]> icculus.org git repositories - icculus/iodoom3.git/blob - neo/renderer/jpeg-6/jchuff.c
hello world
[icculus/iodoom3.git] / neo / renderer / jpeg-6 / jchuff.c
1 /*
2  * jchuff.c
3  *
4  * Copyright (C) 1991-1995, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy encoding routines.
9  *
10  * Much of the complexity here has to do with supporting output suspension.
11  * If the data destination module demands suspension, we want to be able to
12  * back up to the start of the current MCU.  To do this, we copy state
13  * variables into local working storage, and update them back to the
14  * permanent JPEG objects only upon successful completion of an MCU.
15  */
16
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jchuff.h"             /* Declarations shared with jcphuff.c */
21
22
23 /* Expanded entropy encoder object for Huffman encoding.
24  *
25  * The savable_state subrecord contains fields that change within an MCU,
26  * but must not be updated permanently until we complete the MCU.
27  */
28
29 typedef struct {
30   INT32 put_buffer;             /* current bit-accumulation buffer */
31   int put_bits;                 /* # of bits now in it */
32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33 } savable_state;
34
35 /* This macro is to work around compilers with missing or broken
36  * structure assignment.  You'll need to fix this code if you have
37  * such a compiler and you change MAX_COMPS_IN_SCAN.
38  */
39
40 #ifndef NO_STRUCT_ASSIGN
41 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
42 #else
43 #if MAX_COMPS_IN_SCAN == 4
44 #define ASSIGN_STATE(dest,src)  \
45         ((dest).put_buffer = (src).put_buffer, \
46          (dest).put_bits = (src).put_bits, \
47          (dest).last_dc_val[0] = (src).last_dc_val[0], \
48          (dest).last_dc_val[1] = (src).last_dc_val[1], \
49          (dest).last_dc_val[2] = (src).last_dc_val[2], \
50          (dest).last_dc_val[3] = (src).last_dc_val[3])
51 #endif
52 #endif
53
54
55 typedef struct {
56   struct jpeg_entropy_encoder pub; /* public fields */
57
58   savable_state saved;          /* Bit buffer & DC state at start of MCU */
59
60   /* These fields are NOT loaded into local working state. */
61   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
62   int next_restart_num;         /* next restart number to write (0-7) */
63
64   /* Pointers to derived tables (these workspaces have image lifespan) */
65   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
66   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
67
68 #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
69   long * dc_count_ptrs[NUM_HUFF_TBLS];
70   long * ac_count_ptrs[NUM_HUFF_TBLS];
71 #endif
72 } huff_entropy_encoder;
73
74 typedef huff_entropy_encoder * huff_entropy_ptr;
75
76 /* Working state while writing an MCU.
77  * This struct contains all the fields that are needed by subroutines.
78  */
79
80 typedef struct {
81   JOCTET * next_output_byte;    /* => next byte to write in buffer */
82   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
83   savable_state cur;            /* Current bit buffer & DC state */
84   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
85 } working_state;
86
87
88 /* Forward declarations */
89 METHODDEF boolean encode_mcu_huff JPP((j_compress_ptr cinfo,
90                                        JBLOCKROW *MCU_data));
91 METHODDEF void finish_pass_huff JPP((j_compress_ptr cinfo));
92 #ifdef ENTROPY_OPT_SUPPORTED
93 METHODDEF boolean encode_mcu_gather JPP((j_compress_ptr cinfo,
94                                          JBLOCKROW *MCU_data));
95 METHODDEF void finish_pass_gather JPP((j_compress_ptr cinfo));
96 #endif
97
98
99 /*
100  * Initialize for a Huffman-compressed scan.
101  * If gather_statistics is TRUE, we do not output anything during the scan,
102  * just count the Huffman symbols used and generate Huffman code tables.
