a few more glquake and glqwcl compatibility fixes
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeamVerts (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 4] = org1[0] - width * right1[0];
65         vert[ 5] = org1[1] - width * right1[1];
66         vert[ 6] = org1[2] - width * right1[2];
67         vert[ 8] = org2[0] - width * right2[0];
68         vert[ 9] = org2[1] - width * right2[1];
69         vert[10] = org2[2] - width * right2[2];
70         vert[12] = org2[0] + width * right2[0];
71         vert[13] = org2[1] + width * right2[1];
72         vert[14] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         vec3_t start_l, end_l;
163         memset (&trace, 0, sizeof(trace));
164         trace.fraction = 1;
165         VectorCopy (end, trace.endpos);
166 #if QW
167         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start_l, end_l, &trace);
168 #else
169         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start_l, end_l, &trace);
170 #endif
171         VectorCopy(trace.endpos, impact);
172         VectorCopy(trace.plane.normal, normal);
173         return trace.fraction;
174 }
175 #else
176 #include "cl_collision.h"
177 #endif
178
179 #define MAX_PARTICLES                   32768   // default max # of particles at one time
180 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
181
182 typedef enum
183 {
184         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
185 }
186 ptype_t;
187
188 #define PARTICLE_INVALID 0
189 #define PARTICLE_BILLBOARD 1
190 #define PARTICLE_SPARK 2
191 #define PARTICLE_ORIENTED_DOUBLESIDED 3
192 #define PARTICLE_BEAM 4
193
194 #define PBLEND_ALPHA 0
195 #define PBLEND_ADD 1
196 #define PBLEND_MOD 2
197
198 typedef struct particle_s
199 {
200         ptype_t         type;
201         int                     orientation;
202         int                     texnum;
203         int                     blendmode;
204         vec3_t          org;
205         vec3_t          vel;
206         float           die;
207         float           scalex;
208         float           scaley;
209         float           alpha; // 0-255
210         float           alphafade; // how much alpha reduces per second
211         float           time2; // used for various things (snow fluttering, for example)
212         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
213         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
214         vec3_t          oldorg;
215         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
216         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
217         float           pressure; // if non-zero, apply pressure to other particles
218         qbyte           color[4];
219 }
220 particle_t;
221
222 static int particlepalette[256] =
223 {
224         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
225         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
226         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
227         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
228         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
229         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
230         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
231         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
232         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
233         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
234         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
235         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
236         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
237         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
238         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
239         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
240         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
241         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
242         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
243         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
244         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
245         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
246         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
247         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
248         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
249         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
250         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
251         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
252         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
253         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
254         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
255         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
256 };
257
258 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
259
260 // texture numbers in particle font
261 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
262 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
263 static const int tex_particle = 24;
264 static const int tex_raindrop = 25;
265 static const int tex_bubble = 26;
266 static const int tex_beam = 27;
267 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
268
269 static int                      cl_maxparticles;
270 static int                      cl_numparticles;
271 static particle_t       *particles;
272 static particle_t       **freeparticles; // list used only in compacting particles array
273
274 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
275 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
276 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
277 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
278 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
279 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
280 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
281 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
282 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
283 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
284 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
285 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
286 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
287
288 #ifndef WORKINGLQUAKE
289 static mempool_t *cl_part_mempool;
290 #endif
291
292 void CL_Particles_Clear(void)
293 {
294         cl_numparticles = 0;
295 }
296
297 /*
298 ===============
299 CL_InitParticles
300 ===============
301 */
302 void CL_ReadPointFile_f (void);
303 void CL_Particles_Init (void)
304 {
305         int             i;
306
307         i = COM_CheckParm ("-particles");
308
309         if (i && i < com_argc - 1)
310         {
311                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
312                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
313                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
314         }
315         else
316                 cl_maxparticles = MAX_PARTICLES;
317
318         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
319
320         Cvar_RegisterVariable (&cl_particles);
321         Cvar_RegisterVariable (&cl_particles_size);
322         Cvar_RegisterVariable (&cl_particles_bloodshowers);
323         Cvar_RegisterVariable (&cl_particles_blood);
324         Cvar_RegisterVariable (&cl_particles_blood_size);
325         Cvar_RegisterVariable (&cl_particles_blood_alpha);
326         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
327         Cvar_RegisterVariable (&cl_particles_smoke);
328         Cvar_RegisterVariable (&cl_particles_sparks);
329         Cvar_RegisterVariable (&cl_particles_bubbles);
330         Cvar_RegisterVariable (&cl_decals);
331         Cvar_RegisterVariable (&cl_decals_time);
332         Cvar_RegisterVariable (&cl_decals_fadetime);
333
334 #ifdef WORKINGLQUAKE
335         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
336         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
337 #else
