2 Copyright (C) 1999-2006 Id Software, Inc. and contributors.
3 For a list of contributors, see the accompanying CONTRIBUTORS file.
5 This file is part of GtkRadiant.
7 GtkRadiant is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 GtkRadiant is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GtkRadiant; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "brush_primit.h"
24 #include "debugging/debugging.h"
27 #include "itextures.h"
32 #include "texturelib.h"
33 #include "math/matrix.h"
34 #include "math/plane.h"
35 #include "math/aabb.h"
38 #include "preferences.h"
42 \brief Construct a transform from XYZ space to ST space (3d to 2d).
43 This will be one of three axis-aligned spaces, depending on the surface normal.
44 NOTE: could also be done by swapping values.
46 void Normal_GetTransform(const Vector3& normal, Matrix4& transform)
48 switch (projectionaxis_for_normal(normal))
50 case eProjectionAxisZ:
63 case eProjectionAxisY:
76 case eProjectionAxisX:
90 transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0;
95 \brief Construct a transform in ST space from the texdef.
96 Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped.
97 This would really make more sense if it was inverseof(shift*rotate*scale).. oh well.
99 inline void Texdef_toTransform(const texdef_t& texdef, float width, float height, Matrix4& transform)
101 double inverse_scale[2];
103 // transform to texdef shift/scale/rotate
104 inverse_scale[0] = 1 / (texdef.scale[0] * width);
105 inverse_scale[1] = 1 / (texdef.scale[1] * -height);
106 transform[12] = texdef.shift[0] / width;
107 transform[13] = -texdef.shift[1] / -height;
108 double c = cos(degrees_to_radians(-texdef.rotate));
109 double s = sin(degrees_to_radians(-texdef.rotate));
110 transform[0] = static_cast<float>(c * inverse_scale[0]);
111 transform[1] = static_cast<float>(s * inverse_scale[1]);
112 transform[4] = static_cast<float>(-s * inverse_scale[0]);
113 transform[5] = static_cast<float>(c * inverse_scale[1]);
114 transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0;
115 transform[10] = transform[15] = 1;
118 inline void BPTexdef_toTransform(const brushprimit_texdef_t& bp_texdef, Matrix4& transform)
120 transform = g_matrix4_identity;
121 transform.xx() = bp_texdef.coords[0][0];
122 transform.yx() = bp_texdef.coords[0][1];
123 transform.tx() = bp_texdef.coords[0][2];
124 transform.xy() = bp_texdef.coords[1][0];
125 transform.yy() = bp_texdef.coords[1][1];
126 transform.ty() = bp_texdef.coords[1][2];
129 inline void Texdef_toTransform(const TextureProjection& projection, float width, float height, Matrix4& transform)
131 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
133 BPTexdef_toTransform(projection.m_brushprimit_texdef, transform);
137 Texdef_toTransform(projection.m_texdef, width, height, transform);
141 // handles degenerate cases, just in case library atan2 doesn't
142 inline double arctangent_yx(double y, double x)
158 inline void Texdef_fromTransform(texdef_t& texdef, float width, float height, const Matrix4& transform)
160 texdef.scale[0] = static_cast<float>((1.0 / vector2_length(Vector2(transform[0], transform[4]))) / width);
161 texdef.scale[1] = static_cast<float>((1.0 / vector2_length(Vector2(transform[1], transform[5]))) / height);
163 texdef.rotate = static_cast<float>(-radians_to_degrees(arctangent_yx(-transform[4], transform[0])));
165 if(texdef.rotate == -180.0f)
167 texdef.rotate = 180.0f;
170 texdef.shift[0] = transform[12] * width;
171 texdef.shift[1] = transform[13] * height;
173 // If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale.
174 if(vector2_cross(Vector2(transform[0], transform[4]), Vector2(transform[1], transform[5])) > 0)
176 if(texdef.rotate >= 180.0f)
178 texdef.rotate -= 180.0f;
179 texdef.scale[0] = -texdef.scale[0];
183 texdef.scale[1] = -texdef.scale[1];
186 //globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
189 inline void BPTexdef_fromTransform(brushprimit_texdef_t& bp_texdef, const Matrix4& transform)
191 bp_texdef.coords[0][0] = transform.xx();
192 bp_texdef.coords[0][1] = transform.yx();
193 bp_texdef.coords[0][2] = transform.tx();
194 bp_texdef.coords[1][0] = transform.xy();
195 bp_texdef.coords[1][1] = transform.yy();
196 bp_texdef.coords[1][2] = transform.ty();
199 inline void Texdef_fromTransform(TextureProjection& projection, float width, float height, const Matrix4& transform)
201 ASSERT_MESSAGE((transform[0] != 0 || transform[4] != 0)
202 && (transform[1] != 0 || transform[5] != 0), "invalid texture matrix");
204 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
206 BPTexdef_fromTransform(projection.m_brushprimit_texdef, transform);
210 Texdef_fromTransform(projection.m_texdef, width, height, transform);
214 inline void Texdef_normalise(texdef_t& texdef, float width, float height)
216 // it may be useful to also normalise the rotation here, if this function is used elsewhere.
217 texdef.shift[0] = float_mod(texdef.shift[0], width);
218 texdef.shift[1] = float_mod(texdef.shift[1], height);
219 //globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
222 inline void BPTexdef_normalise(brushprimit_texdef_t& bp_texdef, float width, float height)
224 bp_texdef.coords[0][2] = float_mod(bp_texdef.coords[0][2], width);
225 bp_texdef.coords[1][2] = float_mod(bp_texdef.coords[1][2], height);
228 /// \brief Normalise \p projection for a given texture \p width and \p height.