103  */
104
105 METHODDEF void
106 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
107 {
108   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
109   int ci, dctbl, actbl;
110   jpeg_component_info * compptr;
111
112   if (gather_statistics) {
113 #ifdef ENTROPY_OPT_SUPPORTED
114     entropy->pub.encode_mcu = encode_mcu_gather;
115     entropy->pub.finish_pass = finish_pass_gather;
116 #else
117     ERREXIT(cinfo, JERR_NOT_COMPILED);
118 #endif
119   } else {
120     entropy->pub.encode_mcu = encode_mcu_huff;
121     entropy->pub.finish_pass = finish_pass_huff;
122   }
123
124   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
125     compptr = cinfo->cur_comp_info[ci];
126     dctbl = compptr->dc_tbl_no;
127     actbl = compptr->ac_tbl_no;
128     /* Make sure requested tables are present */
129     /* (In gather mode, tables need not be allocated yet) */
130     if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
131         (cinfo->dc_huff_tbl_ptrs[dctbl] == NULL && !gather_statistics))
132       ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
133     if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
134         (cinfo->ac_huff_tbl_ptrs[actbl] == NULL && !gather_statistics))
135       ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
136     if (gather_statistics) {
137 #ifdef ENTROPY_OPT_SUPPORTED
138       /* Allocate and zero the statistics tables */
139       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
140       if (entropy->dc_count_ptrs[dctbl] == NULL)
141         entropy->dc_count_ptrs[dctbl] = (long *)
142           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
143                                       257 * SIZEOF(long));
144       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
145       if (entropy->ac_count_ptrs[actbl] == NULL)
146         entropy->ac_count_ptrs[actbl] = (long *)
147           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
148                                       257 * SIZEOF(long));
149       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
150 #endif
151     } else {
152       /* Compute derived values for Huffman tables */
153       /* We may do this more than once for a table, but it's not expensive */
154       jpeg_make_c_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
155                               & entropy->dc_derived_tbls[dctbl]);
156       jpeg_make_c_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
157                               & entropy->ac_derived_tbls[actbl]);
158     }
159     /* Initialize DC predictions to 0 */
160     entropy->saved.last_dc_val[ci] = 0;
161   }
162
163   /* Initialize bit buffer to empty */
164   entropy->saved.put_buffer = 0;
165   entropy->saved.put_bits = 0;
166
167   /* Initialize restart stuff */
168   entropy->restarts_to_go = cinfo->restart_interval;
169   entropy->next_restart_num = 0;
170 }
171
172
173 /*
174  * Compute the derived values for a Huffman table.
175  * Note this is also used by jcphuff.c.
176  */
177
178 GLOBAL void
179 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, JHUFF_TBL * htbl,
180                          c_derived_tbl ** pdtbl)
181 {
182   c_derived_tbl *dtbl;
183   int p, i, l, lastp, si;
184   char huffsize[257];
185   unsigned int huffcode[257];
186   unsigned int code;
187
188   /* Allocate a workspace if we haven't already done so. */
189   if (*pdtbl == NULL)
190     *pdtbl = (c_derived_tbl *)
191       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
192                                   SIZEOF(c_derived_tbl));
193   dtbl = *pdtbl;
194   
195   /* Figure C.1: make table of Huffman code length for each symbol */
196   /* Note that this is in code-length order. */
197
198   p = 0;
199   for (l = 1; l <= 16; l++) {
200     for (i = 1; i <= (int) htbl->bits[l]; i++)
201       huffsize[p++] = (char) l;
202   }
203   huffsize[p] = 0;
204   lastp = p;
205   
206   /* Figure C.2: generate the codes themselves */
207   /* Note that this is in code-length order. */
208   
209   code = 0;
210   si = huffsize[0];
211   p = 0;
212   while (huffsize[p]) {
213     while (((int) huffsize[p]) == si) {
214       huffcode[p++] = code;
215       code++;
216     }
217     code <<= 1;
218     si++;
219   }
220   
221   /* Figure C.3: generate encoding tables */
222   /* These are code and size indexed by symbol value */
223
224   /* Set any codeless symbols to have code length 0;
225    * this allows emit_bits to detect any attempt to emit such symbols.
226    */
227   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
228
229   for (p = 0; p < lastp; p++) {
230     dtbl->ehufco[htbl->huffval[p]] = huffcode[p];
231     dtbl->ehufsi[htbl->huffval[p]] = huffsize[p];
232   }
233 }
234
235
236 /* Outputting bytes to the file */
237
238 /* Emit a byte, taking 'action' if must suspend. */
239 #define emit_byte(state,val,action)  \
240         { *(state)->next_output_byte++ = (JOCTET) (val);  \
241           if (--(state)->free_in_buffer == 0)  \
242             if (! dump_buffer(state))  \
243               { action; } }
244
245
246 LOCAL boolean
247 dump_buffer (working_state * state)
248 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
249 {
250   struct jpeg_destination_mgr * dest = state->cinfo->dest;
251
252   if (! (*dest->empty_output_buffer) (state->cinfo))
253     return FALSE;
254   /* After a successful buffer dump, must reset buffer pointers */
255   state->next_output_byte = dest->next_output_byte;
256   state->free_in_buffer = dest->free_in_buffer;
257   return TRUE;
258 }
259
260
261 /* Outputting bits to the file */
262
263 /* Only the right 24 bits of put_buffer are used; the valid bits are
264  * left-justified in this part.  At most 16 bits can be passed to emit_bits
265  * in one call, and we never retain more than 7 bits in put_buffer
266  * between calls, so 24 bits are sufficient.
