reenabled R_UpdateAllTextureInfo calls when lighting the world model
[divverent/darkplaces.git] / r_shadow.c
1
2 /*
3 Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
4 An extrusion of the lit faces, beginning at the original geometry and ending
5 further from the light source than the original geometry (presumably at least
6 as far as the light's radius, if the light has a radius at all), capped at
7 both front and back to avoid any problems (extrusion from dark faces also
8 works but has a different set of problems)
9
10 This is normally rendered using Carmack's Reverse technique, in which
11 backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
12 zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
13 where shadows did not intersect the visible geometry, suitable as a stencil
14 mask for rendering lighting everywhere but shadow.
15
16 In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
17 as decrement and the frontfaces as increment, and we redefine the DepthFunc to
18 GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
19 and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
20 additionally we clear stencil to 128 to avoid the need for the unclamped
21 incr/decr extension (not related to patent).
22
23 Patent warning:
24 This algorithm may be covered by Creative's patent (US Patent #6384822),
25 however that patent is quite specific about increment on backfaces and
26 decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
27 opposite this implementation and partially opposite Carmack's Reverse paper
28 (which uses GL_LESS, but increments on backfaces and decrements on frontfaces).
29
30
31
32 Terminology: Stencil Light Volume (sometimes called Light Volumes)
33 Similar to a Stencil Shadow Volume, but inverted; rather than containing the
34 areas in shadow it contains the areas in light, this can only be built
35 quickly for certain limited cases (such as portal visibility from a point),
36 but is quite useful for some effects (sunlight coming from sky polygons is
37 one possible example, translucent occluders is another example).
38
39
40
41 Terminology: Optimized Stencil Shadow Volume
42 A Stencil Shadow Volume that has been processed sufficiently to ensure it has
43 no duplicate coverage of areas (no need to shadow an area twice), often this
44 greatly improves performance but is an operation too costly to use on moving
45 lights (however completely optimal Stencil Light Volumes can be constructed
46 in some ideal cases).
47
48
49
50 Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
51 Per pixel evaluation of lighting equations, at a bare minimum this involves
52 DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
53 vector and surface normal, using a texture of the surface bumps, called a
54 NormalMap) if supported by hardware; in our case there is support for cards
55 which are incapable of DOT3, the quality is quite poor however.  Additionally
56 it is desirable to have specular evaluation per pixel, per vertex
57 normalization of specular halfangle vectors causes noticable distortion but
58 is unavoidable on hardware without GL_ARB_fragment_program or
59 GL_ARB_fragment_shader.
60
61
62
63 Terminology: Normalization CubeMap
64 A cubemap containing normalized dot3-encoded (vectors of length 1 or less
65 encoded as RGB colors) for any possible direction, this technique allows per
66 pixel calculation of incidence vector for per pixel lighting purposes, which
67 would not otherwise be possible per pixel without GL_ARB_fragment_program or
68 GL_ARB_fragment_shader.
69
70
71
72 Terminology: 2D+1D Attenuation Texturing
73 A very crude approximation of light attenuation with distance which results
74 in cylindrical light shapes which fade vertically as a streak (some games
75 such as Doom3 allow this to be rotated to be less noticable in specific
76 cases), the technique is simply modulating lighting by two 2D textures (which
77 can be the same) on different axes of projection (XY and Z, typically), this
78 is the second best technique available without 3D Attenuation Texturing,
79 GL_ARB_fragment_program or GL_ARB_fragment_shader technology.
80
81
82
83 Terminology: 2D+1D Inverse Attenuation Texturing
84 A clever method described in papers on the Abducted engine, this has a squared
85 distance texture (bright on the outside, black in the middle), which is used
86 twice using GL_ADD blending, the result of this is used in an inverse modulate
87 (GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
88 lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
89 texturing).
90
91
92
93 Terminology: 3D Attenuation Texturing
94 A slightly crude approximation of light attenuation with distance, its flaws
95 are limited radius and resolution (performance tradeoffs).
96
97
98
99 Terminology: 3D Attenuation-Normalization Texturing
100 A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
101 vectors shorter the lighting becomes darker, a very effective optimization of
102 diffuse lighting if 3D Attenuation Textures are already used.
103
104
105
106 Terminology: Light Cubemap Filtering
107 A technique for modeling non-uniform light distribution according to
108 direction, for example a lantern may use a cubemap to describe the light
109 emission pattern of the cage around the lantern (as well as soot buildup
110 discoloring the light in certain areas), often also used for softened grate
111 shadows and light shining through a stained glass window (done crudely by
112 texturing the lighting with a cubemap), another good example would be a disco
113 light.  This technique is used heavily in many games (Doom3 does not support
114 this however).
115
116
117
118 Terminology: Light Projection Filtering
119 A technique for modeling shadowing of light passing through translucent
120 surfaces, allowing stained glass windows and other effects to be done more
121 elegantly than possible with Light Cubemap Filtering by applying an occluder
122 texture to the lighting combined with a stencil light volume to limit the lit
123 area, this technique is used by Doom3 for spotlights and flashlights, among
124 other things, this can also be used more generally to render light passing
125 through multiple translucent occluders in a scene (using a light volume to
126 describe the area beyond the occluder, and thus mask off rendering of all
127 other areas).
128
129
130
131 Terminology: Doom3 Lighting
132 A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
133 CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
134 demonstrated by the game Doom3.
