void R_RocketTrail (vec3_t start, vec3_t end, int type)
962 #else
963 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
964 #endif
965 {
966         vec3_t vec, dir, vel, pos;
967         float len, dec, speed, r;
968         int contents, smoke, blood, bubbles;
969
970         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
971                 return;
972
973         VectorSubtract(end, start, dir);
974         VectorNormalize(dir);
975
976         VectorSubtract (end, start, vec);
977 #ifdef WORKINGLQUAKE
978         len = VectorNormalize (vec);
979         dec = 0;
980         speed = 1.0f / cl.frametime;
981         VectorSubtract(end, start, vel);
982 #else
983         len = VectorNormalizeLength (vec);
984         dec = -ent->persistent.trail_time;
985         ent->persistent.trail_time += len;
986         if (ent->persistent.trail_time < 0.01f)
987                 return;
988
989         // if we skip out, leave it reset
990         ent->persistent.trail_time = 0.0f;
991
992         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
993         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
994 #endif
995         VectorScale(vel, speed, vel);
996
997         // advance into this frame to reach the first puff location
998         VectorMA(start, dec, vec, pos);
999         len -= dec;
1000
1001         contents = Mod_PointContents(pos, cl.worldmodel);
1002         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
1003                 return;
1004
1005         smoke = cl_particles.integer && cl_particles_smoke.integer;
1006         blood = cl_particles.integer && cl_particles_blood.integer;
1007         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1008
1009         while (len >= 0)
1010         {
1011                 switch (type)
1012                 {
1013                         case 0: // rocket trail
1014                                 dec = 3;
1015                                 if (smoke)
1016                                 {
1017                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*125, cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1018                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1019                                 }
1020                                 if (bubbles)
1021                                 {
1022                                         r = lhrandom(1, 2);
1023                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1024                                 }
1025                                 break;
1026
1027                         case 1: // grenade trail
1028                                 // FIXME: make it gradually stop smoking
1029                                 dec = 3;
1030                                 if (smoke)
1031                                 {
1032                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*100, cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1033                                 }
1034                                 break;
1035
1036
1037                         case 2: // blood
1038                         case 4: // slight blood
1039                                 dec = cl_particles_blood_size.value;
1040                                 if (blood)
1041                                 {
1042                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1043                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1044                                 }
1045                                 break;
1046
1047                         case 3: // green tracer
1048                                 dec = 6;
1049                                 if (smoke)
1050                                 {
1051                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1052                                 }
1053                                 break;
1054
1055                         case 5: // flame tracer
1056                                 dec = 6;
1057                                 if (smoke)
1058                                 {
1059                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1060                                 }
1061                                 break;
1062
1063                         case 6: // voor trail
1064                                 dec = 6;
1065                                 if (smoke)
1066                                 {
1067                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1068                                 }
1069                                 break;
1070
1071                         case 7: // Nehahra smoke tracer
1072                                 dec = 7;
1073                                 if (smoke)
1074                                 {
1075                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1076                                 }
1077                                 break;
1078                         case 8: // Nexiuz plasma trail
1079                                 dec = 4;
1080                                 if (smoke)
1081                                 {
1082                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1083                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1084                                 }
1085                 }
1086
1087                 // advance to next time and position
1088                 len -= dec;
1089                 VectorMA (pos, dec, vec, pos);
1090         }
1091 #ifndef WORKINGLQUAKE