230 /// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture.
231 /// This function normalises shift values to the smallest positive congruent values.
232 void Texdef_normalise(TextureProjection& projection, float width, float height)
234 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
236 BPTexdef_normalise(projection.m_brushprimit_texdef, width, height);
240 Texdef_normalise(projection.m_texdef, width, height);
244 void ComputeAxisBase(const Vector3& normal, Vector3& texS, Vector3& texT);
246 inline void DebugAxisBase(const Vector3& normal)
249 ComputeAxisBase(normal, x, y);
250 globalOutputStream() << "BP debug: " << x << y << normal << "\n";
253 void Texdef_basisForNormal(const TextureProjection& projection, const Vector3& normal, Matrix4& basis)
255 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
257 basis = g_matrix4_identity;
258 ComputeAxisBase(normal, vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y()));
259 vector4_to_vector3(basis.z()) = normal;
260 matrix4_transpose(basis);
261 //DebugAxisBase(normal);
263 else if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE)
265 basis = g_matrix4_identity;
266 vector4_to_vector3(basis.x()) = projection.m_basis_s;
267 vector4_to_vector3(basis.y()) = vector3_negated(projection.m_basis_t);
268 vector4_to_vector3(basis.z()) = vector3_normalised(vector3_cross(vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y())));
269 matrix4_multiply_by_matrix4(basis, matrix4_rotation_for_z_degrees(-projection.m_texdef.rotate));
270 //globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n";
271 matrix4_transpose(basis);
275 Normal_GetTransform(normal, basis);
279 void Texdef_EmitTextureCoordinates(const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld)
285 //globalOutputStream() << "normal: " << normal << "\n";
288 Texdef_toTransform(projection, (float)width, (float)height, local2tex);
289 //globalOutputStream() << "texdef: " << static_cast<const Vector3&>(local2tex.x()) << static_cast<const Vector3&>(local2tex.y()) << "\n";
293 TextureProjection tmp;
294 Texdef_fromTransform(tmp, (float)width, (float)height, local2tex);
295 Matrix4 tmpTransform;
296 Texdef_toTransform(tmp, (float)width, (float)height, tmpTransform);
297 ASSERT_MESSAGE(matrix4_equal_epsilon(local2tex, tmpTransform, 0.0001f), "bleh");
303 // we don't care if it's not normalised...
304 Texdef_basisForNormal(projection, matrix4_transformed_direction(localToWorld, normal), xyz2st);
305 //globalOutputStream() << "basis: " << static_cast<const Vector3&>(xyz2st.x()) << static_cast<const Vector3&>(xyz2st.y()) << static_cast<const Vector3&>(xyz2st.z()) << "\n";
306 matrix4_multiply_by_matrix4(local2tex, xyz2st);
309 Vector3 tangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).x())));
310 Vector3 bitangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).y())));
312 matrix4_multiply_by_matrix4(local2tex, localToWorld);
314 for(Winding::iterator i = w.begin(); i != w.end(); ++i)
316 Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex);
317 (*i).texcoord[0] = texcoord[0];
318 (*i).texcoord[1] = texcoord[1];
320 (*i).tangent = tangent;
321 (*i).bitangent = bitangent;
326 \brief Provides the axis-base of the texture ST space for this normal,
327 as they had been transformed to world XYZ space.
329 void TextureAxisFromNormal(const Vector3& normal, Vector3& s, Vector3& t)
331 switch (projectionaxis_for_normal(normal))
333 case eProjectionAxisZ:
343 case eProjectionAxisY:
353 case eProjectionAxisX:
366 void Texdef_Assign(texdef_t& td, const texdef_t& other)
371 void Texdef_Shift(texdef_t& td, float s, float t)
377 void Texdef_Scale(texdef_t& td, float s, float t)
383 void Texdef_Rotate(texdef_t& td, float angle)
386 td.rotate = static_cast<float>(float_to_integer(td.rotate) % 360);
389 // NOTE: added these from Ritual's Q3Radiant
390 void ClearBounds(Vector3& mins, Vector3& maxs)
392 mins[0] = mins[1] = mins[2] = 99999;
393 maxs[0] = maxs[1] = maxs[2] = -99999;
396 void AddPointToBounds(const Vector3& v, Vector3& mins, Vector3& maxs)
401 for (i=0 ; i<3 ; i++)
411 template<typename Element>
412 inline BasicVector3<Element> vector3_inverse(const BasicVector3<Element>& self)
414 return BasicVector3<Element>(
415 Element(1.0 / self.x()),
416 Element(1.0 / self.y()),
417 Element(1.0 / self.z())
421 // low level functions .. put in mathlib?