135 */
136
137 #include "quakedef.h"
138 #include "r_shadow.h"
139 #include "cl_collision.h"
140 #include "portals.h"
141 #include "image.h"
142
143 extern void R_Shadow_EditLights_Init(void);
144
145 typedef enum r_shadow_rendermode_e
146 {
147         R_SHADOW_RENDERMODE_NONE,
148         R_SHADOW_RENDERMODE_STENCIL,
149         R_SHADOW_RENDERMODE_SEPARATESTENCIL,
150         R_SHADOW_RENDERMODE_STENCILTWOSIDE,
151         R_SHADOW_RENDERMODE_LIGHT_VERTEX,
152         R_SHADOW_RENDERMODE_LIGHT_DOT3,
153         R_SHADOW_RENDERMODE_LIGHT_GLSL,
154         R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
155         R_SHADOW_RENDERMODE_VISIBLELIGHTING,
156 }
157 r_shadow_rendermode_t;
158
159 r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
160 r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
161 r_shadow_rendermode_t r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_NONE;
162
163 int maxshadowtriangles;
164 int *shadowelements;
165
166 int maxshadowvertices;
167 float *shadowvertex3f;
168
169 int maxshadowmark;
170 int numshadowmark;
171 int *shadowmark;
172 int *shadowmarklist;
173 int shadowmarkcount;
174
175 int maxvertexupdate;
176 int *vertexupdate;
177 int *vertexremap;
178 int vertexupdatenum;
179
180 int r_shadow_buffer_numleafpvsbytes;
181 unsigned char *r_shadow_buffer_leafpvs;
182 int *r_shadow_buffer_leaflist;
183
184 int r_shadow_buffer_numsurfacepvsbytes;
185 unsigned char *r_shadow_buffer_surfacepvs;
186 int *r_shadow_buffer_surfacelist;
187
188 int r_shadow_buffer_numshadowtrispvsbytes;
189 unsigned char *r_shadow_buffer_shadowtrispvs;
190 int r_shadow_buffer_numlighttrispvsbytes;
191 unsigned char *r_shadow_buffer_lighttrispvs;
192
193 rtexturepool_t *r_shadow_texturepool;
194 rtexture_t *r_shadow_attenuationgradienttexture;
195 rtexture_t *r_shadow_attenuation2dtexture;
196 rtexture_t *r_shadow_attenuation3dtexture;
197 rtexture_t *r_shadow_lightcorona;
198
199 // lights are reloaded when this changes
200 char r_shadow_mapname[MAX_QPATH];
201
202 // used only for light filters (cubemaps)
203 rtexturepool_t *r_shadow_filters_texturepool;
204
205 cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
206 cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
207 cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
208 cvar_t r_shadow_usenormalmap = {CVAR_SAVE, "r_shadow_usenormalmap", "1", "enables use of directional shading on lights"};
209 cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
210 cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.125", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
211 cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
212 cvar_t r_shadow_glossexponent = {0, "r_shadow_glossexponent", "32", "how 'sharp' the gloss should appear (specular power)"};
213 cvar_t r_shadow_lightattenuationdividebias = {0, "r_shadow_lightattenuationdividebias", "1", "changes attenuation texture generation"};
214 cvar_t r_shadow_lightattenuationlinearscale = {0, "r_shadow_lightattenuationlinearscale", "2", "changes attenuation texture generation"};
215 cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
216 cvar_t r_shadow_lightradiusscale = {0, "r_shadow_lightradiusscale", "1", "renders all world lights larger or smaller"};
217 cvar_t r_shadow_portallight = {0, "r_shadow_portallight", "1", "use portal culling to exactly determine lit triangles when compiling world lights"};
218 cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "1000000", "how far to cast shadows"};
219 cvar_t r_shadow_frontsidecasting = {0, "r_shadow_frontsidecasting", "1", "whether to cast shadows from illuminated triangles (front side of model) or unlit triangles (back side of model)"};
220 cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
221 cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
222 cvar_t r_shadow_realtime_dlight_svbspculling = {0, "r_shadow_realtime_dlight_svbspculling", "0", "enables svbsp optimization on dynamic lights (very slow!)"};
223 cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal optimization on dynamic lights (slow!)"};
224 cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
225 cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
226 cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
227 cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
228 cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
229 cvar_t r_shadow_realtime_world_compilesvbsp = {0, "r_shadow_realtime_world_compilesvbsp", "1", "enables svbsp optimization during compilation"};
230 cvar_t r_shadow_realtime_world_compileportalculling = {0, "r_shadow_realtime_world_compileportalculling", "1", "enables portal-based culling optimization during compilation"};
231 cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
232 cvar_t r_shadow_culltriangles = {0, "r_shadow_culltriangles", "1", "performs more expensive tests to remove unnecessary triangles of lit surfaces"};
233 cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
234 cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
235 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect r_glsl lighting)"};
236 cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1", "brightness of corona flare effects around certain lights, 0 disables corona effects"};
237 cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0", "render bright coronas for dynamic lights instead of actual lighting, fast but ugly"};
238 cvar_t gl_ext_separatestencil = {0, "gl_ext_separatestencil", "1", "make use of OpenGL 2.0 glStencilOpSeparate or GL_ATI_separate_stencil extension"};
239 cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
240 cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
241 cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
242 cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
243 cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
244 cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
245 cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
246
247 // note the table actually includes one more value, just to avoid the need to clamp the distance index due to minor math error
248 #define ATTENTABLESIZE 256
249 // 1D gradient, 2D circle and 3D sphere attenuation textures
250 #define ATTEN1DSIZE 32
251 #define ATTEN2DSIZE 64
252 #define ATTEN3DSIZE 32
253
254 static float r_shadow_attendividebias; // r_shadow_lightattenuationdividebias