1092         ent->persistent.trail_time = len;
1093 #endif
1094 }
1095
1096 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1097 {
1098         vec3_t vec, pos;
1099         int len;
1100         if (!cl_particles.integer) return;
1101         if (!cl_particles_smoke.integer) return;
1102
1103         VectorCopy(start, pos);
1104         VectorSubtract (end, start, vec);
1105 #ifdef WORKINGLQUAKE
1106         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1107 #else
1108         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1109 #endif
1110         VectorScale(vec, 3, vec);
1111         color = particlepalette[color];
1112         while (len--)
1113         {
1114                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1115                 VectorAdd (pos, vec, pos);
1116         }
1117 }
1118
1119 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1120 {
1121         int tempcolor2, cr, cg, cb;
1122         cr = red * 255;
1123         cg = green * 255;
1124         cb = blue * 255;
1125         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1126         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1127 }
1128
1129 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1130 {
1131         int k;
1132         if (!cl_particles.integer) return;
1133
1134         // smoke puff
1135         if (cl_particles_smoke.integer)
1136         {
1137                 k = count / 4;
1138                 while(k--)
1139                 {
1140                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1141                 }
1142         }
1143 }
1144
1145 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1146 {
1147         int k;
1148         if (!cl_particles.integer) return;
1149
1150         if (cl_stainmaps.integer)
1151                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1152
1153         // smoke puff
1154         if (cl_particles_smoke.integer)
1155         {
1156                 k = count / 4;
1157                 while(k--)
1158                 {
1159                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1160                 }
1161         }
1162
1163         if (cl_particles_sparks.integer)
1164         {
1165                 // sparks
1166                 while(count--)
1167                 {
1168                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1169                 }
1170         }
1171 }
1172
1173 /*
1174 ===============
1175 CL_MoveParticles
1176 ===============
1177 */
1178 void CL_MoveParticles (void)
1179 {
1180         particle_t *p;
1181         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1182         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1183 #ifdef WORKINGLQUAKE
1184         void *hitent;
1185 #else
1186         entity_render_t *hitent;
1187 #endif
1188
1189         // LordHavoc: early out condition
1190         if (!cl_numparticles)
1191                 return;
1192
1193 #ifdef WORKINGLQUAKE
1194         frametime = cl.frametime;
1195 #else
1196         frametime = cl.time - cl.oldtime;
1197 #endif
1198         gravity = frametime * sv_gravity.value;
1199         dvel = 1+4*frametime;
1200         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1201
1202         activeparticles = 0;
1203         maxparticle = -1;
1204         j = 0;
1205         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1206         {
1207                 content = 0;
1208                 VectorCopy(p->org, p->oldorg);
1209                 VectorMA(p->org, frametime, p->vel, p->org);
1210                 VectorCopy(p->org, org);
1211                 if (p->bounce)
1212                 {
1213                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, &hitent) < 1)
1214                         {
1215                                 VectorCopy(v, p->org);
1216                                 if (p->bounce < 0)
1217                                 {
1218                                         // assume it's blood (lame, but...)
1219 #ifndef WORKINGLQUAKE
1220                                         if (cl_stainmaps.integer)
1221                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1222 #endif
1223                                         if (cl_decals.integer)
1224                                         {
1225                                                 p->type = pt_decal;
1226                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1227 #ifndef WORKINGLQUAKE
1228                                                 p->owner = hitent;
1229                                                 p->ownermodel = hitent->model;
1230                                                 Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1231                                                 Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1232                                                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1233 #endif
1234                                                 p->time2 = cl.time + cl_decals_time.value;
1235                                                 p->die = p->time2 + cl_decals_fadetime.value;
1236                                                 p->alphafade = 0;
1237                                                 VectorCopy(normal, p->vel2);
1238                                                 VectorClear(p->vel);
1239                                                 VectorAdd(p->org, normal, p->org);
1240                                                 p->bounce = 0;