422 #define BPMatCopy(a,b) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2];}
423 // apply a scale transformation to the BP matrix
424 #define BPMatScale(m,sS,sT) {m[0][0]*=sS; m[1][0]*=sS; m[0][1]*=sT; m[1][1]*=sT;}
425 // apply a translation transformation to a BP matrix
426 #define BPMatTranslate(m,s,t) {m[0][2] += m[0][0]*s + m[0][1]*t; m[1][2] += m[1][0]*s+m[1][1]*t;}
427 // 2D homogeneous matrix product C = A*B
428 void BPMatMul(float A[2][3], float B[2][3], float C[2][3]);
429 // apply a rotation (degrees)
430 void BPMatRotate(float A[2][3], float theta);
432 void BPMatDump(float A[2][3]);
440 bp_globals_t g_bp_globals;
441 float g_texdef_default_scale;
443 // compute a determinant using Sarrus rule
444 //++timo "inline" this with a macro
445 // NOTE : the three vectors are understood as columns of the matrix
446 inline float SarrusDet(const Vector3& a, const Vector3& b, const Vector3& c)
448 return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2]
449 -c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1];
452 // in many case we know three points A,B,C in two axis base B1 and B2
453 // and we want the matrix M so that A(B1) = T * A(B2)
454 // NOTE: 2D homogeneous space stuff
455 // NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling
456 // NOTE: the third coord of the A,B,C point is ignored
457 // NOTE: see the commented out section to fill M and D
458 //++timo TODO: update the other members to use this when possible
459 void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T )
461 // Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way)
464 M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
466 // fill the data vectors
467 M[0][0]=A2[0]; M[0][1]=B2[0]; M[0][2]=C2[0];
468 M[1][0]=A2[1]; M[1][1]=B2[1]; M[1][2]=C2[1];
469 M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
478 det = SarrusDet( M[0], M[1], M[2] );
479 T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
480 T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
481 T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
482 T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
483 T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
484 T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
487 //++timo replace everywhere texX by texS etc. ( ----> and in q3map !)
488 // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME !
489 // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0
490 // rotation by (0,RotY,RotZ) assigns X to normal
491 void ComputeAxisBase(const Vector3& normal, Vector3& texS, Vector3& texT)
494 const Vector3 up(0, 0, 1);
495 const Vector3 down(0, 0, -1);
497 if(vector3_equal_epsilon(normal, up, float(1e-6)))
499 texS = Vector3(0, 1, 0);
500 texT = Vector3(1, 0, 0);
502 else if(vector3_equal_epsilon(normal, down, float(1e-6)))
504 texS = Vector3(0, 1, 0);
505 texT = Vector3(-1, 0, 0);
509 texS = vector3_normalised(vector3_cross(normal, up));
510 texT = vector3_normalised(vector3_cross(normal, texS));
511 vector3_negate(texS);
518 if (fabs(normal[0])<1e-6)
520 if (fabs(normal[1])<1e-6)
522 if (fabs(normal[2])<1e-6)
525 RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0]));
526 RotZ=atan2(normal[1],normal[0]);
527 // rotate (0,1,0) and (0,0,1) to compute texS and texT
531 // the texT vector is along -Z ( T texture coorinates axis )
532 texT[0]=-sin(RotY)*cos(RotZ);
533 texT[1]=-sin(RotY)*sin(RotZ);
538 #if 0 // texdef conversion
539 void FaceToBrushPrimitFace(face_t *f)
543 // ST of (0,0) (1,0) (0,1)
544 float ST[3][5]; // [ point index ] [ xyz ST ]
545 //++timo not used as long as brushprimit_texdef and texdef are static
546 /* f->brushprimit_texdef.contents=f->texdef.contents;
547 f->brushprimit_texdef.flags=f->texdef.flags;
548 f->brushprimit_texdef.value=f->texdef.value;
549 strcpy(f->brushprimit_texdef.name,f->texdef.name); */
551 if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f )
553 globalOutputStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n";
558 globalOutputStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n";
563 ComputeAxisBase(f->plane.normal,texX,texY);
564 // compute projection vector
565 VectorCopy(f->plane.normal,proj);
566 VectorScale(proj,f->plane.dist,proj);
567 // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane
568 // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane
569 // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane
570 // use old texture code to compute the ST coords of these points
571 VectorCopy(proj,ST[0]);
572 EmitTextureCoordinates(ST[0], f->pShader->getTexture(), f);
573 VectorCopy(texX,ST[1]);
574 VectorAdd(ST[1],proj,ST[1]);
575 EmitTextureCoordinates(ST[1], f->pShader->getTexture(), f);
576 VectorCopy(texY,ST[2]);
577 VectorAdd(ST[2],proj,ST[2]);
578 EmitTextureCoordinates(ST[2], f->pShader->getTexture(), f);
579 // compute texture matrix
580 f->brushprimit_texdef.coords[0][2]=ST[0][3];
581 f->brushprimit_texdef.coords[1][2]=ST[0][4];
582 f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2];
583 f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2];
584 f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2];
585 f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2];
588 // compute texture coordinates for the winding points
589 void EmitBrushPrimitTextureCoordinates(face_t * f, Winding * w)
594 ComputeAxisBase(f->plane.normal,texX,texY);
595 // in case the texcoords matrix is empty, build a default one
596 // same behaviour as if scale[0]==0 && scale[1]==0 in old code
597 if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0)
599 f->brushprimit_texdef.coords[0][0] = 1.0f;
600 f->brushprimit_texdef.coords[1][1] = 1.0f;
601 ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() );
604 for (i=0 ; i<w.numpoints ; i++)
606 x=vector3_dot(w.point_at(i),texX);
607 y=vector3_dot(w.point_at(i),texY);
610 if (g_bp_globals.bNeedConvert)
612 // check we compute the same ST as the traditional texture computation used before
613 float S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
614 float T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
615 if ( fabs(S-w.point_at(i)[3])>1e-2 || fabs(T-w.point_at(i)[4])>1e-2 )
617 if ( fabs(S-w.point_at(i)[3])>1e-4 || fabs(T-w.point_at(i)[4])>1e-4 )
618 globalOutputStream() << "Warning : precision loss in brush -> brush primitive texture computation\n";
620 globalOutputStream() << "Warning : brush -> brush primitive texture computation bug detected\n";