255 static float r_shadow_attenlinearscale; // r_shadow_lightattenuationlinearscale
256 static float r_shadow_attentable[ATTENTABLESIZE+1];
257
258 rtlight_t *r_shadow_compilingrtlight;
259 static memexpandablearray_t r_shadow_worldlightsarray;
260 dlight_t *r_shadow_selectedlight;
261 dlight_t r_shadow_bufferlight;
262 vec3_t r_editlights_cursorlocation;
263
264 extern int con_vislines;
265
266 typedef struct cubemapinfo_s
267 {
268         char basename[64];
269         rtexture_t *texture;
270 }
271 cubemapinfo_t;
272
273 #define MAX_CUBEMAPS 256
274 static int numcubemaps;
275 static cubemapinfo_t cubemaps[MAX_CUBEMAPS];
276
277 void R_Shadow_UncompileWorldLights(void);
278 void R_Shadow_ClearWorldLights(void);
279 void R_Shadow_SaveWorldLights(void);
280 void R_Shadow_LoadWorldLights(void);
281 void R_Shadow_LoadLightsFile(void);
282 void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
283 void R_Shadow_EditLights_Reload_f(void);
284 void R_Shadow_ValidateCvars(void);
285 static void R_Shadow_MakeTextures(void);
286
287 // VorteX: custom editor light sprites
288 #define EDLIGHTSPRSIZE                  8
289 cachepic_t *r_editlights_sprcursor;
290 cachepic_t *r_editlights_sprlight;
291 cachepic_t *r_editlights_sprnoshadowlight;
292 cachepic_t *r_editlights_sprcubemaplight;
293 cachepic_t *r_editlights_sprcubemapnoshadowlight;
294 cachepic_t *r_editlights_sprselection;
295
296 void r_shadow_start(void)
297 {
298         // allocate vertex processing arrays
299         numcubemaps = 0;
300         r_shadow_attenuationgradienttexture = NULL;
301         r_shadow_attenuation2dtexture = NULL;
302         r_shadow_attenuation3dtexture = NULL;
303         r_shadow_texturepool = NULL;
304         r_shadow_filters_texturepool = NULL;
305         R_Shadow_ValidateCvars();
306         R_Shadow_MakeTextures();
307         maxshadowtriangles = 0;
308         shadowelements = NULL;
309         maxshadowvertices = 0;
310         shadowvertex3f = NULL;
311         maxvertexupdate = 0;
312         vertexupdate = NULL;
313         vertexremap = NULL;
314         vertexupdatenum = 0;
315         maxshadowmark = 0;
316         numshadowmark = 0;
317         shadowmark = NULL;
318         shadowmarklist = NULL;
319         shadowmarkcount = 0;
320         r_shadow_buffer_numleafpvsbytes = 0;
321         r_shadow_buffer_leafpvs = NULL;
322         r_shadow_buffer_leaflist = NULL;
323         r_shadow_buffer_numsurfacepvsbytes = 0;
324         r_shadow_buffer_surfacepvs = NULL;
325         r_shadow_buffer_surfacelist = NULL;
326         r_shadow_buffer_numshadowtrispvsbytes = 0;
327         r_shadow_buffer_shadowtrispvs = NULL;
328         r_shadow_buffer_numlighttrispvsbytes = 0;
329         r_shadow_buffer_lighttrispvs = NULL;
330 }
331
332 void r_shadow_shutdown(void)
333 {
334         R_Shadow_UncompileWorldLights();
335         numcubemaps = 0;
336         r_shadow_attenuationgradienttexture = NULL;
337         r_shadow_attenuation2dtexture = NULL;
338         r_shadow_attenuation3dtexture = NULL;
339         R_FreeTexturePool(&r_shadow_texturepool);
340         R_FreeTexturePool(&r_shadow_filters_texturepool);
341         maxshadowtriangles = 0;
342         if (shadowelements)
343                 Mem_Free(shadowelements);
344         shadowelements = NULL;
345         if (shadowvertex3f)
346                 Mem_Free(shadowvertex3f);
347         shadowvertex3f = NULL;
348         maxvertexupdate = 0;
349         if (vertexupdate)
350                 Mem_Free(vertexupdate);
351         vertexupdate = NULL;
352         if (vertexremap)
353                 Mem_Free(vertexremap);
354         vertexremap = NULL;
355         vertexupdatenum = 0;
356         maxshadowmark = 0;
357         numshadowmark = 0;
358         if (shadowmark)
359                 Mem_Free(shadowmark);
360         shadowmark = NULL;
361         if (shadowmarklist)
362                 Mem_Free(shadowmarklist);
363         shadowmarklist = NULL;
364         shadowmarkcount = 0;
365         r_shadow_buffer_numleafpvsbytes = 0;
366         if (r_shadow_buffer_leafpvs)
367                 Mem_Free(r_shadow_buffer_leafpvs);
368         r_shadow_buffer_leafpvs = NULL;
369         if (r_shadow_buffer_leaflist)
370                 Mem_Free(r_shadow_buffer_leaflist);
371         r_shadow_buffer_leaflist = NULL;
372         r_shadow_buffer_numsurfacepvsbytes = 0;
373         if (r_shadow_buffer_surfacepvs)
374                 Mem_Free(r_shadow_buffer_surfacepvs);
375         r_shadow_buffer_surfacepvs = NULL;
376         if (r_shadow_buffer_surfacelist)
377                 Mem_Free(r_shadow_buffer_surfacelist);
378         r_shadow_buffer_surfacelist = NULL;
379         r_shadow_buffer_numshadowtrispvsbytes = 0;
380         if (r_shadow_buffer_shadowtrispvs)
381                 Mem_Free(r_shadow_buffer_shadowtrispvs);
382         r_shadow_buffer_numlighttrispvsbytes = 0;
383         if (r_shadow_buffer_lighttrispvs)
384                 Mem_Free(r_shadow_buffer_lighttrispvs);
385 }
386
387 void r_shadow_newmap(void)
388 {
389 }
390
391 void R_Shadow_Help_f(void)
392 {
393         Con_Printf(
394 "Documentation on r_shadow system:\n"
395 "Settings:\n"
396 "r_shadow_bumpscale_basetexture : base texture as bumpmap with this scale\n"
397 "r_shadow_bumpscale_bumpmap : depth scale for bumpmap conversion\n"
398 "r_shadow_debuglight : render only this light number (-1 = all)\n"
399 "r_shadow_gloss 0/1/2 : no gloss, gloss textures only, force gloss\n"
400 "r_shadow_gloss2intensity : brightness of forced gloss\n"
401 "r_shadow_glossintensity : brightness of textured gloss\n"
402 "r_shadow_lightattenuationlinearscale : used to generate attenuation texture\n"
403 "r_shadow_lightattenuationdividebias : used to generate attenuation texture\n"
404 "r_shadow_lightintensityscale : scale rendering brightness of all lights\n"
405 "r_shadow_lightradiusscale : scale rendering radius of all lights\n"
406 "r_shadow_portallight : use portal visibility for static light precomputation\n"
407 "r_shadow_projectdistance : shadow volume projection distance\n"
408 "r_shadow_realtime_dlight : use high quality dynamic lights in normal mode\n"
409 "r_shadow_realtime_dlight_shadows : cast shadows from dlights\n"
410 "r_shadow_realtime_world : use high quality world lighting mode\n"