338         cl_part_mempool = Mem_AllocPool("CL_Part");
339         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
340         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
341 #endif
342         cl_numparticles = 0;
343 }
344
345 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
346 {\
347         if (cl_numparticles < cl_maxparticles)\
348         {\
349                 particle_t      *part;\
350                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
351                 ptempcolor = (pcolor1);\
352                 ptempcolor2 = (pcolor2);\
353                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
354                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
355                 pcb2 = (ptempcolor2) & 0xFF;\
356                 if (ptempcolor != ptempcolor2)\
357                 {\
358                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
359                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
360                         pcb1 = (ptempcolor) & 0xFF;\
361                         ptempcolor = rand() & 0xFF;\
362                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
363                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
364                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
365                 }\
366                 part = &particles[cl_numparticles++];\
367                 part->type = (ptype);\
368                 part->color[0] = pcr2;\
369                 part->color[1] = pcg2;\
370                 part->color[2] = pcb2;\
371                 part->color[3] = 0xFF;\
372                 part->orientation = porientation;\
373                 part->texnum = ptex;\
374                 part->blendmode = pblendmode;\
375                 part->scalex = (pscalex);\
376                 part->scaley = (pscaley);\
377                 part->alpha = (palpha);\
378                 part->alphafade = (palphafade);\
379                 part->die = cl.time + (ptime);\
380                 part->gravity = (pgravity);\
381                 part->bounce = (pbounce);\
382                 part->org[0] = (px);\
383                 part->org[1] = (py);\
384                 part->org[2] = (pz);\
385                 part->vel[0] = (pvx);\
386                 part->vel[1] = (pvy);\
387                 part->vel[2] = (pvz);\
388                 part->time2 = (ptime2);\
389                 part->vel2[0] = (pvx2);\
390                 part->vel2[1] = (pvy2);\
391                 part->vel2[2] = (pvz2);\
392                 part->friction = (pfriction);\
393                 part->pressure = (ppressure);\
394         }\
395 }
396
397 /*
398 ===============
399 CL_EntityParticles
400 ===============
401 */
402 void CL_EntityParticles (entity_t *ent)
403 {
404         int                     i;
405         float           angle;
406         float           sp, sy, cp, cy;
407         vec3_t          forward;
408         float           dist;
409         float           beamlength;
410         static vec3_t avelocities[NUMVERTEXNORMALS];
411         if (!cl_particles.integer) return;
412
413         dist = 64;
414         beamlength = 16;
415
416         if (!avelocities[0][0])
417                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
418                         avelocities[0][i] = (rand()&255) * 0.01;
419
420         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
421         {
422                 angle = cl.time * avelocities[i][0];
423                 sy = sin(angle);
424                 cy = cos(angle);
425                 angle = cl.time * avelocities[i][1];
426                 sp = sin(angle);
427                 cp = cos(angle);
428
429                 forward[0] = cp*cy;
430                 forward[1] = cp*sy;
431                 forward[2] = -sp;
432
433 #ifdef WORKINGLQUAKE
434                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
435 #else
436                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
437 #endif
438         }
439 }
440
441
442 void CL_ReadPointFile_f (void)
443 {
444         vec3_t  org;
445         int             r, c;
446         char    *pointfile = NULL, *pointfilepos, *t, tchar;
447 #if WORKINGLQUAKE
448         char    name[MAX_OSPATH];
449         
450         sprintf (name,"maps/%s.pts", cl.worldmodel->name);
451         COM_FOpenFile (name, &f);
452         if (f)
453         {
454                 int pointfilelength;
455                 fseek(f, 0, SEEK_END);
456                 pointfilelength = ftell(f);
457                 fseek(f, 0, SEEK_SET);
458                 pointfile = malloc(pointfilelength + 1);
459                 fread(pointfile, 1, pointfilelength, f);
460                 pointfile[pointfilelength] = 0;
461                 fclose(f);
462         }
463 #else
464         pointfile = COM_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true);
465 #endif
466         if (!pointfile)
467         {
468                 Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name);
469                 return;
470         }
471
472         Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name);
473         c = 0;
474         pointfilepos = pointfile;
475         while (*pointfilepos)
476         {
477                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
478                         pointfilepos++;
479                 if (!*pointfilepos)
480                         break;
481                 t = pointfilepos;
482                 while (*t && *t != '\n' && *t != '\r')
483                         t++;
484                 tchar = *t;
485                 *t = 0;
486                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
487                 *t = tchar;
488                 pointfilepos = t;
489                 if (r != 3)
490                         break;
491                 c++;
492
493                 if (cl_numparticles >= cl_maxparticles)
494                 {
495                         Con_Printf ("Not enough free particles\n");
496                         break;
497                 }
498                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
499         }
500
501 #ifdef WORKINGLQUAKE
502         free(pointfile);
503 #else
504         Mem_Free(pointfile);
505 #endif
506         Con_Printf ("%i points read\n", c);
507 }
508
509 /*
510 ===============
511 CL_ParseParticleEffect
512
513 Parse an effect out of the server message
514 ===============
515 */
516 void CL_ParseParticleEffect (void)
517 {
518         vec3_t org, dir;
519         int i, count, msgcount, color;
520
521         for (i=0 ; i<3 ; i++)
522                 org[i] = MSG_ReadCoord ();
523         for (i=0 ; i<3 ; i++)
524                 dir[i] = MSG_ReadChar () * (1.0/16);
525         msgcount = MSG_ReadByte ();
526         color = MSG_ReadByte ();
527
528         if (msgcount == 255)
529                 count = 1024;
530         else
531                 count = msgcount;
532
533         CL_RunParticleEffect (org, dir, color, count);
534 }
535
536 /*
537 ===============
538 CL_ParticleExplosion
539
540 ===============
541 */
542 void CL_ParticleExplosion (vec3_t org)
543 {
544         int i, k;
545         //vec3_t v;
546         //vec3_t v2;
547         if (cl_stainmaps.integer)
548                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
549
550         i = Mod_PointContents(org, cl.worldmodel);
551         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
552         {
553                 for (i = 0;i < 128;i++)
554                 {
555                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
556                 }
557         }
558         else
559         {
560                 /*
561                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
562                 // smoke puff
563                 if (cl_particles_smoke.integer)
564                 {
565                         for (i = 0;i < 64;i++)
566                         {
567 #ifdef WORKINGLQUAKE
568                                 v2[0] = lhrandom(-64, 64);