625 w.point_at(i)[3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
626 w.point_at(i)[4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
631 typedef float texmat_t[2][3];
633 void TexMat_Scale(texmat_t texmat, float s, float t)
643 void TexMat_Assign(texmat_t texmat, const texmat_t other)
645 texmat[0][0] = other[0][0];
646 texmat[0][1] = other[0][1];
647 texmat[0][2] = other[0][2];
648 texmat[1][0] = other[1][0];
649 texmat[1][1] = other[1][1];
650 texmat[1][2] = other[1][2];
653 void ConvertTexMatWithDimensions(const texmat_t texmat1, std::size_t w1, std::size_t h1,
654 texmat_t texmat2, std::size_t w2, std::size_t h2)
656 TexMat_Assign(texmat2, texmat1);
657 TexMat_Scale(texmat2, static_cast<float>(w1) / static_cast<float>(w2), static_cast<float>(h1) / static_cast<float>(h2));
661 // convert a texture matrix between two qtexture_t
662 // if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates )
663 void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 )
665 ConvertTexMatWithDimensions(texMat1, (qtex1) ? qtex1->width : 2, (qtex1) ? qtex1->height : 2,
666 texMat2, (qtex2) ? qtex2->width : 2, (qtex2) ? qtex2->height : 2);
669 void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 )
671 ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2);
675 // compute a fake shift scale rot representation from the texture matrix
676 // these shift scale rot values are to be understood in the local axis base
677 // Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different.
679 void TexMatToFakeTexCoords(const brushprimit_texdef_t& bp_texdef, texdef_t& texdef)
681 texdef.scale[0] = static_cast<float>(1.0 / vector2_length(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[1][0])));
682 texdef.scale[1] = static_cast<float>(1.0 / vector2_length(Vector2(bp_texdef.coords[0][1], bp_texdef.coords[1][1])));
684 texdef.rotate = -static_cast<float>(radians_to_degrees(arctangent_yx(bp_texdef.coords[1][0], bp_texdef.coords[0][0])));
686 texdef.shift[0] = -bp_texdef.coords[0][2];
687 texdef.shift[1] = bp_texdef.coords[1][2];
689 // determine whether or not an axis is flipped using a 2d cross-product
690 double cross = vector2_cross(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[0][1]), Vector2(bp_texdef.coords[1][0], bp_texdef.coords[1][1]));
693 // This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped,
694 // we pick one (rather arbitrarily) using the following convention: If the X-axis is between
695 // 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and
696 // subtract out 180 degrees to compensate.
697 if(texdef.rotate >= 180.0f)
699 texdef.rotate -= 180.0f;
700 texdef.scale[0] = -texdef.scale[0];
704 texdef.scale[1] = -texdef.scale[1];
709 // compute back the texture matrix from fake shift scale rot
710 void FakeTexCoordsToTexMat(const texdef_t& texdef, brushprimit_texdef_t& bp_texdef)
712 double r = degrees_to_radians(-texdef.rotate);
715 double x = 1.0f / texdef.scale[0];
716 double y = 1.0f / texdef.scale[1];
717 bp_texdef.coords[0][0] = static_cast<float>(x * c);
718 bp_texdef.coords[1][0] = static_cast<float>(x * s);
719 bp_texdef.coords[0][1] = static_cast<float>(y * -s);
720 bp_texdef.coords[1][1] = static_cast<float>(y * c);
721 bp_texdef.coords[0][2] = -texdef.shift[0];
722 bp_texdef.coords[1][2] = texdef.shift[1];
725 #if 0 // texture locking (brush primit)
726 // used for texture locking
727 // will move the texture according to a geometric vector
728 void ShiftTextureGeometric_BrushPrimit(face_t *f, Vector3& delta)
732 Vector3 M[3]; // columns of the matrix .. easier that way
735 // compute plane axis base ( doesn't change with translation )
736 ComputeAxisBase( f->plane.normal, texS, texT );
737 // compute translation vector in plane axis base
738 tx = vector3_dot( delta, texS );
739 ty = vector3_dot( delta, texT );
740 // fill the data vectors
741 M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx;
742 M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty;
743 M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
744 D[0][0]=f->brushprimit_texdef.coords[0][2];
745 D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
746 D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
747 D[1][0]=f->brushprimit_texdef.coords[1][2];
748 D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
749 D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
751 det = SarrusDet( M[0], M[1], M[2] );
752 f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
753 f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
754 f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
755 f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
756 f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
757 f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
760 // shift a texture (texture adjustments) along it's current texture axes
761 // x and y are geometric values, which we must compute as ST increments
762 // this depends on the texture size and the pixel/texel ratio
763 void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y)
766 // as a ratio against texture size
767 // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
768 s = (x * 2.0) / (float)f->pShader->getTexture().width;
769 t = (y * 2.0) / (float)f->pShader->getTexture().height;
770 f->brushprimit_texdef.coords[0][2] -= s;
771 f->brushprimit_texdef.coords[1][2] -= t;
775 // TTimo: FIXME: I don't like that, it feels broken
776 // (and it's likely that it's not used anymore)
777 // best fitted 2D vector is x.X+y.Y
778 void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y )
781 sx = vector3_dot( v, X );
782 sy = vector3_dot( v, Y );
783 if ( fabs(sy) > fabs(sx) )
802 #if 0 // texdef conversion
803 void BrushPrimitFaceToFace(face_t *face)
805 // we have parsed brush primitives and need conversion back to standard format
806 // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it
807 // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling
808 // I tried various tweaks, no luck .. seems shifting is lost
809 brushprimit_texdef_t aux;
810 ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 );
811 TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale );
812 face->texdef.scale[0]/=2.0;
813 face->texdef.scale[1]/=2.0;
818 #if 0 // texture locking (brush primit)
819 // TEXTURE LOCKING -----------------------------------------------------------------------------------------------------
820 // (Relevant to the editor only?)