1241                                                 p->friction = 0;
1242                                                 p->gravity = 0;
1243                                                 p->scalex *= 1.25f;
1244                                                 p->scaley *= 1.25f;
1245                                         }
1246                                         else
1247                                         {
1248                                                 p->die = -1;
1249                                                 freeparticles[j++] = p;
1250                                                 continue;
1251                                         }
1252                                 }
1253                                 else
1254                                 {
1255                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1256                                         VectorMA(p->vel, dist, normal, p->vel);
1257                                         if (DotProduct(p->vel, p->vel) < 0.03)
1258                                                 VectorClear(p->vel);
1259                                 }
1260                         }
1261                 }
1262                 p->vel[2] -= p->gravity * gravity;
1263                 p->alpha -= p->alphafade * frametime;
1264                 if (p->friction)
1265                 {
1266                         f = p->friction * frametime;
1267                         if (!content)
1268                                 content = Mod_PointContents(p->org, cl.worldmodel);
1269                         if (content != CONTENTS_EMPTY)
1270                                 f *= 4;
1271                         f = 1.0f - f;
1272                         VectorScale(p->vel, f, p->vel);
1273                 }
1274
1275                 if (p->type != pt_static)
1276                 {
1277                         switch (p->type)
1278                         {
1279                         case pt_blood:
1280                                 if (!content)
1281                                         content = Mod_PointContents(p->org, cl.worldmodel);
1282                                 a = content;
1283                                 if (a != CONTENTS_EMPTY)
1284                                 {
1285                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1286                                         {
1287                                                 p->scalex += frametime * cl_particles_blood_size.value;
1288                                                 p->scaley += frametime * cl_particles_blood_size.value;
1289                                                 //p->alpha -= bloodwaterfade;
1290                                         }
1291                                         else
1292                                                 p->die = -1;
1293                                 }
1294                                 else
1295                                         p->vel[2] -= gravity;
1296                                 break;
1297                         case pt_bubble:
1298                                 if (!content)
1299                                         content = Mod_PointContents(p->org, cl.worldmodel);
1300                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1301                                 {
1302                                         p->die = -1;
1303                                         break;
1304                                 }
1305                                 break;
1306                         case pt_rain:
1307                                 if (cl.time > p->time2)
1308                                 {
1309                                         // snow flutter
1310                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1311                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1312                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1313                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1314                                 }
1315                                 if (!content)
1316                                         content = Mod_PointContents(p->org, cl.worldmodel);
1317                                 a = content;
1318                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1319                                         p->die = -1;
1320                                 break;
1321                         case pt_grow:
1322                                 p->scalex += frametime * p->time2;
1323                                 p->scaley += frametime * p->time2;
1324                                 break;
1325                         case pt_decal:
1326 #ifndef WORKINGLQUAKE
1327                                 if (p->owner->model == p->ownermodel)
1328                                 {
1329                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1330                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1331                                 }
1332                                 else
1333                                         p->die = -1;
1334 #endif
1335                                 if (cl.time > p->time2)
1336                                 {
1337                                         p->alphafade = p->alpha / (p->die - cl.time);
1338                                         p->time2 += 10000;
1339                                 }