267  */
268
269 INLINE
270 LOCAL boolean
271 emit_bits (working_state * state, unsigned int code, int size)
272 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
273 {
274   /* This routine is heavily used, so it's worth coding tightly. */
275   register INT32 put_buffer = (INT32) code;
276   register int put_bits = state->cur.put_bits;
277
278   /* if size is 0, caller used an invalid Huffman table entry */
279   if (size == 0)
280     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
281
282   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
283   
284   put_bits += size;             /* new number of bits in buffer */
285   
286   put_buffer <<= 24 - put_bits; /* align incoming bits */
287
288   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
289   
290   while (put_bits >= 8) {
291     int c = (int) ((put_buffer >> 16) & 0xFF);
292     
293     emit_byte(state, c, return FALSE);
294     if (c == 0xFF) {            /* need to stuff a zero byte? */
295       emit_byte(state, 0, return FALSE);
296     }
297     put_buffer <<= 8;
298     put_bits -= 8;
299   }
300
301   state->cur.put_buffer = put_buffer; /* update state variables */
302   state->cur.put_bits = put_bits;
303
304   return TRUE;
305 }
306
307
308 LOCAL boolean
309 flush_bits (working_state * state)
310 {
311   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
312     return FALSE;
313   state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
314   state->cur.put_bits = 0;
315   return TRUE;
316 }
317
318
319 /* Encode a single block's worth of coefficients */
320
321 LOCAL boolean
322 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
323                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
324 {
325   register int temp, temp2;
326   register int nbits;
327   register int k, r, i;
328   
329   /* Encode the DC coefficient difference per section F.1.2.1 */
330   
331   temp = temp2 = block[0] - last_dc_val;
332
333   if (temp < 0) {
334     temp = -temp;               /* temp is abs value of input */
335     /* For a negative input, want temp2 = bitwise complement of abs(input) */
336     /* This code assumes we are on a two's complement machine */
337     temp2--;
338   }
339   
340   /* Find the number of bits needed for the magnitude of the coefficient */
341   nbits = 0;
342   while (temp) {
343     nbits++;
344     temp >>= 1;
345   }
346   
347   /* Emit the Huffman-coded symbol for the number of bits */
348   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
349     return FALSE;
350
351   /* Emit that number of bits of the value, if positive, */
352   /* or the complement of its magnitude, if negative. */
353   if (nbits)                    /* emit_bits rejects calls with size 0 */
354     if (! emit_bits(state, (unsigned int) temp2, nbits))
355       return FALSE;
356
357   /* Encode the AC coefficients per section F.1.2.2 */
358   
359   r = 0;                        /* r = run length of zeros */
360   
361   for (k = 1; k < DCTSIZE2; k++) {
362     if ((temp = block[jpeg_natural_order[k]]) == 0) {
363       r++;
364     } else {
365       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
366       while (r > 15) {
367         if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
368           return FALSE;
369         r -= 16;
370       }
371
372       temp2 = temp;
373       if (temp < 0) {
374         temp = -temp;           /* temp is abs value of input */
375         /* This code assumes we are on a two's complement machine */
376         temp2--;
377       }
378       
379       /* Find the number of bits needed for the magnitude of the coefficient */
380       nbits = 1;                /* there must be at least one 1 bit */
381       while ((temp >>= 1))
382         nbits++;
383       
384       /* Emit Huffman symbol for run length / number of bits */
385       i = (r << 4) + nbits;
386       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
387         return FALSE;
388
389       /* Emit that number of bits of the value, if positive, */
390       /* or the complement of its magnitude, if negative. */
391       if (! emit_bits(state, (unsigned int) temp2, nbits))
392         return FALSE;
393       
394       r = 0;
395     }
396   }
397
398   /* If the last coef(s) were zero, emit an end-of-block code */
399   if (r > 0)
400     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
401       return FALSE;
402
403   return TRUE;
404 }
405
406
407 /*
408  * Emit a restart marker & resynchronize predictions.