569                                 v2[1] = lhrandom(-64, 64);
570                                 v2[2] = lhrandom(-8, 24);
571 #else
572                                 for (k = 0;k < 16;k++)
573                                 {
574                                         v[0] = org[0] + lhrandom(-64, 64);
575                                         v[1] = org[1] + lhrandom(-64, 64);
576                                         v[2] = org[2] + lhrandom(-8, 24);
577                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
578                                                 break;
579                                 }
580                                 VectorSubtract(v2, org, v2);
581 #endif
582                                 VectorScale(v2, 2.0f, v2);
583                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
584                         }
585                 }
586                 */
587
588                 if (cl_particles_sparks.integer)
589                 {
590                         // sparks
591                         for (i = 0;i < 256;i++)
592                         {
593                                 k = particlepalette[0x68 + (rand() & 7)];
594                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
595                         }
596                 }
597         }
598
599         if (cl_explosions.integer)
600                 R_NewExplosion(org);
601 }
602
603 /*
604 ===============
605 CL_ParticleExplosion2
606
607 ===============
608 */
609 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
610 {
611         int i, k;
612         if (!cl_particles.integer) return;
613
614         for (i = 0;i < 512;i++)
615         {
616                 k = particlepalette[colorStart + (i % colorLength)];
617                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
618         }
619 }
620
621 /*
622 ===============
623 CL_BlobExplosion
624
625 ===============
626 */
627 void CL_BlobExplosion (vec3_t org)
628 {
629         if (cl_stainmaps.integer)
630                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
631
632         if (cl_explosions.integer)
633                 R_NewExplosion(org);
634 }
635
636 /*
637 ===============
638 CL_RunParticleEffect
639
640 ===============
641 */
642 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
643 {
644         int k;
645
646         if (count == 1024)
647         {
648                 CL_ParticleExplosion(org);
649                 return;
650         }
651         if (!cl_particles.integer) return;
652         while (count--)
653         {
654                 k = particlepalette[color + (rand()&7)];
655                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
656         }
657 }
658
659 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
660 /*
661 ===============
662 CL_SparkShower
663 ===============
664 */
665 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
666 {
667         int k;
668         if (!cl_particles.integer) return;
669
670         if (cl_stainmaps.integer)
671                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
672
673         if (cl_particles_bulletimpacts.integer)
674         {
675                 // smoke puff
676                 if (cl_particles_smoke.integer)
677                 {
678                         k = count / 4;
679                         while(k--)
680                         {
681                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
682                         }
683                 }
684
685                 if (cl_particles_sparks.integer)
686                 {
687                         // sparks
688                         while(count--)
689                         {
690                                 k = particlepalette[0x68 + (rand() & 7)];
691                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
692                         }
693                 }
694         }
695 }
696
697 void CL_PlasmaBurn (vec3_t org)
698 {
699         if (cl_stainmaps.integer)
700                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
701 }
702
703 static float bloodcount = 0;
704 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
705 {
706         float s, r, a;
707         // bloodcount is used to accumulate counts too small to cause a blood particle
708         if (!cl_particles.integer) return;
709         if (!cl_particles_blood.integer) return;
710
711         s = count + 32.0f;
712         count *= 5.0f;
713         if (count > 1000)
714                 count = 1000;
715         bloodcount += count;
716         r = cl_particles_blood_size.value;
717         a = cl_particles_blood_alpha.value * 255;
718         while(bloodcount > 0)
719         {
720                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
721                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
722                 bloodcount -= r;
723         }
724 }
725
726 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
727 {
728         float r;
729         float a;
730         vec3_t diff, center, velscale;
731         if (!cl_particles.integer) return;
732         if (!cl_particles_bloodshowers.integer) return;
733         if (!cl_particles_blood.integer) return;
734
735         VectorSubtract(maxs, mins, diff);
736         center[0] = (mins[0] + maxs[0]) * 0.5;
737         center[1] = (mins[1] + maxs[1]) * 0.5;
738         center[2] = (mins[2] + maxs[2]) * 0.5;
739         // FIXME: change velspeed back to 2.0x after fixing mod
740         velscale[0] = velspeed * 2.0 / diff[0];
741         velscale[1] = velspeed * 2.0 / diff[1];
742         velscale[2] = velspeed * 2.0 / diff[2];
743
744         bloodcount += count * 5.0f;
745         r = cl_particles_blood_size.value;
746         a = cl_particles_blood_alpha.value * 255;
747         while (bloodcount > 0)
748         {
749                 vec3_t org, vel;
750                 org[0] = lhrandom(mins[0], maxs[0]);
751                 org[1] = lhrandom(mins[1], maxs[1]);
752                 org[2] = lhrandom(mins[2], maxs[2]);
753                 vel[0] = (org[0] - center[0]) * velscale[0];
754                 vel[1] = (org[1] - center[1]) * velscale[1];
755                 vel[2] = (org[2] - center[2]) * velscale[2];
756                 bloodcount -= r;
757                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
758                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
759         }
760 }
761
762 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
763 {
764         int k;
765         float t;
766         if (!cl_particles.integer) return;
767         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
768         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
769         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
770
771         while (count--)
772         {
773                 k = particlepalette[colorbase + (rand()&3)];
774                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
775         }
776 }
777
778 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
779 {
780         int k;
781         float t, z, minz, maxz;
782         if (!cl_particles.integer) return;
783         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
784         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
785         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
786         if (dir[2] < 0) // falling
787         {
788                 t = (maxs[2] - mins[2]) / -dir[2];
789                 z = maxs[2];
790         }
791         else // rising??
792         {
793                 t = (maxs[2] - mins[2]) / dir[2];
794                 z = mins[2];
795         }
796         if (t < 0 || t > 2) // sanity check
797                 t = 2;
798
799         minz = z - fabs(dir[2]) * 0.1;
800         maxz = z + fabs(dir[2]) * 0.1;
801         minz = bound(mins[2], minz, maxs[2]);
802         maxz = bound(mins[2], maxz, maxs[2]);
803
804         switch(type)
805         {
806         case 0:
807                 count *= 4; // ick, this should be in the mod or maps?