1340                                 break;
1341                         default:
1342                                 Con_Printf("unknown particle type %i\n", p->type);
1343                                 p->die = -1;
1344                                 break;
1345                         }
1346                 }
1347
1348                 // remove dead particles
1349                 if (p->alpha < 1 || p->die < cl.time)
1350                         freeparticles[j++] = p;
1351                 else
1352                 {
1353                         maxparticle = i;
1354                         activeparticles++;
1355                         if (p->pressure)
1356                                 pressureused = true;
1357                 }
1358         }
1359         // fill in gaps to compact the array
1360         i = 0;
1361         while (maxparticle >= activeparticles)
1362         {
1363                 *freeparticles[i++] = particles[maxparticle--];
1364                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1365                         maxparticle--;
1366         }
1367         cl_numparticles = activeparticles;
1368
1369         if (pressureused)
1370         {
1371                 activeparticles = 0;
1372                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1373                         if (p->pressure)
1374                                 freeparticles[activeparticles++] = p;
1375
1376                 if (activeparticles)
1377                 {
1378                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1379                         {
1380                                 for (j = 0;j < activeparticles;j++)
1381                                 {
1382                                         if (freeparticles[j] != p)
1383                                         {
1384                                                 float dist, diff[3];
1385                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1386                                                 dist = DotProduct(diff, diff);
1387                                                 if (dist < 4096 && dist >= 1)
1388                                                 {
1389                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1390                                                         VectorMA(p->vel, dist, diff, p->vel);
1391                                                 }
1392                                         }
1393                                 }
1394                         }
1395                 }
1396         }
1397 }
1398
1399 #define MAX_PARTICLETEXTURES 64
1400 // particletexture_t is a rectangle in the particlefonttexture
1401 typedef struct
1402 {
1403         rtexture_t *texture;
1404         float s1, t1, s2, t2;
1405 }
1406 particletexture_t;
1407
1408 #if WORKINGLQUAKE
1409 static int particlefonttexture;
1410 #else
1411 static rtexturepool_t *particletexturepool;
1412 static rtexture_t *particlefonttexture;
1413 #endif
1414 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1415
1416 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1417
1418 static qbyte shadebubble(float dx, float dy, vec3_t light)
1419 {
1420         float dz, f, dot;
1421         vec3_t normal;
1422         dz = 1 - (dx*dx+dy*dy);
1423         if (dz > 0) // it does hit the sphere
1424         {
1425                 f = 0;
1426                 // back side
1427                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1428                 VectorNormalize(normal);
1429                 dot = DotProduct(normal, light);
1430                 if (dot > 0.5) // interior reflection
1431                         f += ((dot *  2) - 1);
1432                 else if (dot < -0.5) // exterior reflection
1433                         f += ((dot * -2) - 1);
1434                 // front side
1435                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1436                 VectorNormalize(normal);
1437                 dot = DotProduct(normal, light);
1438                 if (dot > 0.5) // interior reflection
1439                         f += ((dot *  2) - 1);
1440                 else if (dot < -0.5) // exterior reflection
1441                         f += ((dot * -2) - 1);
1442                 f *= 128;
1443                 f += 16; // just to give it a haze so you can see the outline
1444                 f = bound(0, f, 255);
1445                 return (qbyte) f;
1446         }
1447         else
1448                 return 0;
1449 }
1450
1451 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1452 {
1453         int basex, basey, y;
1454         basex = ((texnum >> 0) & 7) * 32;
1455         basey = ((texnum >> 3) & 7) * 32;
1456         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1457         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1458         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1459         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1460         for (y = 0;y < 32;y++)
1461                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1462 }
1463
1464 static void R_InitParticleTexture (void)
1465 {
1466         int x, y, d, i, j, k, m;
1467         float cx, cy, dx, dy, radius, f, f2;
1468         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1469         vec3_t light;
1470         qbyte particletexturedata[256*256*4];
1471
1472         memset(particletexturedata, 255, sizeof(particletexturedata));
1473
1474         // smoke/blood