411 "r_shadow_realtime_world_lightmaps : use lightmaps in addition to lights\n"
412 "r_shadow_realtime_world_shadows : cast shadows from world lights\n"
413 "r_shadow_realtime_world_compile : compile surface/visibility information\n"
414 "r_shadow_realtime_world_compileshadow : compile shadow geometry\n"
415 "r_shadow_scissor : use scissor optimization\n"
416 "r_shadow_polygonfactor : nudge shadow volumes closer/further\n"
417 "r_shadow_polygonoffset : nudge shadow volumes closer/further\n"
418 "r_shadow_texture3d : use 3d attenuation texture (if hardware supports)\n"
419 "r_showlighting : useful for performance testing; bright = slow!\n"
420 "r_showshadowvolumes : useful for performance testing; bright = slow!\n"
421 "Commands:\n"
422 "r_shadow_help : this help\n"
423         );
424 }
425
426 void R_Shadow_Init(void)
427 {
428         Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
429         Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
430         Cvar_RegisterVariable(&r_shadow_usenormalmap);
431         Cvar_RegisterVariable(&r_shadow_debuglight);
432         Cvar_RegisterVariable(&r_shadow_gloss);
433         Cvar_RegisterVariable(&r_shadow_gloss2intensity);
434         Cvar_RegisterVariable(&r_shadow_glossintensity);
435         Cvar_RegisterVariable(&r_shadow_glossexponent);
436         Cvar_RegisterVariable(&r_shadow_lightattenuationdividebias);
437         Cvar_RegisterVariable(&r_shadow_lightattenuationlinearscale);
438         Cvar_RegisterVariable(&r_shadow_lightintensityscale);
439         Cvar_RegisterVariable(&r_shadow_lightradiusscale);
440         Cvar_RegisterVariable(&r_shadow_portallight);
441         Cvar_RegisterVariable(&r_shadow_projectdistance);
442         Cvar_RegisterVariable(&r_shadow_frontsidecasting);
443         Cvar_RegisterVariable(&r_shadow_realtime_dlight);
444         Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
445         Cvar_RegisterVariable(&r_shadow_realtime_dlight_svbspculling);
446         Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
447         Cvar_RegisterVariable(&r_shadow_realtime_world);
448         Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
449         Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
450         Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
451         Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
452         Cvar_RegisterVariable(&r_shadow_realtime_world_compilesvbsp);
453         Cvar_RegisterVariable(&r_shadow_realtime_world_compileportalculling);
454         Cvar_RegisterVariable(&r_shadow_scissor);
455         Cvar_RegisterVariable(&r_shadow_culltriangles);
456         Cvar_RegisterVariable(&r_shadow_polygonfactor);
457         Cvar_RegisterVariable(&r_shadow_polygonoffset);
458         Cvar_RegisterVariable(&r_shadow_texture3d);
459         Cvar_RegisterVariable(&r_coronas);
460         Cvar_RegisterVariable(&gl_flashblend);
461         Cvar_RegisterVariable(&gl_ext_separatestencil);
462         Cvar_RegisterVariable(&gl_ext_stenciltwoside);
463         if (gamemode == GAME_TENEBRAE)
464         {
465                 Cvar_SetValue("r_shadow_gloss", 2);
466                 Cvar_SetValue("r_shadow_bumpscale_basetexture", 4);
467         }
468         Cmd_AddCommand("r_shadow_help", R_Shadow_Help_f, "prints documentation on console commands and variables used by realtime lighting and shadowing system");
469         R_Shadow_EditLights_Init();
470         Mem_ExpandableArray_NewArray(&r_shadow_worldlightsarray, r_main_mempool, sizeof(dlight_t), 128);
471         maxshadowtriangles = 0;
472         shadowelements = NULL;
473         maxshadowvertices = 0;
474         shadowvertex3f = NULL;
475         maxvertexupdate = 0;
476         vertexupdate = NULL;
477         vertexremap = NULL;
478         vertexupdatenum = 0;
479         maxshadowmark = 0;
480         numshadowmark = 0;
481         shadowmark = NULL;
482         shadowmarklist = NULL;
483         shadowmarkcount = 0;
484         r_shadow_buffer_numleafpvsbytes = 0;
485         r_shadow_buffer_leafpvs = NULL;
486         r_shadow_buffer_leaflist = NULL;
487         r_shadow_buffer_numsurfacepvsbytes = 0;
488         r_shadow_buffer_surfacepvs = NULL;
489         r_shadow_buffer_surfacelist = NULL;
490         r_shadow_buffer_shadowtrispvs = NULL;
491         r_shadow_buffer_lighttrispvs = NULL;
492         R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap);
493 }
494
495 matrix4x4_t matrix_attenuationxyz =
496 {
497         {
498                 {0.5, 0.0, 0.0, 0.5},
499                 {0.0, 0.5, 0.0, 0.5},
500                 {0.0, 0.0, 0.5, 0.5},
501                 {0.0, 0.0, 0.0, 1.0}
502         }
503 };
504
505 matrix4x4_t matrix_attenuationz =
506 {
507         {
508                 {0.0, 0.0, 0.5, 0.5},
509                 {0.0, 0.0, 0.0, 0.5},
510                 {0.0, 0.0, 0.0, 0.5},
511                 {0.0, 0.0, 0.0, 1.0}
512         }
513 };
514
515 void R_Shadow_ResizeShadowArrays(int numvertices, int numtriangles)
516 {
517         // make sure shadowelements is big enough for this volume
518         if (maxshadowtriangles < numtriangles)
519         {
520                 maxshadowtriangles = numtriangles;
521                 if (shadowelements)
522                         Mem_Free(shadowelements);
523                 shadowelements = (int *)Mem_Alloc(r_main_mempool, maxshadowtriangles * sizeof(int[24]));
524         }
525         // make sure shadowvertex3f is big enough for this volume
526         if (maxshadowvertices < numvertices)
527         {
528                 maxshadowvertices = numvertices;
529                 if (shadowvertex3f)
530                         Mem_Free(shadowvertex3f);
531                 shadowvertex3f = (float *)Mem_Alloc(r_main_mempool, maxshadowvertices * sizeof(float[6]));
532         }
533 }
534
535 static void R_Shadow_EnlargeLeafSurfaceTrisBuffer(int numleafs, int numsurfaces, int numshadowtriangles, int numlighttriangles)
536 {
537         int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
538         int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
539         int numshadowtrispvsbytes = (((numshadowtriangles + 7) >> 3) + 255) & ~255;
540         int numlighttrispvsbytes = (((numlighttriangles + 7) >> 3) + 255) & ~255;
541         if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
542         {