808
809                 while(count--)
810                 {
811                         k = particlepalette[colorbase + (rand()&3)];
812                         particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
813                 }
814                 break;
815         case 1:
816                 while(count--)
817                 {
818                         k = particlepalette[colorbase + (rand()&3)];
819                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
820                 }
821                 break;
822         default:
823                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
824         }
825 }
826
827 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
828 {
829         int k;
830         float t;
831         vec3_t o, v, center;
832         if (!cl_particles.integer) return;
833
834         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
835         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
836         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
837
838         center[0] = (mins[0] + maxs[0]) * 0.5f;
839         center[1] = (mins[1] + maxs[1]) * 0.5f;
840         center[2] = (mins[2] + maxs[2]) * 0.5f;
841
842         while (count--)
843         {
844                 k = particlepalette[224 + (rand()&15)];
845                 o[0] = lhrandom(mins[0], maxs[0]);
846                 o[1] = lhrandom(mins[1], maxs[1]);
847                 o[2] = lhrandom(mins[2], maxs[2]);
848                 VectorSubtract(o, center, v);
849                 VectorNormalizeFast(v);
850                 VectorScale(v, 100, v);
851                 v[2] += sv_gravity.value * 0.15f;
852                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
853         }
854 }
855
856 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
857 {
858         int k;
859         float t;
860         if (!cl_particles.integer) return;
861         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
862         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
863         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
864
865         while (count--)
866         {
867                 k = particlepalette[224 + (rand()&15)];
868                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
869                 if (count & 1)
870                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
871         }
872 }
873
874 void CL_Flames (vec3_t org, vec3_t vel, int count)
875 {
876         int k;
877         if (!cl_particles.integer) return;
878
879         while (count--)
880         {
881                 k = particlepalette[224 + (rand()&15)];
882                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
883         }
884 }
885
886
887
888 /*
889 ===============
890 CL_LavaSplash
891
892 ===============
893 */
894 void CL_LavaSplash (vec3_t origin)
895 {
896         int                     i, j, k;
897         float           vel;
898         vec3_t          dir, org;
899         if (!cl_particles.integer) return;
900
901         for (i=-128 ; i<128 ; i+=16)
902         {
903                 for (j=-128 ; j<128 ; j+=16)
904                 {
905                         dir[0] = j + lhrandom(0, 8);
906                         dir[1] = i + lhrandom(0, 8);
907                         dir[2] = 256;
908                         org[0] = origin[0] + dir[0];
909                         org[1] = origin[1] + dir[1];
910                         org[2] = origin[2] + lhrandom(0, 64);
911                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
912                         k = particlepalette[224 + (rand()&7)];
913                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
914                 }
915         }
916 }
917
918 /*
919 ===============
920 CL_TeleportSplash
921
922 ===============
923 */
924 #if WORKINGLQUAKE
925 void R_TeleportSplash (vec3_t org)
926 {
927         int i, j, k;
928         if (!cl_particles.integer) return;
929
930         for (i=-16 ; i<16 ; i+=8)
931                 for (j=-16 ; j<16 ; j+=8)
932                         for (k=-24 ; k<32 ; k+=8)
933                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
934 }
935 #endif
936
937 #ifdef WORKINGLQUAKE
938 void R_RocketTrail (vec3_t start, vec3_t end, int type)
939 #else
940 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
941 #endif
942 {
943         vec3_t vec, dir, vel, pos;
944         float len, dec, speed, r;
945         int contents, smoke, blood, bubbles;
946
947         VectorSubtract(end, start, dir);
948         VectorNormalize(dir);
949
950         VectorSubtract (end, start, vec);
951 #ifdef WORKINGLQUAKE
952         len = VectorNormalize (vec);
953         dec = 0;
954         speed = 1.0f / cl.frametime;
955         VectorSubtract(end, start, vel);
956 #else
957         len = VectorNormalizeLength (vec);
958         dec = -ent->persistent.trail_time;
959         ent->persistent.trail_time += len;
960         if (ent->persistent.trail_time < 0.01f)
961                 return;
962
963         // if we skip out, leave it reset
964         ent->persistent.trail_time = 0.0f;
965
966         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
967         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
968 #endif
969         VectorScale(vel, speed, vel);
970
971         // advance into this frame to reach the first puff location
972         VectorMA(start, dec, vec, pos);
973         len -= dec;
974
975         contents = Mod_PointContents(pos, cl.worldmodel);
976         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
977                 return;
978
979         smoke = cl_particles.integer && cl_particles_smoke.integer;
980         blood = cl_particles.integer && cl_particles_blood.integer;
981         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
982
983         while (len >= 0)
984         {
985                 switch (type)
986                 {
987                         case 0: // rocket trail
988                                 dec = 3;
989                                 if (smoke)
990                                 {
991                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 32, 64, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 6, 0, 0, 0, 0, 0);
992                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 128, 768, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
993                                 }
994                                 if (bubbles)
995                                 {
996                                         r = lhrandom(1, 2);
997                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
998                                 }
999                                 break;
1000
1001                         case 1: // grenade trail
1002                                 // FIXME: make it gradually stop smoking
1003                                 dec = 3;
1004                                 if (cl_particles.integer && cl_particles_smoke.integer)
1005                                 {
1006                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 32, 96, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0, 0, 0, 0, 0, 0);
1007                                 }
1008                                 break;
1009
1010
1011                         case 2: // blood
1012                         case 4: // slight blood
1013                                 dec = cl_particles_blood_size.value;
1014                                 if (blood)
1015                                 {
1016                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1017                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1018                                 }
1019                                 break;
1020
1021                         case 3: // green tracer
1022                                 dec = 6;
1023                                 if (smoke)
1024                                 {
1025                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1026                                 }
1027                                 break;
1028
1029                         case 5: // flame tracer
1030                                 dec = 6;
1031                                 if (smoke)
1032                                 {