1475         for (i = 0;i < 8;i++)
1476         {
1477                 do
1478                 {
1479                         fractalnoise(&noise1[0][0], 64, 4);
1480                         fractalnoise(&noise2[0][0], 64, 8);
1481                         m = 0;
1482                         for (y = 0;y < 32;y++)
1483                         {
1484                                 dy = y - 16;
1485                                 for (x = 0;x < 32;x++)
1486                                 {
1487                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1488                                         dx = x - 16;
1489                                         d = (noise2[y][x] - 128) * 3 + 192;
1490                                         if (d > 0)
1491                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1492                                         d = (d * noise1[y][x]) >> 7;
1493                                         d = bound(0, d, 255);
1494                                         data[y][x][3] = (qbyte) d;
1495                                         if (m < d)
1496                                                 m = d;
1497                                 }
1498                         }
1499                 }
1500                 while (m < 224);
1501
1502                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1503         }
1504
1505         // rain splash
1506         for (i = 0;i < 16;i++)
1507         {
1508                 radius = i * 3.0f / 16.0f;
1509                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1510                 for (y = 0;y < 32;y++)
1511                 {
1512                         dy = (y - 16) * 0.25f;
1513                         for (x = 0;x < 32;x++)
1514                         {
1515                                 dx = (x - 16) * 0.25f;
1516                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1517                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1518                                 f = bound(0.0f, f, 255.0f);
1519                                 data[y][x][3] = (int) f;
1520                         }
1521                 }
1522                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1523         }
1524
1525         // normal particle
1526         for (y = 0;y < 32;y++)
1527         {
1528                 dy = y - 16;
1529                 for (x = 0;x < 32;x++)
1530                 {
1531                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1532                         dx = x - 16;
1533                         d = (256 - (dx*dx+dy*dy));
1534                         d = bound(0, d, 255);
1535                         data[y][x][3] = (qbyte) d;
1536                 }
1537         }
1538         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1539
1540         // rain
1541         light[0] = 1;light[1] = 1;light[2] = 1;
1542         VectorNormalize(light);
1543         for (y = 0;y < 32;y++)
1544         {
1545                 for (x = 0;x < 32;x++)
1546                 {
1547                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1548                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1549                 }
1550         }
1551         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1552
1553         // bubble
1554         light[0] = 1;light[1] = 1;light[2] = 1;
1555         VectorNormalize(light);
1556         for (y = 0;y < 32;y++)
1557         {
1558                 for (x = 0;x < 32;x++)
1559                 {
1560                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1561                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1562                 }
1563         }
1564         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1565
1566         // smoke/blood
1567         for (i = 0;i < 8;i++)
1568         {
1569                 memset(&data[0][0][0], 255, sizeof(data));
1570                 for (j = 1;j < 8;j++)
1571                 {
1572                         for (k = 0;k < 3;k++)
1573                         {
1574                                 cx = lhrandom(j + 1, 30 - j);
1575                                 cy = lhrandom(j + 1, 30 - j);
1576                                 for (y = 0;y < 32;y++)
1577                                 {
1578                                         for (x = 0;x < 32;x++)
1579                                         {
1580                                                 dx = (x - cx);
1581                                                 dy = (y - cy);
1582                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1583                                                 if (f > 0)
1584                                                 {
1585                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1586                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1587                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1588                                                 }
1589                                         }
1590                                 }
1591                         }
1592                 }
1593                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1594                 for (y = 0;y < 32;y++)
1595                 {
1596                         for (x = 0;x < 32;x++)
1597                         {
1598                                 data[y][x][0] = 255 - data[y][x][0];
1599                                 data[y][x][1] = 255 - data[y][x][1];