543                 if (r_shadow_buffer_leafpvs)
544                         Mem_Free(r_shadow_buffer_leafpvs);
545                 if (r_shadow_buffer_leaflist)
546                         Mem_Free(r_shadow_buffer_leaflist);
547                 r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
548                 r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
549                 r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
550         }
551         if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
552         {
553                 if (r_shadow_buffer_surfacepvs)
554                         Mem_Free(r_shadow_buffer_surfacepvs);
555                 if (r_shadow_buffer_surfacelist)
556                         Mem_Free(r_shadow_buffer_surfacelist);
557                 r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
558                 r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes);
559                 r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
560         }
561         if (r_shadow_buffer_numshadowtrispvsbytes < numshadowtrispvsbytes)
562         {
563                 if (r_shadow_buffer_shadowtrispvs)
564                         Mem_Free(r_shadow_buffer_shadowtrispvs);
565                 r_shadow_buffer_numshadowtrispvsbytes = numshadowtrispvsbytes;
566                 r_shadow_buffer_shadowtrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numshadowtrispvsbytes);
567         }
568         if (r_shadow_buffer_numlighttrispvsbytes < numlighttrispvsbytes)
569         {
570                 if (r_shadow_buffer_lighttrispvs)
571                         Mem_Free(r_shadow_buffer_lighttrispvs);
572                 r_shadow_buffer_numlighttrispvsbytes = numlighttrispvsbytes;
573                 r_shadow_buffer_lighttrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numlighttrispvsbytes);
574         }
575 }
576
577 void R_Shadow_PrepareShadowMark(int numtris)
578 {
579         // make sure shadowmark is big enough for this volume
580         if (maxshadowmark < numtris)
581         {
582                 maxshadowmark = numtris;
583                 if (shadowmark)
584                         Mem_Free(shadowmark);
585                 if (shadowmarklist)
586                         Mem_Free(shadowmarklist);
587                 shadowmark = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmark));
588                 shadowmarklist = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmarklist));
589                 shadowmarkcount = 0;
590         }
591         shadowmarkcount++;
592         // if shadowmarkcount wrapped we clear the array and adjust accordingly
593         if (shadowmarkcount == 0)
594         {
595                 shadowmarkcount = 1;
596                 memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
597         }
598         numshadowmark = 0;
599 }
600
601 int R_Shadow_ConstructShadowVolume(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
602 {
603         int i, j;
604         int outtriangles = 0, outvertices = 0;
605         const int *element;
606         const float *vertex;
607         float ratio, direction[3], projectvector[3];
608
609         if (projectdirection)
610                 VectorScale(projectdirection, projectdistance, projectvector);
611         else
612                 VectorClear(projectvector);
613
614         if (maxvertexupdate < innumvertices)
615         {
616                 maxvertexupdate = innumvertices;
617                 if (vertexupdate)
618                         Mem_Free(vertexupdate);
619                 if (vertexremap)
620                         Mem_Free(vertexremap);
621                 vertexupdate = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
622                 vertexremap = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
623                 vertexupdatenum = 0;
624         }
625         vertexupdatenum++;
626         if (vertexupdatenum == 0)
627         {
628                 vertexupdatenum = 1;
629                 memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
630                 memset(vertexremap, 0, maxvertexupdate * sizeof(int));
631         }
632
633         for (i = 0;i < numshadowmarktris;i++)
634                 shadowmark[shadowmarktris[i]] = shadowmarkcount;
635
636         // create the vertices
637         if (projectdirection)
638         {
639                 for (i = 0;i < numshadowmarktris;i++)
640                 {
641                         element = inelement3i + shadowmarktris[i] * 3;
642                         for (j = 0;j < 3;j++)
643                         {
644                                 if (vertexupdate[element[j]] != vertexupdatenum)
645                                 {
646                                         vertexupdate[element[j]] = vertexupdatenum;
647                                         vertexremap[element[j]] = outvertices;
648                                         vertex = invertex3f + element[j] * 3;
649                                         // project one copy of the vertex according to projectvector
650                                         VectorCopy(vertex, outvertex3f);
651                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
652                                         outvertex3f += 6;
653                                         outvertices += 2;
654                                 }
655                         }
656                 }
657         }
658         else
659         {
660                 for (i = 0;i < numshadowmarktris;i++)
661                 {
662                         element = inelement3i + shadowmarktris[i] * 3;
663                         for (j = 0;j < 3;j++)
664                         {
665                                 if (vertexupdate[element[j]] != vertexupdatenum)
666                                 {
667                                         vertexupdate[element[j]] = vertexupdatenum;
668                                         vertexremap[element[j]] = outvertices;
669                                         vertex = invertex3f + element[j] * 3;
670                                         // project one copy of the vertex to the sphere radius of the light
671                                         // (FIXME: would projecting it to the light box be better?)