1033                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1034                                 }
1035                                 break;
1036
1037                         case 6: // voor trail
1038                                 dec = 6;
1039                                 if (smoke)
1040                                 {
1041                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1042                                 }
1043                                 break;
1044
1045                         case 7: // Nehahra smoke tracer
1046                                 dec = 7;
1047                                 if (smoke)
1048                                 {
1049                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1050                                 }
1051                                 break;
1052                         case 8: // Nexiuz plasma trail
1053                                 dec = 4;
1054                                 if (smoke)
1055                                 {
1056                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1057                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1058                                 }
1059                 }
1060
1061                 // advance to next time and position
1062                 len -= dec;
1063                 VectorMA (pos, dec, vec, pos);
1064         }
1065 #ifndef WORKINGLQUAKE
1066         ent->persistent.trail_time = len;
1067 #endif
1068 }
1069
1070 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1071 {
1072         vec3_t vec, pos;
1073         int len;
1074         if (!cl_particles.integer) return;
1075         if (!cl_particles_smoke.integer) return;
1076
1077         VectorCopy(start, pos);
1078         VectorSubtract (end, start, vec);
1079 #ifdef WORKINGLQUAKE
1080         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1081 #else
1082         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1083 #endif
1084         VectorScale(vec, 3, vec);
1085         color = particlepalette[color];
1086         while (len--)
1087         {
1088                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1089                 VectorAdd (pos, vec, pos);
1090         }
1091 }
1092
1093 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1094 {
1095         int tempcolor2, cr, cg, cb;
1096         cr = red * 255;
1097         cg = green * 255;
1098         cb = blue * 255;
1099         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1100         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1101 }
1102
1103 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1104 {
1105         int k;
1106         if (!cl_particles.integer) return;
1107
1108         // smoke puff
1109         if (cl_particles_smoke.integer)
1110         {
1111                 k = count / 4;
1112                 while(k--)
1113                 {
1114                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1115                 }
1116         }
1117 }
1118
1119 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1120 {
1121         int k;
1122         if (!cl_particles.integer) return;
1123
1124         if (cl_stainmaps.integer)
1125                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1126
1127         // smoke puff
1128         if (cl_particles_smoke.integer)
1129         {
1130                 k = count / 4;
1131                 while(k--)
1132                 {
1133                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1134                 }
1135         }
1136
1137         if (cl_particles_sparks.integer)
1138         {
1139                 // sparks
1140                 while(count--)
1141                 {
1142                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1143                 }
1144         }
1145 }
1146
1147 /*
1148 ===============
1149 CL_MoveParticles
1150 ===============
1151 */
1152 void CL_MoveParticles (void)
1153 {
1154         particle_t *p;
1155         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1156         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1157
1158         // LordHavoc: early out condition
1159         if (!cl_numparticles)
1160                 return;
1161
1162 #ifdef WORKINGLQUAKE
1163         frametime = cl.frametime;
1164 #else
1165         frametime = cl.time - cl.oldtime;
1166 #endif
1167         gravity = frametime * sv_gravity.value;
1168         dvel = 1+4*frametime;
1169         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1170
1171         activeparticles = 0;
1172         maxparticle = -1;
1173         j = 0;
1174         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1175         {
1176                 content = 0;
1177                 VectorCopy(p->org, p->oldorg);
1178                 VectorMA(p->org, frametime, p->vel, p->org);
1179                 VectorCopy(p->org, org);
1180                 if (p->bounce)
1181                 {
1182                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, NULL) < 1)
1183                         {
1184                                 VectorCopy(v, p->org);
1185                                 if (p->bounce < 0)
1186                                 {
1187                                         // assume it's blood (lame, but...)
1188 #ifndef WORKINGLQUAKE
1189                                         if (cl_stainmaps.integer)
1190                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1191 #endif
1192                                         if (cl_decals.integer)
1193                                         {
1194                                                 p->type = pt_decal;
1195                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1196                                                 p->time2 = cl.time + cl_decals_time.value;
1197                                                 p->die = p->time2 + cl_decals_fadetime.value;
1198                                                 p->alphafade = 0;
1199                                                 VectorCopy(normal, p->vel2);
1200                                                 VectorClear(p->vel);
1201                                                 VectorAdd(p->org, normal, p->org);
1202                                                 p->bounce = 0;
1203                                                 p->friction = 0;
1204                                                 p->gravity = 0;
1205                                                 p->scalex *= 1.25f;
1206                                                 p->scaley *= 1.25f;
1207                                         }
1208                                         else
1209                                         {
1210                                                 p->die = -1;
1211                                                 freeparticles[j++] = p;
1212                                                 continue;
1213                                         }
1214                                 }
1215                                 else
1216                                 {
1217                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1218                                         VectorMA(p->vel, dist, normal, p->vel);
1219                                         if (DotProduct(p->vel, p->vel) < 0.03)
1220                                                 VectorClear(p->vel);
1221                                 }
1222                         }
1223                 }
1224                 p->vel[2] -= p->gravity * gravity;
1225                 p->alpha -= p->alphafade * frametime;
1226                 if (p->friction)
1227                 {
1228                         f = p->friction * frametime;
1229                         if (!content)
1230                                 content = Mod_PointContents(p->org, cl.worldmodel);
1231                         if (content != CONTENTS_EMPTY)
1232                                 f *= 4;
1233                         f = 1.0f - f;
1234                         VectorScale(p->vel, f, p->vel);
1235                 }
1236
1237                 if (p->type != pt_static)
1238                 {
1239                         switch (p->type)
1240                         {
1241                         case pt_blood:
1242                                 if (!content)