1600                                 data[y][x][2] = 255 - data[y][x][2];
1601                         }
1602                 }
1603                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1604         }
1605
1606 #if WORKINGLQUAKE
1607         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1608         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1609         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1610 #else
1611         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1612         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1613                 particletexture[i].texture = particlefonttexture;
1614
1615         // beam
1616         fractalnoise(&noise1[0][0], 64, 4);
1617         m = 0;
1618         for (y = 0;y < 64;y++)
1619         {
1620                 for (x = 0;x < 16;x++)
1621                 {
1622                         if (x < 8)
1623                                 d = x;
1624                         else
1625                                 d = (15 - x);
1626                         d = d * d * noise1[y][x] / (7 * 7);
1627                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1628                         data2[y][x][3] = 255;
1629                 }
1630         }
1631
1632         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1633         particletexture[tex_beam].s1 = 0;
1634         particletexture[tex_beam].t1 = 0;
1635         particletexture[tex_beam].s2 = 1;
1636         particletexture[tex_beam].t2 = 1;
1637 #endif
1638 }
1639
1640 static void r_part_start(void)
1641 {
1642         particletexturepool = R_AllocTexturePool();
1643         R_InitParticleTexture ();
1644 }
1645
1646 static void r_part_shutdown(void)
1647 {
1648         R_FreeTexturePool(&particletexturepool);
1649 }
1650
1651 static void r_part_newmap(void)
1652 {
1653         cl_numparticles = 0;
1654 }
1655
1656 void R_Particles_Init (void)
1657 {
1658         Cvar_RegisterVariable(&r_drawparticles);
1659 #ifdef WORKINGLQUAKE
1660         r_part_start();
1661 #else
1662         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1663 #endif
1664 }
1665
1666 #ifdef WORKINGLQUAKE
1667 void R_InitParticles(void)
1668 {
1669         CL_Particles_Init();
1670         R_Particles_Init();
1671 }
1672
1673 float varray_vertex3f[12], varray_texcoord2f[1][8];
1674 #endif
1675
1676 #ifdef WORKINGLQUAKE
1677 void R_DrawParticle(particle_t *p)
1678 {
1679 #else
1680 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1681 {
1682         const particle_t *p = calldata1;
1683         rmeshstate_t m;
1684 #endif
1685         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1686         particletexture_t *tex;
1687
1688         VectorCopy(p->org, org);
1689
1690         tex = &particletexture[p->texnum];
1691         cr = p->color[0] * (1.0f / 255.0f);
1692         cg = p->color[1] * (1.0f / 255.0f);
1693         cb = p->color[2] * (1.0f / 255.0f);
1694         ca = p->alpha * (1.0f / 255.0f);
1695         if (p->blendmode == PBLEND_MOD)
1696         {
1697                 cr *= ca;
1698                 cg *= ca;
1699                 cb *= ca;
1700                 cr = min(cr, 1);
1701                 cg = min(cg, 1);
1702                 cb = min(cb, 1);
1703                 ca = 1;
1704         }
1705
1706 #ifndef WORKINGLQUAKE
1707         memset(&m, 0, sizeof(m));
1708         if (p->blendmode == 0)
1709         {
1710                 m.blendfunc1 = GL_SRC_ALPHA;
1711                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
1712         }
1713         else if (p->blendmode == 1)
1714         {
1715                 m.blendfunc1 = GL_SRC_ALPHA;
1716                 m.blendfunc2 = GL_ONE;
1717         }
1718         else
1719         {
1720                 m.blendfunc1 = GL_ZERO;
1721                 m.blendfunc2 = GL_ONE_MINUS_SRC_COLOR;
1722         }
1723         m.tex[0] = R_GetTexture(tex->texture);
1724         R_Mesh_Matrix(&r_identitymatrix);
1725         R_Mesh_State(&m);
1726
1727         if (fogenabled && p->blendmode != PBLEND_MOD)
1728         {
1729                 VectorSubtract(org, r_origin, fogvec);
1730                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1731                 ifog = 1 - fog;
1732                 cr = cr * ifog;
1733                 cg = cg * ifog;
1734                 cb = cb * ifog;
1735                 if (p->blendmode == 0)
1736                 {
1737                         cr += fogcolor[0] * fog;
1738                         cg += fogcolor[1] * fog;
1739                         cb += fogcolor[2] * fog;
1740                 }
1741         }
1742         cr *= r_colorscale;
1743         cg *= r_colorscale;
1744         cb *= r_colorscale;
1745
1746         GL_Color(cr, cg, cb, ca);
1747
1748         R_Mesh_GetSpace(4);
1749 #endif
1750         if (p->orientation == PARTICLE_BILLBOARD || p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1751         {
1752                 if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1753                 {
1754                         // double-sided
1755                         if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1756                         {
1757                                 VectorNegate(p->vel2, v);
1758                                 VectorVectors(v, right, up);
1759                         }
1760                         else
1761                                 VectorVectors(p->vel2, right, up);