672                                         VectorSubtract(vertex, projectorigin, direction);
673                                         ratio = projectdistance / VectorLength(direction);
674                                         VectorCopy(vertex, outvertex3f);
675                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
676                                         outvertex3f += 6;
677                                         outvertices += 2;
678                                 }
679                         }
680                 }
681         }
682
683         if (r_shadow_frontsidecasting.integer)
684         {
685                 for (i = 0;i < numshadowmarktris;i++)
686                 {
687                         int remappedelement[3];
688                         int markindex;
689                         const int *neighbortriangle;
690
691                         markindex = shadowmarktris[i] * 3;
692                         element = inelement3i + markindex;
693                         neighbortriangle = inneighbor3i + markindex;
694                         // output the front and back triangles
695                         outelement3i[0] = vertexremap[element[0]];
696                         outelement3i[1] = vertexremap[element[1]];
697                         outelement3i[2] = vertexremap[element[2]];
698                         outelement3i[3] = vertexremap[element[2]] + 1;
699                         outelement3i[4] = vertexremap[element[1]] + 1;
700                         outelement3i[5] = vertexremap[element[0]] + 1;
701
702                         outelement3i += 6;
703                         outtriangles += 2;
704                         // output the sides (facing outward from this triangle)
705                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
706                         {
707                                 remappedelement[0] = vertexremap[element[0]];
708                                 remappedelement[1] = vertexremap[element[1]];
709                                 outelement3i[0] = remappedelement[1];
710                                 outelement3i[1] = remappedelement[0];
711                                 outelement3i[2] = remappedelement[0] + 1;
712                                 outelement3i[3] = remappedelement[1];
713                                 outelement3i[4] = remappedelement[0] + 1;
714                                 outelement3i[5] = remappedelement[1] + 1;
715
716                                 outelement3i += 6;
717                                 outtriangles += 2;
718                         }
719                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
720                         {
721                                 remappedelement[1] = vertexremap[element[1]];
722                                 remappedelement[2] = vertexremap[element[2]];
723                                 outelement3i[0] = remappedelement[2];
724                                 outelement3i[1] = remappedelement[1];
725                                 outelement3i[2] = remappedelement[1] + 1;
726                                 outelement3i[3] = remappedelement[2];
727                                 outelement3i[4] = remappedelement[1] + 1;
728                                 outelement3i[5] = remappedelement[2] + 1;
729
730                                 outelement3i += 6;
731                                 outtriangles += 2;
732                         }
733                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
734                         {
735                                 remappedelement[0] = vertexremap[element[0]];
736                                 remappedelement[2] = vertexremap[element[2]];
737                                 outelement3i[0] = remappedelement[0];
738                                 outelement3i[1] = remappedelement[2];
739                                 outelement3i[2] = remappedelement[2] + 1;
740                                 outelement3i[3] = remappedelement[0];
741                                 outelement3i[4] = remappedelement[2] + 1;
742                                 outelement3i[5] = remappedelement[0] + 1;
743
744                                 outelement3i += 6;
745                                 outtriangles += 2;
746                         }
747                 }
748         }
749         else
750         {
751                 for (i = 0;i < numshadowmarktris;i++)
752                 {
753                         int remappedelement[3];
754                         int markindex;
755                         const int *neighbortriangle;
756
757                         markindex = shadowmarktris[i] * 3;
758                         element = inelement3i + markindex;
759                         neighbortriangle = inneighbor3i + markindex;
760                         // output the front and back triangles
761                         outelement3i[0] = vertexremap[element[2]];
762                         outelement3i[1] = vertexremap[element[1]];
763                         outelement3i[2] = vertexremap[element[0]];
764                         outelement3i[3] = vertexremap[element[0]] + 1;
765                         outelement3i[4] = vertexremap[element[1]] + 1;
766                         outelement3i[5] = vertexremap[element[2]] + 1;
767
768                         outelement3i += 6;
769                         outtriangles += 2;
770                         // output the sides (facing outward from this triangle)
771                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
772                         {
773                                 remappedelement[0] = vertexremap[element[0]];
774                                 remappedelement[1] = vertexremap[element[1]];
775                                 outelement3i[0] = remappedelement[0];
776                                 outelement3i[1] = remappedelement[1];
777                                 outelement3i[2] = remappedelement[1] + 1;
778                                 outelement3i[3] = remappedelement[0];
779                                 outelement3i[4] = remappedelement[1] + 1;
780                                 outelement3i[5] = remappedelement[0] + 1;
781
782                                 outelement3i += 6;
783                                 outtriangles += 2;
784                         }
785                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
786                         {
787                                 remappedelement[1] = vertexremap[element[1]];
788                                 remappedelement[2] = vertexremap[element[2]];