1243                                         content = Mod_PointContents(p->org, cl.worldmodel);
1244                                 a = content;
1245                                 if (a != CONTENTS_EMPTY)
1246                                 {
1247                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1248                                         {
1249                                                 p->scalex += frametime * cl_particles_blood_size.value;
1250                                                 p->scaley += frametime * cl_particles_blood_size.value;
1251                                                 //p->alpha -= bloodwaterfade;
1252                                         }
1253                                         else
1254                                                 p->die = -1;
1255                                 }
1256                                 else
1257                                         p->vel[2] -= gravity;
1258                                 break;
1259                         case pt_bubble:
1260                                 if (!content)
1261                                         content = Mod_PointContents(p->org, cl.worldmodel);
1262                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1263                                 {
1264                                         p->die = -1;
1265                                         break;
1266                                 }
1267                                 break;
1268                         case pt_rain:
1269                                 if (cl.time > p->time2)
1270                                 {
1271                                         // snow flutter
1272                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1273                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1274                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1275                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1276                                 }
1277                                 if (!content)
1278                                         content = Mod_PointContents(p->org, cl.worldmodel);
1279                                 a = content;
1280                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1281                                         p->die = -1;
1282                                 break;
1283                         case pt_grow:
1284                                 p->scalex += frametime * p->time2;
1285                                 p->scaley += frametime * p->time2;
1286                                 break;
1287                         case pt_decal:
1288                                 if (cl.time > p->time2)
1289                                 {
1290                                         p->alphafade = p->alpha / (p->die - cl.time);
1291                                         p->time2 += 10000;
1292                                 }
1293                                 break;
1294                         default:
1295                                 printf("unknown particle type %i\n", p->type);
1296                                 p->die = -1;
1297                                 break;
1298                         }
1299                 }
1300
1301                 // remove dead particles
1302                 if (p->alpha < 1 || p->die < cl.time)
1303                         freeparticles[j++] = p;
1304                 else
1305                 {
1306                         maxparticle = i;
1307                         activeparticles++;
1308                         if (p->pressure)
1309                                 pressureused = true;
1310                 }
1311         }
1312         // fill in gaps to compact the array
1313         i = 0;
1314         while (maxparticle >= activeparticles)
1315         {
1316                 *freeparticles[i++] = particles[maxparticle--];
1317                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1318                         maxparticle--;
1319         }
1320         cl_numparticles = activeparticles;
1321
1322         if (pressureused)
1323         {
1324                 activeparticles = 0;
1325                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1326                         if (p->pressure)
1327                                 freeparticles[activeparticles++] = p;
1328
1329                 if (activeparticles)
1330                 {
1331                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1332                         {
1333                                 for (j = 0;j < activeparticles;j++)
1334                                 {
1335                                         if (freeparticles[j] != p)
1336                                         {
1337                                                 float dist, diff[3];
1338                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1339                                                 dist = DotProduct(diff, diff);
1340                                                 if (dist < 4096 && dist >= 1)
1341                                                 {
1342                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1343                                                         VectorMA(p->vel, dist, diff, p->vel);
1344                                                 }
1345                                         }
1346                                 }
1347                         }
1348                 }
1349         }
1350 }
1351
1352 #define MAX_PARTICLETEXTURES 64
1353 // particletexture_t is a rectangle in the particlefonttexture
1354 typedef struct
1355 {
1356         rtexture_t *texture;
1357         float s1, t1, s2, t2;
1358 }
1359 particletexture_t;
1360
1361 #if WORKINGLQUAKE
1362 static int particlefonttexture;
1363 #else
1364 static rtexturepool_t *particletexturepool;
1365 static rtexture_t *particlefonttexture;
1366 #endif
1367 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1368
1369 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1370
1371 static qbyte shadebubble(float dx, float dy, vec3_t light)
1372 {
1373         float dz, f, dot;
1374         vec3_t normal;
1375         dz = 1 - (dx*dx+dy*dy);
1376         if (dz > 0) // it does hit the sphere
1377         {
1378                 f = 0;
1379                 // back side
1380                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1381                 VectorNormalize(normal);
1382                 dot = DotProduct(normal, light);
1383                 if (dot > 0.5) // interior reflection
1384                         f += ((dot *  2) - 1);
1385                 else if (dot < -0.5) // exterior reflection
1386                         f += ((dot * -2) - 1);
1387                 // front side
1388                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1389                 VectorNormalize(normal);
1390                 dot = DotProduct(normal, light);
1391                 if (dot > 0.5) // interior reflection
1392                         f += ((dot *  2) - 1);
1393                 else if (dot < -0.5) // exterior reflection
1394                         f += ((dot * -2) - 1);
1395                 f *= 128;
1396                 f += 16; // just to give it a haze so you can see the outline
1397                 f = bound(0, f, 255);
1398                 return (qbyte) f;
1399         }
1400         else
1401                 return 0;
1402 }
1403
1404 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1405 {
1406         int basex, basey, y;
1407         basex = ((texnum >> 0) & 7) * 32;
1408         basey = ((texnum >> 3) & 7) * 32;
1409         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1410         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1411         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1412         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1413         for (y = 0;y < 32;y++)
1414                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1415 }
1416
1417 static void R_InitParticleTexture (void)
1418 {
1419         int x, y, d, i, j, k, m;
1420         float cx, cy, dx, dy, radius, f, f2;
1421         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1422         vec3_t light;
1423         qbyte particletexturedata[256*256*4];