1762                         VectorScale(right, p->scalex, right);
1763                         VectorScale(up, p->scaley, up);
1764                 }
1765                 else
1766                 {
1767                         VectorScale(vright, p->scalex, right);
1768                         VectorScale(vup, p->scaley, up);
1769                 }
1770                 varray_vertex3f[ 0] = org[0] - right[0] - up[0];
1771                 varray_vertex3f[ 1] = org[1] - right[1] - up[1];
1772                 varray_vertex3f[ 2] = org[2] - right[2] - up[2];
1773                 varray_vertex3f[ 3] = org[0] - right[0] + up[0];
1774                 varray_vertex3f[ 4] = org[1] - right[1] + up[1];
1775                 varray_vertex3f[ 5] = org[2] - right[2] + up[2];
1776                 varray_vertex3f[ 6] = org[0] + right[0] + up[0];
1777                 varray_vertex3f[ 7] = org[1] + right[1] + up[1];
1778                 varray_vertex3f[ 8] = org[2] + right[2] + up[2];
1779                 varray_vertex3f[ 9] = org[0] + right[0] - up[0];
1780                 varray_vertex3f[10] = org[1] + right[1] - up[1];
1781                 varray_vertex3f[11] = org[2] + right[2] - up[2];
1782                 varray_texcoord2f[0][0] = tex->s1;varray_texcoord2f[0][1] = tex->t2;
1783                 varray_texcoord2f[0][2] = tex->s1;varray_texcoord2f[0][3] = tex->t1;
1784                 varray_texcoord2f[0][4] = tex->s2;varray_texcoord2f[0][5] = tex->t1;
1785                 varray_texcoord2f[0][6] = tex->s2;varray_texcoord2f[0][7] = tex->t2;
1786         }
1787         else if (p->orientation == PARTICLE_SPARK)
1788         {
1789                 VectorMA(p->org, -p->scaley, p->vel, v);
1790                 VectorMA(p->org, p->scaley, p->vel, up2);
1791                 R_CalcBeam_Vertex3f(varray_vertex3f, v, up2, p->scalex);
1792                 varray_texcoord2f[0][0] = tex->s1;varray_texcoord2f[0][1] = tex->t2;
1793                 varray_texcoord2f[0][2] = tex->s1;varray_texcoord2f[0][3] = tex->t1;
1794                 varray_texcoord2f[0][4] = tex->s2;varray_texcoord2f[0][5] = tex->t1;
1795                 varray_texcoord2f[0][6] = tex->s2;varray_texcoord2f[0][7] = tex->t2;
1796         }
1797         else if (p->orientation == PARTICLE_BEAM)
1798         {
1799                 R_CalcBeam_Vertex3f(varray_vertex3f, p->org, p->vel2, p->scalex);
1800                 VectorSubtract(p->vel2, p->org, up);
1801                 VectorNormalizeFast(up);
1802                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1803                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1804                 varray_texcoord2f[0][0] = 1;varray_texcoord2f[0][1] = v[0];
1805                 varray_texcoord2f[0][2] = 0;varray_texcoord2f[0][3] = v[0];
1806                 varray_texcoord2f[0][4] = 0;varray_texcoord2f[0][5] = v[1];
1807                 varray_texcoord2f[0][6] = 1;varray_texcoord2f[0][7] = v[1];
1808         }
1809         else
1810                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1811
1812 #if WORKINGLQUAKE
1813         if (p->blendmode == 0)
1814                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1815         else if (p->blendmode == 1)
1816                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1817         else
1818                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1819         glColor4f(cr, cg, cb, ca);
1820         glBegin(GL_QUADS);
1821         glTexCoord2f(varray_texcoord2f[0][0], varray_texcoord2f[0][1]);glVertex3f(varray_vertex3f[ 0], varray_vertex3f[ 1], varray_vertex3f[ 2]);
1822         glTexCoord2f(varray_texcoord2f[0][2], varray_texcoord2f[0][3]);glVertex3f(varray_vertex3f[ 3], varray_vertex3f[ 4], varray_vertex3f[ 5]);
1823         glTexCoord2f(varray_texcoord2f[0][4], varray_texcoord2f[0][5]);glVertex3f(varray_vertex3f[ 6], varray_vertex3f[ 7], varray_vertex3f[ 8]);
1824         glTexCoord2f(varray_texcoord2f[0][6], varray_texcoord2f[0][7]);glVertex3f(varray_vertex3f[ 9], varray_vertex3f[10], varray_vertex3f[11]);
1825         glEnd();
1826 #else
1827         R_Mesh_Draw(4, 2, polygonelements);
1828 #endif
1829 }
1830
1831 void R_DrawParticles (void)
1832 {
1833         int i;
1834         float minparticledist;
1835         particle_t *p;
1836
1837 #ifdef WORKINGLQUAKE
1838         CL_MoveParticles();
1839 #endif
1840
1841         // LordHavoc: early out conditions
1842         if ((!cl_numparticles) || (!r_drawparticles.integer))
1843                 return;
1844
1845         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1846
1847 #ifdef WORKINGLQUAKE
1848         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1849         glEnable(GL_BLEND);
1850         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1851         glDepthMask(0);
1852         // LordHavoc: only render if not too close
1853         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1854                 if (DotProduct(p->org, vpn) >= minparticledist)
1855                         R_DrawParticle(p);
1856         glDepthMask(1);
1857         glDisable(GL_BLEND);
1858         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1859 #else
1860         // LordHavoc: only render if not too close
1861         c_particles += cl_numparticles;
1862         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1863                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1864                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1865 #endif
1866 }
1867