409  */
410
411 LOCAL boolean
412 emit_restart (working_state * state, int restart_num)
413 {
414   int ci;
415
416   if (! flush_bits(state))
417     return FALSE;
418
419   emit_byte(state, 0xFF, return FALSE);
420   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
421
422   /* Re-initialize DC predictions to 0 */
423   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
424     state->cur.last_dc_val[ci] = 0;
425
426   /* The restart counter is not updated until we successfully write the MCU. */
427
428   return TRUE;
429 }
430
431
432 /*
433  * Encode and output one MCU's worth of Huffman-compressed coefficients.
434  */
435
436 METHODDEF boolean
437 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
438 {
439   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
440   working_state state;
441   int blkn, ci;
442   jpeg_component_info * compptr;
443
444   /* Load up working state */
445   state.next_output_byte = cinfo->dest->next_output_byte;
446   state.free_in_buffer = cinfo->dest->free_in_buffer;
447   ASSIGN_STATE(state.cur, entropy->saved);
448   state.cinfo = cinfo;
449
450   /* Emit restart marker if needed */
451   if (cinfo->restart_interval) {
452     if (entropy->restarts_to_go == 0)
453       if (! emit_restart(&state, entropy->next_restart_num))
454         return FALSE;
455   }
456
457   /* Encode the MCU data blocks */
458   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
459     ci = cinfo->MCU_membership[blkn];
460     compptr = cinfo->cur_comp_info[ci];
461     if (! encode_one_block(&state,
462                            MCU_data[blkn][0], state.cur.last_dc_val[ci],
463                            entropy->dc_derived_tbls[compptr->dc_tbl_no],
464                            entropy->ac_derived_tbls[compptr->ac_tbl_no]))
465       return FALSE;
466     /* Update last_dc_val */
467     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
468   }
469
470   /* Completed MCU, so update state */
471   cinfo->dest->next_output_byte = state.next_output_byte;
472   cinfo->dest->free_in_buffer = state.free_in_buffer;
473   ASSIGN_STATE(entropy->saved, state.cur);
474
475   /* Update restart-interval state too */
476   if (cinfo->restart_interval) {
477     if (entropy->restarts_to_go == 0) {
478       entropy->restarts_to_go = cinfo->restart_interval;
479       entropy->next_restart_num++;
480       entropy->next_restart_num &= 7;
481     }
482     entropy->restarts_to_go--;
483   }
484
485   return TRUE;
486 }
487
488
489 /*
490  * Finish up at the end of a Huffman-compressed scan.
491  */
492
493 METHODDEF void
494 finish_pass_huff (j_compress_ptr cinfo)
495 {
496   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
497   working_state state;
498
499   /* Load up working state ... flush_bits needs it */
500   state.next_output_byte = cinfo->dest->next_output_byte;
501   state.free_in_buffer = cinfo->dest->free_in_buffer;
502   ASSIGN_STATE(state.cur, entropy->saved);
503   state.cinfo = cinfo;
504
505   /* Flush out the last data */
506   if (! flush_bits(&state))
507     ERREXIT(cinfo, JERR_CANT_SUSPEND);
508
509   /* Update state */
510   cinfo->dest->next_output_byte = state.next_output_byte;
511   cinfo->dest->free_in_buffer = state.free_in_buffer;
512   ASSIGN_STATE(entropy->saved, state.cur);
513 }
514
515
516 /*
517  * Huffman coding optimization.
518  *
519  * This actually is optimization, in the sense that we find the best possible
520  * Huffman table(s) for the given data.  We first scan the supplied data and
521  * count the number of uses of each symbol that is to be Huffman-coded.
522  * (This process must agree with the code above.)  Then we build an
523  * optimal Huffman coding tree for the observed counts.
524  *
525  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
526  * If some symbols have a very small but nonzero probability, the Huffman tree
527  * must be adjusted to meet the code length restriction.  We currently use
528  * the adjustment method suggested in the JPEG spec.  This method is *not*
529  * optimal; it may not choose the best possible limited-length code.  But
530  * since the symbols involved are infrequently used, it's not clear that
531  * going to extra trouble is worthwhile.