1424
1425         memset(particletexturedata, 255, sizeof(particletexturedata));
1426
1427         // smoke/blood
1428         for (i = 0;i < 8;i++)
1429         {
1430                 do
1431                 {
1432                         fractalnoise(&noise1[0][0], 64, 4);
1433                         fractalnoise(&noise2[0][0], 64, 8);
1434                         m = 0;
1435                         for (y = 0;y < 32;y++)
1436                         {
1437                                 dy = y - 16;
1438                                 for (x = 0;x < 32;x++)
1439                                 {
1440                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1441                                         dx = x - 16;
1442                                         d = (noise2[y][x] - 128) * 3 + 192;
1443                                         if (d > 0)
1444                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1445                                         d = (d * noise1[y][x]) >> 7;
1446                                         d = bound(0, d, 255);
1447                                         data[y][x][3] = (qbyte) d;
1448                                         if (m < d)
1449                                                 m = d;
1450                                 }
1451                         }
1452                 }
1453                 while (m < 224);
1454
1455                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1456         }
1457
1458         // rain splash
1459         for (i = 0;i < 16;i++)
1460         {
1461                 radius = i * 3.0f / 16.0f;
1462                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1463                 for (y = 0;y < 32;y++)
1464                 {
1465                         dy = (y - 16) * 0.25f;
1466                         for (x = 0;x < 32;x++)
1467                         {
1468                                 dx = (x - 16) * 0.25f;
1469                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1470                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1471                                 f = bound(0.0f, f, 255.0f);
1472                                 data[y][x][3] = (int) f;
1473                         }
1474                 }
1475                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1476         }
1477
1478         // normal particle
1479         for (y = 0;y < 32;y++)
1480         {
1481                 dy = y - 16;
1482                 for (x = 0;x < 32;x++)
1483                 {
1484                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1485                         dx = x - 16;
1486                         d = (256 - (dx*dx+dy*dy));
1487                         d = bound(0, d, 255);
1488                         data[y][x][3] = (qbyte) d;
1489                 }
1490         }
1491         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1492
1493         // rain
1494         light[0] = 1;light[1] = 1;light[2] = 1;
1495         VectorNormalize(light);
1496         for (y = 0;y < 32;y++)
1497         {
1498                 for (x = 0;x < 32;x++)
1499                 {
1500                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1501                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1502                 }
1503         }
1504         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1505
1506         // bubble
1507         light[0] = 1;light[1] = 1;light[2] = 1;
1508         VectorNormalize(light);
1509         for (y = 0;y < 32;y++)
1510         {
1511                 for (x = 0;x < 32;x++)
1512                 {
1513                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1514                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1515                 }
1516         }
1517         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1518
1519         // smoke/blood
1520         for (i = 0;i < 8;i++)
1521         {
1522                 memset(&data[0][0][0], 255, sizeof(data));
1523                 for (j = 1;j < 8;j++)
1524                 {
1525                         for (k = 0;k < 3;k++)
1526                         {
1527                                 cx = lhrandom(j + 1, 30 - j);
1528                                 cy = lhrandom(j + 1, 30 - j);
1529                                 for (y = 0;y < 32;y++)
1530                                 {
1531                                         for (x = 0;x < 32;x++)
1532                                         {
1533                                                 dx = (x - cx);
1534                                                 dy = (y - cy);
1535                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1536                                                 if (f > 0)
1537                                                 {
1538                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1539                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1540                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1541                                                 }
1542                                         }
1543                                 }
1544                         }
1545                 }
1546                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1547                 for (y = 0;y < 32;y++)
1548                 {
1549                         for (x = 0;x < 32;x++)
1550                         {
1551                                 data[y][x][0] = 255 - data[y][x][0];
1552                                 data[y][x][1] = 255 - data[y][x][1];
1553                                 data[y][x][2] = 255 - data[y][x][2];
1554                         }
1555                 }
1556                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1557         }
1558
1559 #if WORKINGLQUAKE
1560         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1561         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1562         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1563 #else
1564         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1565         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1566                 particletexture[i].texture = particlefonttexture;
1567
1568         // beam
1569         fractalnoise(&noise1[0][0], 64, 4);
1570         m = 0;
1571         for (y = 0;y < 64;y++)
1572         {
1573                 for (x = 0;x < 16;x++)
1574                 {
1575                         if (x < 8)
1576                                 d = x;
1577                         else
1578                                 d = (15 - x);
1579                         d = d * d * noise1[y][x] / (7 * 7);
1580                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1581                         data2[y][x][3] = 255;
1582                 }
1583         }
1584
1585         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1586         particletexture[tex_beam].s1 = 0;
1587         particletexture[tex_beam].t1 = 0;
1588         particletexture[tex_beam].s2 = 1;
1589         particletexture[tex_beam].t2 = 1;
1590 #endif
1591 }
1592
1593 static void r_part_start(void)
1594 {
1595         particletexturepool = R_AllocTexturePool();
1596         R_InitParticleTexture ();
1597 }
1598
1599 static void r_part_shutdown(void)
1600 {
1601         R_FreeTexturePool(&particletexturepool);
1602 }
1603
1604 static void r_part_newmap(void)
1605 {
1606         cl_numparticles = 0;
1607 }
1608
1609 void R_Particles_Init (void)
1610 {
1611         Cvar_RegisterVariable(&r_drawparticles);
1612 #ifdef WORKINGLQUAKE
1613         r_part_start();
1614 #else
1615         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1616 #endif
1617 }
1618
1619 #ifdef WORKINGLQUAKE
1620 void R_InitParticles(void)
1621 {
1622         CL_Particles_Init();
1623         R_Particles_Init();
1624 }
1625
1626 float varray_vertex[16];
1627 #endif
1628
1629 #ifdef WORKINGLQUAKE
1630 void R_DrawParticle(particle_t *p)
1631 {
1632 #else
1633 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1634 {
1635         const particle_t *p = calldata1;
1636         rmeshstate_t m;
1637 #endif
1638         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1639         particletexture_t *tex;
1640