822 // internally used for texture locking on rotation and flipping
823 // the general algorithm is the same for both lockings, it's only the geometric transformation part that changes
824 // so I wanted to keep it in a single function
825 // if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best
826 // (but right now I want to keep brush_primit.cpp striclty C)
828 bool txlock_bRotation;
830 // rotation locking params
835 // flip locking params
836 Vector3 txl_matrix[3];
839 void TextureLockTransformation_BrushPrimit(face_t *f)
841 Vector3 Orig,texS,texT; // axis base of initial plane
842 // used by transformation algo
844 Vector3 vRotate; // rotation vector
846 Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base }
847 Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane
848 Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging )
853 // compute plane axis base
854 ComputeAxisBase( f->plane.normal, texS, texT );
855 VectorSet(Orig, 0.0f, 0.0f, 0.0f);
857 // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation
858 // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base )
859 // input: Orig, texS, texT (and the global locking params)
860 // ouput: rOrig, rvecS, rvecT, rNormal
861 if (txlock_bRotation) {
863 VectorSet( vRotate, 0.0f, 0.0f, 0.0f );
864 vRotate[txl_nAxis]=txl_fDeg;
865 VectorRotateOrigin ( Orig, vRotate, txl_vOrigin, rOrig );
866 VectorRotateOrigin ( texS, vRotate, txl_vOrigin, rvecS );
867 VectorRotateOrigin ( texT, vRotate, txl_vOrigin, rvecT );
868 // compute normal of plane after rotation
869 VectorRotate ( f->plane.normal, vRotate, rNormal );
873 for (j=0 ; j<3 ; j++)
874 rOrig[j] = vector3_dot(vector3_subtracted(Orig, txl_origin), txl_matrix[j]) + txl_origin[j];
875 for (j=0 ; j<3 ; j++)
876 rvecS[j] = vector3_dot(vector3_subtracted(texS, txl_origin), txl_matrix[j]) + txl_origin[j];
877 for (j=0 ; j<3 ; j++)
878 rvecT[j] = vector3_dot(vector3_subtracted(texT, txl_origin), txl_matrix[j]) + txl_origin[j];
879 // we also need the axis base of the target plane, apply the transformation matrix to the normal too..
880 for (j=0 ; j<3 ; j++)
881 rNormal[j] = vector3_dot(f->plane.normal, txl_matrix[j]);
884 // compute rotated plane axis base
885 ComputeAxisBase( rNormal, rtexS, rtexT );
886 // compute S/T coordinates of the three points in rotated axis base ( in M matrix )
887 lOrig[0] = vector3_dot( rOrig, rtexS );
888 lOrig[1] = vector3_dot( rOrig, rtexT );
889 lvecS[0] = vector3_dot( rvecS, rtexS );
890 lvecS[1] = vector3_dot( rvecS, rtexT );
891 lvecT[0] = vector3_dot( rvecT, rtexS );
892 lvecT[1] = vector3_dot( rvecT, rtexT );
893 M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f;
894 M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f;
895 M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f;
897 D[0][0]=f->brushprimit_texdef.coords[0][2];
898 D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
899 D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
900 D[1][0]=f->brushprimit_texdef.coords[1][2];
901 D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
902 D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
904 det = SarrusDet( M[0], M[1], M[2] );
905 f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
906 f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
907 f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
908 f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
909 f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
910 f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
914 // called before the points on the face are actually rotated
915 void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, Vector3& vOrigin )
917 // this is a placeholder to call the general texture locking algorithm
918 txlock_bRotation = true;
921 VectorCopy(vOrigin, txl_vOrigin);
922 TextureLockTransformation_BrushPrimit(f);
925 // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation)
926 // this matches the select_matrix algo used in select.cpp
927 // this needs to be called on the face BEFORE any geometric transformation
928 // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done
929 void ApplyMatrix_BrushPrimit(face_t *f, Vector3 matrix[3], Vector3& origin)
931 // this is a placeholder to call the general texture locking algorithm
932 txlock_bRotation = false;
933 VectorCopy(matrix[0], txl_matrix[0]);
934 VectorCopy(matrix[1], txl_matrix[1]);
935 VectorCopy(matrix[2], txl_matrix[2]);
936 VectorCopy(origin, txl_origin);
937 TextureLockTransformation_BrushPrimit(f);
942 void BPMatMul(float A[2][3], float B[2][3], float C[2][3])
944 C[0][0] = A[0][0]*B[0][0]+A[0][1]*B[1][0];
945 C[1][0] = A[1][0]*B[0][0]+A[1][1]*B[1][0];
946 C[0][1] = A[0][0]*B[0][1]+A[0][1]*B[1][1];
947 C[1][1] = A[1][0]*B[0][1]+A[1][1]*B[1][1];
948 C[0][2] = A[0][0]*B[0][2]+A[0][1]*B[1][2]+A[0][2];
949 C[1][2] = A[1][0]*B[0][2]+A[1][1]*B[1][2]+A[1][2];
952 void BPMatDump(float A[2][3])
954 globalOutputStream() << "" << A[0][0]
963 void BPMatRotate(float A[2][3], float theta)