532  */
533
534 #ifdef ENTROPY_OPT_SUPPORTED
535
536
537 /* Process a single block's worth of coefficients */
538
539 LOCAL void
540 htest_one_block (JCOEFPTR block, int last_dc_val,
541                  long dc_counts[], long ac_counts[])
542 {
543   register int temp;
544   register int nbits;
545   register int k, r;
546   
547   /* Encode the DC coefficient difference per section F.1.2.1 */
548   
549   temp = block[0] - last_dc_val;
550   if (temp < 0)
551     temp = -temp;
552   
553   /* Find the number of bits needed for the magnitude of the coefficient */
554   nbits = 0;
555   while (temp) {
556     nbits++;
557     temp >>= 1;
558   }
559
560   /* Count the Huffman symbol for the number of bits */
561   dc_counts[nbits]++;
562   
563   /* Encode the AC coefficients per section F.1.2.2 */
564   
565   r = 0;                        /* r = run length of zeros */
566   
567   for (k = 1; k < DCTSIZE2; k++) {
568     if ((temp = block[jpeg_natural_order[k]]) == 0) {
569       r++;
570     } else {
571       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
572       while (r > 15) {
573         ac_counts[0xF0]++;
574         r -= 16;
575       }
576       
577       /* Find the number of bits needed for the magnitude of the coefficient */
578       if (temp < 0)
579         temp = -temp;
580       
581       /* Find the number of bits needed for the magnitude of the coefficient */
582       nbits = 1;                /* there must be at least one 1 bit */
583       while ((temp >>= 1))
584         nbits++;
585       
586       /* Count Huffman symbol for run length / number of bits */
587       ac_counts[(r << 4) + nbits]++;
588       
589       r = 0;
590     }
591   }
592
593   /* If the last coef(s) were zero, emit an end-of-block code */
594   if (r > 0)
595     ac_counts[0]++;
596 }
597
598
599 /*
600  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
601  * No data is actually output, so no suspension return is possible.
602  */
603
604 METHODDEF boolean
605 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
606 {
607   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
608   int blkn, ci;
609   jpeg_component_info * compptr;
610
611   /* Take care of restart intervals if needed */
612   if (cinfo->restart_interval) {
613     if (entropy->restarts_to_go == 0) {
614       /* Re-initialize DC predictions to 0 */
615       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
616         entropy->saved.last_dc_val[ci] = 0;
617       /* Update restart state */
618       entropy->restarts_to_go = cinfo->restart_interval;
619     }
620     entropy->restarts_to_go--;
621   }
622
623   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
624     ci = cinfo->MCU_membership[blkn];
625     compptr = cinfo->cur_comp_info[ci];
626     htest_one_block(MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
627                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
628                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
629     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
630   }
631
632   return TRUE;
633 }
634
635
636 /*
637  * Generate the optimal coding for the given counts, fill htbl.
638  * Note this is also used by jcphuff.c.
639  */
640
641 GLOBAL void
642 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
643 {
644 #define MAX_CLEN 32             /* assumed maximum initial code length */
645   UINT8 bits[MAX_CLEN+1];       /* bits[k] = # of symbols with code length k */
646   int codesize[257];            /* codesize[k] = code length of symbol k */
647   int others[257];              /* next symbol in current branch of tree */
648   int c1, c2;
649   int p, i, j;
650   long v;
651
652   /* This algorithm is explained in section K.2 of the JPEG standard */
653
654   MEMZERO(bits, SIZEOF(bits));
655   MEMZERO(codesize, SIZEOF(codesize));
656   for (i = 0; i < 257; i++)
657     others[i] = -1;             /* init links to empty */
658   
659   freq[256] = 1;                /* make sure there is a nonzero count */
660   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
661    * that no real symbol is given code-value of all ones, because 256
662    * will be placed in the largest codeword category.
663    */
664
665   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
666
667   for (;;) {
668     /* Find the smallest nonzero frequency, set c1 = its symbol */
669     /* In case of ties, take the larger symbol number */
670     c1 = -1;
671     v = 1000000000L;
672     for (i = 0; i <= 256; i++) {
673       if (freq[i] && freq[i] <= v) {
674         v = freq[i];
675         c1 = i;
676       }
677     }
678
679     /* Find the next smallest nonzero frequency, set c2 = its symbol */
680     /* In case of ties, take the larger symbol number */
681     c2 = -1;
682     v = 1000000000L;
683     for (i = 0; i <= 256; i++) {
684       if (freq[i] && freq[i] <= v && i != c1) {
685         v = freq[i];
686         c2 = i;
687       }
688     }
689
690     /* Done if we've merged everything into one frequency */
691     if (c2 < 0)
692       break;
693     
694     /* Else merge the two counts/trees */
695     freq[c1] += freq[c2];
696     freq[c2] = 0;
697
698     /* Increment the codesize of everything in c1's tree branch */
699     codesize[c1]++;
700     while (others[c1] >= 0) {
701       c1 = others[c1];
702       codesize[c1]++;
703     }
704     
705     others[c1] = c2;            /* chain c2 onto c1's tree branch */
706     
707     /* Increment the codesize of everything in c2's tree branch */
708     codesize[c2]++;
709     while (others[c2] >= 0) {
710       c2 = others[c2];
711       codesize[c2]++;
712     }
713   }
714
715   /* Now count the number of symbols of each code length */
716   for (i = 0; i <= 256; i++) {
717     if (codesize[i]) {
718       /* The JPEG standard seems to think that this can't happen, */
719       /* but I'm paranoid... */
720       if (codesize[i] > MAX_CLEN)
721         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
722
723       bits[codesize[i]]++;
724     }
725   }
726
727   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
728    * Huffman procedure assigned any such lengths, we must adjust the coding.