1641         VectorCopy(p->org, org);
1642
1643         if (p->orientation == PARTICLE_BILLBOARD)
1644         {
1645                 VectorScale(vright, p->scalex, right);
1646                 VectorScale(vup, p->scaley, up);
1647                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1648                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1649                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1650                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1651                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1652                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1653                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1654                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1655                 varray_vertex[10] = org[2] - right[2] + up[2];
1656                 varray_vertex[12] = org[0] + right[0] + up[0];
1657                 varray_vertex[13] = org[1] + right[1] + up[1];
1658                 varray_vertex[14] = org[2] + right[2] + up[2];
1659         }
1660         else if (p->orientation == PARTICLE_SPARK)
1661         {
1662                 VectorMA(p->org, -p->scaley, p->vel, v);
1663                 VectorMA(p->org, p->scaley, p->vel, up2);
1664                 R_CalcBeamVerts(varray_vertex, v, up2, p->scalex);
1665         }
1666         else if (p->orientation == PARTICLE_BEAM)
1667                 R_CalcBeamVerts(varray_vertex, p->org, p->vel2, p->scalex);
1668         else if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1669         {
1670                 // double-sided
1671                 if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1672                 {
1673                         VectorNegate(p->vel2, v);
1674                         VectorVectors(v, right, up);
1675                 }
1676                 else
1677                         VectorVectors(p->vel2, right, up);
1678                 VectorScale(right, p->scalex, right);
1679                 VectorScale(up, p->scaley, up);
1680                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1681                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1682                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1683                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1684                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1685                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1686                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1687                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1688                 varray_vertex[10] = org[2] - right[2] + up[2];
1689                 varray_vertex[12] = org[0] + right[0] + up[0];
1690                 varray_vertex[13] = org[1] + right[1] + up[1];
1691                 varray_vertex[14] = org[2] + right[2] + up[2];
1692         }
1693         else
1694                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1695
1696         tex = &particletexture[p->texnum];
1697         cr = p->color[0] * (1.0f / 255.0f);
1698         cg = p->color[1] * (1.0f / 255.0f);
1699         cb = p->color[2] * (1.0f / 255.0f);
1700         ca = p->alpha * (1.0f / 255.0f);
1701         if (p->blendmode == PBLEND_MOD)
1702         {
1703                 cr *= ca;
1704                 cg *= ca;
1705                 cb *= ca;
1706                 cr = min(cr, 1);
1707                 cg = min(cg, 1);
1708                 cb = min(cb, 1);
1709                 ca = 1;
1710         }
1711
1712 #if WORKINGLQUAKE
1713         if (p->blendmode == 0)
1714                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1715         else if (p->blendmode == 1)
1716                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1717         else
1718                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1719         glBegin(GL_QUADS);
1720         glColor4f(cr, cg, cb, ca);
1721         glTexCoord2f(tex->s2, tex->t1);glVertex3f(varray_vertex[ 0], varray_vertex[ 1], varray_vertex[ 2]);
1722         glTexCoord2f(tex->s1, tex->t1);glVertex3f(varray_vertex[ 4], varray_vertex[ 5], varray_vertex[ 6]);
1723         glTexCoord2f(tex->s1, tex->t2);glVertex3f(varray_vertex[ 8], varray_vertex[ 9], varray_vertex[10]);
1724         glTexCoord2f(tex->s2, tex->t2);glVertex3f(varray_vertex[12], varray_vertex[13], varray_vertex[14]);
1725         glEnd();
1726 #else
1727         memset(&m, 0, sizeof(m));
1728         if (p->blendmode == 0)
1729         {
1730                 m.blendfunc1 = GL_SRC_ALPHA;
1731                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
1732         }
1733         else if (p->blendmode == 1)
1734         {
1735                 m.blendfunc1 = GL_SRC_ALPHA;
1736                 m.blendfunc2 = GL_ONE;
1737         }
1738         else
1739         {
1740                 m.blendfunc1 = GL_ZERO;
1741                 m.blendfunc2 = GL_ONE_MINUS_SRC_COLOR;
1742         }
1743         m.tex[0] = R_GetTexture(tex->texture);
1744         R_Mesh_Matrix(&r_identitymatrix);
1745         R_Mesh_State(&m);
1746
1747         if (fogenabled && p->blendmode != PBLEND_MOD)
1748         {
1749                 VectorSubtract(org, r_origin, fogvec);
1750                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1751                 ifog = 1 - fog;
1752                 cr = cr * ifog;
1753                 cg = cg * ifog;
1754                 cb = cb * ifog;
1755                 if (p->blendmode == 0)
1756                 {
1757                         cr += fogcolor[0] * fog;
1758                         cg += fogcolor[1] * fog;
1759                         cb += fogcolor[2] * fog;
1760                 }
1761         }
1762         cr *= r_colorscale;
1763         cg *= r_colorscale;
1764         cb *= r_colorscale;
1765
1766         if (p->orientation == PARTICLE_BEAM)
1767         {
1768                 VectorSubtract(p->vel2, p->org, up);
1769                 VectorNormalizeFast(up);
1770                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1771                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1772                 varray_texcoord[0][0] = 1;varray_texcoord[0][1] = v[0];
1773                 varray_texcoord[0][4] = 0;varray_texcoord[0][5] = v[0];
1774                 varray_texcoord[0][8] = 0;varray_texcoord[0][9] = v[1];
1775                 varray_texcoord[0][12] = 1;varray_texcoord[0][13] = v[1];
1776         }
1777         else
1778         {
1779                 varray_texcoord[0][0] = tex->s2;varray_texcoord[0][1] = tex->t1;
1780                 varray_texcoord[0][4] = tex->s1;varray_texcoord[0][5] = tex->t1;
1781                 varray_texcoord[0][8] = tex->s1;varray_texcoord[0][9] = tex->t2;
1782                 varray_texcoord[0][12] = tex->s2;varray_texcoord[0][13] = tex->t2;
1783         }
1784
1785         GL_Color(cr, cg, cb, ca);
1786         R_Mesh_Draw(4, 2, polygonelements);
1787 #endif
1788 }
1789
1790 void R_DrawParticles (void)
1791 {
1792         int i;
1793         float minparticledist;
1794         particle_t *p;
1795
1796 #ifdef WORKINGLQUAKE
1797         CL_MoveParticles();
1798 #endif
1799
1800         // LordHavoc: early out conditions
1801         if ((!cl_numparticles) || (!r_drawparticles.integer))
1802                 return;
1803
1804         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1805
1806 #ifdef WORKINGLQUAKE
1807         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1808         glEnable(GL_BLEND);
1809         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1810         glDepthMask(0);
1811         // LordHavoc: only render if not too close
1812         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1813                 if (DotProduct(p->org, vpn) >= minparticledist)
1814                         R_DrawParticle(p);
1815         glDepthMask(1);
1816         glDisable(GL_BLEND);
1817         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1818 #else
1819         // LordHavoc: only render if not too close
1820         c_particles += cl_numparticles;
1821         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1822                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1823                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1824 #endif
1825 }
1826