967 memset(&m, 0, sizeof(float)*6);
968 m[0][0] = static_cast<float>(cos(degrees_to_radians(theta)));
969 m[0][1] = static_cast<float>(-sin(degrees_to_radians(theta)));
976 #if 0 // camera-relative texture shift
977 // get the relative axes of the current texturing
978 void BrushPrimit_GetRelativeAxes(face_t *f, Vector3& vecS, Vector3& vecT)
981 // first we compute them as expressed in plane axis base
982 // BP matrix has coordinates of plane axis base expressed in geometric axis base
983 // so we use the line vectors
984 vS[0] = f->brushprimit_texdef.coords[0][0];
985 vS[1] = f->brushprimit_texdef.coords[0][1];
986 vT[0] = f->brushprimit_texdef.coords[1][0];
987 vT[1] = f->brushprimit_texdef.coords[1][1];
988 // now compute those vectors in geometric space
989 Vector3 texS, texT; // axis base of the plane (geometric)
990 ComputeAxisBase(f->plane.normal, texS, texT);
991 // vecS[] = vS[0].texS[] + vS[1].texT[]
992 // vecT[] = vT[0].texS[] + vT[1].texT[]
993 vecS[0] = vS[0]*texS[0] + vS[1]*texT[0];
994 vecS[1] = vS[0]*texS[1] + vS[1]*texT[1];
995 vecS[2] = vS[0]*texS[2] + vS[1]*texT[2];
996 vecT[0] = vT[0]*texS[0] + vT[1]*texT[0];
997 vecT[1] = vT[0]*texS[1] + vT[1]*texT[1];
998 vecT[2] = vT[0]*texS[2] + vT[1]*texT[2];
1001 // brush primitive texture adjustments, use the camera view to map adjustments
1002 // ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture
1003 void ShiftTextureRelative_Camera(face_t *f, int x, int y)
1006 float XY[2]; // the values we are going to send for translation
1007 float sgn[2]; // +1 or -1
1011 // get the two relative texture axes for the current texturing
1012 BrushPrimit_GetRelativeAxes(f, vecS, vecT);
1014 // center point of the face, project it on the camera space
1018 for (i=0; i<f->face_winding->numpoints; i++)
1020 VectorAdd(C,f->face_winding->point_at(i),C);
1022 VectorScale(C,1.0/f->face_winding->numpoints,C);
1024 pCam = g_pParentWnd->GetCamWnd();
1025 pCam->MatchViewAxes(C, vecS, axis[0], sgn[0]);
1026 pCam->MatchViewAxes(C, vecT, axis[1], sgn[1]);
1028 // this happens when the two directions can't be mapped on two different directions on the screen
1029 // then the move will occur against a single axis
1030 // (i.e. the user is not positioned well enough to send understandable shift commands)
1031 // NOTE: in most cases this warning is not very relevant because the user would use one of the two axes
1032 // for which the solution is easy (the other one being unknown)
1033 // so this warning could be removed
1034 if (axis[0] == axis[1])
1035 globalOutputStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n";
1037 // compute the X Y geometric increments
1038 // those geometric increments will be applied along the texture axes (the ones we computed above)
1043 // moving right/left
1044 XY[axis[0]] += sgn[0]*x;
1048 XY[axis[1]] += sgn[1]*y;
1050 // we worked out a move along vecS vecT, and we now it's geometric amplitude
1052 ShiftTextureRelative_BrushPrimit(f, XY[0], XY[1]);
1057 void BPTexdef_Assign(brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other)
1062 void BPTexdef_Shift(brushprimit_texdef_t& bp_td, float s, float t)
1064 // shift a texture (texture adjustments) along it's current texture axes
1065 // x and y are geometric values, which we must compute as ST increments
1066 // this depends on the texture size and the pixel/texel ratio
1067 // as a ratio against texture size
1068 // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
1069 bp_td.coords[0][2] -= s;
1070 bp_td.coords[1][2] += t;
1073 void BPTexdef_Scale(brushprimit_texdef_t& bp_td, float s, float t)
1075 // apply same scale as the spinner button of the surface inspector
1077 // compute fake shift scale rot
1078 TexMatToFakeTexCoords( bp_td, texdef );
1080 texdef.scale[0] += s;
1081 texdef.scale[1] += t;
1082 // compute new normalized texture matrix
1083 FakeTexCoordsToTexMat( texdef, bp_td );
1086 void BPTexdef_Rotate(brushprimit_texdef_t& bp_td, float angle)
1088 // apply same scale as the spinner button of the surface inspector
1090 // compute fake shift scale rot
1091 TexMatToFakeTexCoords( bp_td, texdef );
1093 texdef.rotate += angle;
1094 // compute new normalized texture matrix
1095 FakeTexCoordsToTexMat( texdef, bp_td );
1098 void BPTexdef_Construct(brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height)
1100 bp_td.coords[0][0] = 1.0f;
1101 bp_td.coords[1][1] = 1.0f;
1102 ConvertTexMatWithDimensions(bp_td.coords, 2, 2, bp_td.coords, width, height);
1105 void Texdef_Assign(TextureProjection& projection, const TextureProjection& other)
1107 if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
1109 BPTexdef_Assign(projection.m_brushprimit_texdef, other.m_brushprimit_texdef);
1113 Texdef_Assign(projection.m_texdef, other.m_texdef);
1114 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE)
1116 projection.m_basis_s = other.m_basis_s;
1117 projection.m_basis_t = other.m_basis_t;
1122 void Texdef_Shift(TextureProjection& projection, float s, float t)