789                                 outelement3i[0] = remappedelement[1];
790                                 outelement3i[1] = remappedelement[2];
791                                 outelement3i[2] = remappedelement[2] + 1;
792                                 outelement3i[3] = remappedelement[1];
793                                 outelement3i[4] = remappedelement[2] + 1;
794                                 outelement3i[5] = remappedelement[1] + 1;
795
796                                 outelement3i += 6;
797                                 outtriangles += 2;
798                         }
799                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
800                         {
801                                 remappedelement[0] = vertexremap[element[0]];
802                                 remappedelement[2] = vertexremap[element[2]];
803                                 outelement3i[0] = remappedelement[2];
804                                 outelement3i[1] = remappedelement[0];
805                                 outelement3i[2] = remappedelement[0] + 1;
806                                 outelement3i[3] = remappedelement[2];
807                                 outelement3i[4] = remappedelement[0] + 1;
808                                 outelement3i[5] = remappedelement[2] + 1;
809
810                                 outelement3i += 6;
811                                 outtriangles += 2;
812                         }
813                 }
814         }
815         if (outnumvertices)
816                 *outnumvertices = outvertices;
817         return outtriangles;
818 }
819
820 void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, const vec3_t projectdirection, float projectdistance, int nummarktris, const int *marktris)
821 {
822         int tris, outverts;
823         if (projectdistance < 0.1)
824         {
825                 Con_Printf("R_Shadow_Volume: projectdistance %f\n", projectdistance);
826                 return;
827         }
828         if (!numverts || !nummarktris)
829                 return;
830         // make sure shadowelements is big enough for this volume
831         if (maxshadowtriangles < nummarktris || maxshadowvertices < numverts)
832                 R_Shadow_ResizeShadowArrays((numverts + 255) & ~255, (nummarktris + 255) & ~255);
833         tris = R_Shadow_ConstructShadowVolume(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
834         r_refdef.stats.lights_dynamicshadowtriangles += tris;
835         R_Shadow_RenderVolume(outverts, tris, shadowvertex3f, shadowelements);
836 }
837
838 void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
839 {
840         int t, tend;
841         const int *e;
842         const float *v[3];
843         float normal[3];
844         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
845                 return;
846         tend = firsttriangle + numtris;
847         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
848         {
849                 // surface box entirely inside light box, no box cull
850                 if (projectdirection)
851                 {
852                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
853                         {
854                                 TriangleNormal(invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3, normal);
855                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
856                                         shadowmarklist[numshadowmark++] = t;
857                         }
858                 }
859                 else
860                 {
861                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
862                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
863                                         shadowmarklist[numshadowmark++] = t;
864                 }
865         }
866         else
867         {
868                 // surface box not entirely inside light box, cull each triangle
869                 if (projectdirection)
870                 {
871                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
872                         {
873                                 v[0] = invertex3f + e[0] * 3;
874                                 v[1] = invertex3f + e[1] * 3;
875                                 v[2] = invertex3f + e[2] * 3;
876                                 TriangleNormal(v[0], v[1], v[2], normal);
877                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
878                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
879                                         shadowmarklist[numshadowmark++] = t;
880                         }
881                 }
882                 else
883                 {
884                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
885                         {
886                                 v[0] = invertex3f + e[0] * 3;
887                                 v[1] = invertex3f + e[1] * 3;
888                                 v[2] = invertex3f + e[2] * 3;
889                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
890                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
891                                         shadowmarklist[numshadowmark++] = t;
892                         }
893                 }
894         }
895 }
896
897 void R_Shadow_RenderVolume(int numvertices, int numtriangles, const float *vertex3f, const int *element3i)
898 {
899         if (r_shadow_compilingrtlight)
900         {
901                 // if we're compiling an rtlight, capture the mesh
902                 Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, numtriangles, element3i);
903                 return;
904         }
905         r_refdef.stats.lights_shadowtriangles += numtriangles;
906         CHECKGLERROR
907         R_Mesh_VertexPointer(vertex3f, 0, 0);
908         GL_LockArrays(0, numvertices);
909         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
910         {
911                 // decrement stencil if backface is behind depthbuffer
912                 GL_CullFace(r_view.cullface_front);
913                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
914                 R_Mesh_Draw(0, numvertices, numtriangles, element3i, 0, 0);
915                 // increment stencil if frontface is behind depthbuffer
916                 GL_CullFace(r_view.cullface_back);
917                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
918         }
919         R_Mesh_Draw(0, numvertices, numtriangles, element3i, 0, 0);
920         GL_LockArrays(0, 0);