729    * Here is what the JPEG spec says about how this next bit works:
730    * Since symbols are paired for the longest Huffman code, the symbols are
731    * removed from this length category two at a time.  The prefix for the pair
732    * (which is one bit shorter) is allocated to one of the pair; then,
733    * skipping the BITS entry for that prefix length, a code word from the next
734    * shortest nonzero BITS entry is converted into a prefix for two code words
735    * one bit longer.
736    */
737   
738   for (i = MAX_CLEN; i > 16; i--) {
739     while (bits[i] > 0) {
740       j = i - 2;                /* find length of new prefix to be used */
741       while (bits[j] == 0)
742         j--;
743       
744       bits[i] -= 2;             /* remove two symbols */
745       bits[i-1]++;              /* one goes in this length */
746       bits[j+1] += 2;           /* two new symbols in this length */
747       bits[j]--;                /* symbol of this length is now a prefix */
748     }
749   }
750
751   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
752   while (bits[i] == 0)          /* find largest codelength still in use */
753     i--;
754   bits[i]--;
755   
756   /* Return final symbol counts (only for lengths 0..16) */
757   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
758   
759   /* Return a list of the symbols sorted by code length */
760   /* It's not real clear to me why we don't need to consider the codelength
761    * changes made above, but the JPEG spec seems to think this works.
762    */
763   p = 0;
764   for (i = 1; i <= MAX_CLEN; i++) {
765     for (j = 0; j <= 255; j++) {
766       if (codesize[j] == i) {
767         htbl->huffval[p] = (UINT8) j;
768         p++;
769       }
770     }
771   }
772
773   /* Set sent_table FALSE so updated table will be written to JPEG file. */
774   htbl->sent_table = FALSE;
775 }
776
777
778 /*
779  * Finish up a statistics-gathering pass and create the new Huffman tables.
780  */
781
782 METHODDEF void
783 finish_pass_gather (j_compress_ptr cinfo)
784 {
785   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
786   int ci, dctbl, actbl;
787   jpeg_component_info * compptr;
788   JHUFF_TBL **htblptr;
789   boolean did_dc[NUM_HUFF_TBLS];
790   boolean did_ac[NUM_HUFF_TBLS];
791
792   /* It's important not to apply jpeg_gen_optimal_table more than once
793    * per table, because it clobbers the input frequency counts!
794    */
795   MEMZERO(did_dc, SIZEOF(did_dc));
796   MEMZERO(did_ac, SIZEOF(did_ac));
797
798   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
799     compptr = cinfo->cur_comp_info[ci];
800     dctbl = compptr->dc_tbl_no;
801     actbl = compptr->ac_tbl_no;
802     if (! did_dc[dctbl]) {
803       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
804       if (*htblptr == NULL)
805         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
806       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
807       did_dc[dctbl] = TRUE;
808     }
809     if (! did_ac[actbl]) {
810       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
811       if (*htblptr == NULL)
812         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
813       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
814       did_ac[actbl] = TRUE;
815     }
816   }
817 }
818
819
820 #endif /* ENTROPY_OPT_SUPPORTED */
821
822
823 /*
824  * Module initialization routine for Huffman entropy encoding.
825  */
826
827 GLOBAL void
828 jinit_huff_encoder (j_compress_ptr cinfo)
829 {
830   huff_entropy_ptr entropy;
831   int i;
832
833   entropy = (huff_entropy_ptr)
834     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
835                                 SIZEOF(huff_entropy_encoder));
836   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
837   entropy->pub.start_pass = start_pass_huff;
838
839   /* Mark tables unallocated */
840   for (i = 0; i < NUM_HUFF_TBLS; i++) {
841     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
842 #ifdef ENTROPY_OPT_SUPPORTED
843     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
844 #endif
845   }
846 }