1124 if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
1126 BPTexdef_Shift(projection.m_brushprimit_texdef, s, t);
1130 Texdef_Shift(projection.m_texdef, s, t);
1134 void Texdef_Scale(TextureProjection& projection, float s, float t)
1136 if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
1138 BPTexdef_Scale(projection.m_brushprimit_texdef, s, t);
1142 Texdef_Scale(projection.m_texdef, s, t);
1146 void Texdef_Rotate(TextureProjection& projection, float angle)
1148 if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
1150 BPTexdef_Rotate(projection.m_brushprimit_texdef, angle);
1154 Texdef_Rotate(projection.m_texdef, angle);
1158 void Texdef_FitTexture(TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat)
1166 Texdef_toTransform(projection, (float)width, (float)height, st2tex);
1168 // the current texture transform
1169 Matrix4 local2tex = st2tex;
1172 Texdef_basisForNormal(projection, normal, xyz2st);
1173 matrix4_multiply_by_matrix4(local2tex, xyz2st);
1176 // the bounds of the current texture transform
1178 for(Winding::const_iterator i = w.begin(); i != w.end(); ++i)
1180 Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex);
1181 aabb_extend_by_point_safe(bounds, texcoord);
1183 bounds.origin.z() = 0;
1184 bounds.extents.z() = 1;
1186 // the bounds of a perfectly fitted texture transform
1187 AABB perfect(Vector3(s_repeat * 0.5, t_repeat * 0.5, 0), Vector3(s_repeat * 0.5, t_repeat * 0.5, 1));
1189 // the difference between the current texture transform and the perfectly fitted transform
1190 Matrix4 matrix(matrix4_translation_for_vec3(bounds.origin - perfect.origin));
1191 matrix4_pivoted_scale_by_vec3(matrix, bounds.extents / perfect.extents, perfect.origin);
1192 matrix4_affine_invert(matrix);
1194 // apply the difference to the current texture transform
1195 matrix4_premultiply_by_matrix4(st2tex, matrix);
1197 Texdef_fromTransform(projection, (float)width, (float)height, st2tex);
1198 Texdef_normalise(projection, (float)width, (float)height);
1201 float Texdef_getDefaultTextureScale()
1203 return g_texdef_default_scale;
1206 void TexDef_Construct_Default(TextureProjection& projection)
1208 projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale();
1209 projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale();
1211 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
1213 FakeTexCoordsToTexMat(projection.m_texdef, projection.m_brushprimit_texdef);
1219 void ShiftScaleRotate_fromFace(texdef_t& shiftScaleRotate, const TextureProjection& projection)
1221 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
1223 TexMatToFakeTexCoords(projection.m_brushprimit_texdef, shiftScaleRotate);
1227 shiftScaleRotate = projection.m_texdef;
1231 void ShiftScaleRotate_toFace(const texdef_t& shiftScaleRotate, TextureProjection& projection)
1233 if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
1235 // compute texture matrix
1236 // the matrix returned must be understood as a qtexture_t with width=2 height=2
1237 FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef );
1241 projection.m_texdef = shiftScaleRotate;
1246 inline void print_vector3(const Vector3& v)
1248 globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n";
1251 inline void print_3x3(const Matrix4& m)
1253 globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) "
1254 << "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) "
1255 << "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n";
1259 inline Matrix4 matrix4_rotation_for_vector3(const Vector3& x, const Vector3& y, const Vector3& z)
1262 x.x(), x.y(), x.z(), 0,
1263 y.x(), y.y(), y.z(), 0,
1264 z.x(), z.y(), z.z(), 0,
1269 inline Matrix4 matrix4_swap_axes(const Vector3& from, const Vector3& to)
1271 if(from.x() != 0 && to.y() != 0)
1273 return matrix4_rotation_for_vector3(to, from, g_vector3_axis_z);
1276 if(from.x() != 0 && to.z() != 0)
1278 return matrix4_rotation_for_vector3(to, g_vector3_axis_y, from);
1281 if(from.y() != 0 && to.z() != 0)
1283 return matrix4_rotation_for_vector3(g_vector3_axis_x, to, from);
1286 if(from.y() != 0 && to.x() != 0)
1288 return matrix4_rotation_for_vector3(from, to, g_vector3_axis_z);
1291 if(from.z() != 0 && to.x() != 0)
1293 return matrix4_rotation_for_vector3(from, g_vector3_axis_y, to);
1296 if(from.z() != 0 && to.y() != 0)
1298 return matrix4_rotation_for_vector3(g_vector3_axis_x, from, to);
1301 ERROR_MESSAGE("unhandled axis swap case");
1303 return g_matrix4_identity;
1306 inline Matrix4 matrix4_reflection_for_plane(const Plane3& plane)
1309 static_cast<float>(1 - (2 * plane.a * plane.a)),
1310 static_cast<float>(-2 * plane.a * plane.b),
1311 static_cast<float>(-2 * plane.a * plane.c),
1313 static_cast<float>(-2 * plane.b * plane.a),
1314 static_cast<float>(1 - (2 * plane.b * plane.b)),
1315 static_cast<float>(-2 * plane.b * plane.c),
1317 static_cast<float>(-2 * plane.c * plane.a),
1318 static_cast<float>(-2 * plane.c * plane.b),
1319 static_cast<float>(1 - (2 * plane.c * plane.c)),
1321 static_cast<float>(-2 * plane.d * plane.a),
1322 static_cast<float>(-2 * plane.d * plane.b),
1323 static_cast<float>(-2 * plane.d * plane.c),
1328 inline Matrix4 matrix4_reflection_for_plane45(const Plane3& plane, const Vector3& from, const Vector3& to)
1330 Vector3 first = from;
1331 Vector3 second = to;
1333 if(vector3_dot(from, plane.normal()) > 0 == vector3_dot(to, plane.normal()) > 0)
1335 first = vector3_negated(first);
1336 second = vector3_negated(second);
1340 globalOutputStream() << "normal: ";
1341 print_vector3(plane.normal());
1343 globalOutputStream() << "from: ";
1344 print_vector3(first);
1346 globalOutputStream() << "to: ";
1347 print_vector3(second);
1350 Matrix4 swap = matrix4_swap_axes(first, second);
1352 Matrix4 tmp = matrix4_reflection_for_plane(plane);
1354 swap.tx() = -static_cast<float>(-2 * plane.a * plane.d);
1355 swap.ty() = -static_cast<float>(-2 * plane.b * plane.d);
1356 swap.tz() = -static_cast<float>(-2 * plane.c * plane.d);
1361 void Texdef_transformLocked(TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed)
1363 //globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
1365 //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n";
1367 Vector3 normalTransformed(matrix4_transformed_direction(identity2transformed, plane.normal()));
1369 //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n";
1371 // identity: identity space
1372 // transformed: transformation
1373 // stIdentity: base st projection space before transformation
1374 // stTransformed: base st projection space after transformation
1375 // stOriginal: original texdef space
1377 // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal
1379 Matrix4 identity2stIdentity;
1380 Texdef_basisForNormal(projection, plane.normal(), identity2stIdentity);
1381 //globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n";
1383 if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE)
1385 matrix4_transform_direction(identity2transformed, projection.m_basis_s);
1386 matrix4_transform_direction(identity2transformed, projection.m_basis_t);
1389 Matrix4 transformed2stTransformed;
1390 Texdef_basisForNormal(projection, normalTransformed, transformed2stTransformed);
1392 Matrix4 stTransformed2identity(matrix4_affine_inverse(matrix4_multiplied_by_matrix4(transformed2stTransformed, identity2transformed)));
1394 Vector3 originalProjectionAxis(vector4_to_vector3(matrix4_affine_inverse(identity2stIdentity).z()));
1396 Vector3 transformedProjectionAxis(vector4_to_vector3(stTransformed2identity.z()));
1398 Matrix4 stIdentity2stOriginal;
1399 Texdef_toTransform(projection, (float)width, (float)height, stIdentity2stOriginal);
1400 Matrix4 identity2stOriginal(matrix4_multiplied_by_matrix4(stIdentity2stOriginal, identity2stIdentity));
1402 //globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n";
1403 //globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n";
1404 double dot = vector3_dot(originalProjectionAxis, transformedProjectionAxis);
1405 //globalOutputStream() << "dot: " << dot << "\n";
1408 // The projection axis chosen for the transformed normal is at 90 degrees
1409 // to the transformed projection axis chosen for the original normal.
1410 // This happens when the projection axis is ambiguous - e.g. for the plane
1411 // 'X == Y' the projection axis could be either X or Y.
1412 //globalOutputStream() << "flipped\n";
1414 globalOutputStream() << "projection off by 90\n";
1415 globalOutputStream() << "normal: ";
1416 print_vector3(plane.normal());
1417 globalOutputStream() << "original projection: ";
1418 print_vector3(originalProjectionAxis);
1419 globalOutputStream() << "transformed projection: ";
1420 print_vector3(transformedProjectionAxis);
1423 Matrix4 identityCorrected = matrix4_reflection_for_plane45(plane, originalProjectionAxis, transformedProjectionAxis);
1425 identity2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, identityCorrected);
1428 Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, stTransformed2identity);
1430 Texdef_fromTransform(projection, (float)width, (float)height, stTransformed2stOriginal);
1431 Texdef_normalise(projection, (float)width, (float)height);
1435 void Q3_to_matrix(const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix)
1437 Normal_GetTransform(normal, matrix);
1441 Texdef_toTransform(texdef, width, height, transform);
1443 matrix4_multiply_by_matrix4(matrix, transform);
1446 void BP_from_matrix(brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform)
1449 basis = g_matrix4_identity;
1450 ComputeAxisBase(normal, vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y()));
1451 vector4_to_vector3(basis.z()) = normal;
1452 matrix4_transpose(basis);
1453 matrix4_affine_invert(basis);
1455 Matrix4 basis2texture = matrix4_multiplied_by_matrix4(basis, transform);
1457 BPTexdef_fromTransform(bp_texdef, basis2texture);
1460 void Q3_to_BP(const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef)
1463 Q3_to_matrix(texdef, width, height, normal, matrix);
1464 BP_from_matrix(bp_texdef, normal, matrix);