921         CHECKGLERROR
922 }
923
924 static void R_Shadow_MakeTextures_MakeCorona(void)
925 {
926         float dx, dy;
927         int x, y, a;
928         unsigned char pixels[32][32][4];
929         for (y = 0;y < 32;y++)
930         {
931                 dy = (y - 15.5f) * (1.0f / 16.0f);
932                 for (x = 0;x < 32;x++)
933                 {
934                         dx = (x - 15.5f) * (1.0f / 16.0f);
935                         a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
936                         a = bound(0, a, 255);
937                         pixels[y][x][0] = a;
938                         pixels[y][x][1] = a;
939                         pixels[y][x][2] = a;
940                         pixels[y][x][3] = 255;
941                 }
942         }
943         r_shadow_lightcorona = R_LoadTexture2D(r_shadow_texturepool, "lightcorona", 32, 32, &pixels[0][0][0], TEXTYPE_BGRA, TEXF_PRECACHE, NULL);
944 }
945
946 static unsigned int R_Shadow_MakeTextures_SamplePoint(float x, float y, float z)
947 {
948         float dist = sqrt(x*x+y*y+z*z);
949         float intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
950         // note this code could suffer byte order issues except that it is multiplying by an integer that reads the same both ways
951         return (unsigned char)bound(0, intensity * 256.0f, 255) * 0x01010101;
952 }
953
954 static void R_Shadow_MakeTextures(void)
955 {
956         int x, y, z;
957         float intensity, dist;
958         unsigned int *data;
959         R_FreeTexturePool(&r_shadow_texturepool);
960         r_shadow_texturepool = R_AllocTexturePool();
961         r_shadow_attenlinearscale = r_shadow_lightattenuationlinearscale.value;
962         r_shadow_attendividebias = r_shadow_lightattenuationdividebias.value;
963         data = (unsigned int *)Mem_Alloc(tempmempool, max(max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE, ATTEN2DSIZE*ATTEN2DSIZE), ATTEN1DSIZE) * 4);
964         // the table includes one additional value to avoid the need to clamp indexing due to minor math errors
965         for (x = 0;x <= ATTENTABLESIZE;x++)
966         {
967                 dist = (x + 0.5f) * (1.0f / ATTENTABLESIZE) * (1.0f / 0.9375);
968                 intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
969                 r_shadow_attentable[x] = bound(0, intensity, 1);
970         }
971         // 1D gradient texture
972         for (x = 0;x < ATTEN1DSIZE;x++)
973                 data[x] = R_Shadow_MakeTextures_SamplePoint((x + 0.5f) * (1.0f / ATTEN1DSIZE) * (1.0f / 0.9375), 0, 0);
974         r_shadow_attenuationgradienttexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation1d", ATTEN1DSIZE, 1, (unsigned char *)data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, NULL);
975         // 2D circle texture
976         for (y = 0;y < ATTEN2DSIZE;y++)
977                 for (x = 0;x < ATTEN2DSIZE;x++)
978                         data[y*ATTEN2DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), 0);
979         r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, NULL);
980         // 3D sphere texture
981         if (r_shadow_texture3d.integer && gl_texture3d)
982         {
983                 for (z = 0;z < ATTEN3DSIZE;z++)
984                         for (y = 0;y < ATTEN3DSIZE;y++)
985                                 for (x = 0;x < ATTEN3DSIZE;x++)
986                                         data[(z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375));
987                 r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, NULL);
988         }
989         else
990                 r_shadow_attenuation3dtexture = NULL;
991         Mem_Free(data);
992
993         R_Shadow_MakeTextures_MakeCorona();
994
995         // Editor light sprites
996         r_editlights_sprcursor = Draw_CachePic("gfx/editlights/cursor", true);
997         r_editlights_sprlight = Draw_CachePic("gfx/editlights/light", true);
998         r_editlights_sprnoshadowlight = Draw_CachePic("gfx/editlights/noshadow", true);
999         r_editlights_sprcubemaplight = Draw_CachePic("gfx/editlights/cubemaplight", true);
1000         r_editlights_sprcubemapnoshadowlight = Draw_CachePic("gfx/editlights/cubemapnoshadowlight", true);
1001         r_editlights_sprselection = Draw_CachePic("gfx/editlights/selection", true);
1002 }
1003
1004 void R_Shadow_ValidateCvars(void)
1005 {
1006         if (r_shadow_texture3d.integer && !gl_texture3d)
1007                 Cvar_SetValueQuick(&r_shadow_texture3d, 0);
1008         if (gl_ext_separatestencil.integer && !gl_support_separatestencil)
1009                 Cvar_SetValueQuick(&gl_ext_separatestencil, 0);
1010         if (gl_ext_stenciltwoside.integer && !gl_support_stenciltwoside)
1011                 Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
1012 }
1013
1014 void R_Shadow_RenderMode_Begin(void)
1015 {
1016         R_Shadow_ValidateCvars();
1017
1018         if (!r_shadow_attenuation2dtexture
1019          || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
1020          || r_shadow_lightattenuationdividebias.value != r_shadow_attendividebias
1021          || r_shadow_lightattenuationlinearscale.value != r_shadow_attenlinearscale)
1022                 R_Shadow_MakeTextures();
1023
1024         CHECKGLERROR
1025         R_Mesh_ColorPointer(NULL, 0, 0);
1026         R_Mesh_ResetTextureState();
1027         GL_BlendFunc(GL_ONE, GL_ZERO);
1028         GL_DepthRange(0, 1);
1029         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
1030         GL_DepthTest(true);
1031         GL_DepthMask(false);
1032         GL_Color(0, 0, 0, 1);
1033         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
1034
1035         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1036
1037         if (gl_ext_separatestencil.integer)
1038                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_SEPARATESTENCIL;
1039         else if (gl_ext_stenciltwoside.integer)
1040                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCILTWOSIDE;
1041         else
1042                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCIL;
1043
1044         if (r_glsl.integer && gl_support_fragment_shader)
1045                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
1046         else if (gl_dot3arb && gl_texturecubemap && r_textureunits.integer >= 2 && gl_combine.integer && gl_stencil)
1047                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_DOT3;
1048         else
1049                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
1050 }
1051
1052 void R_Shadow_RenderMode_ActiveLight(rtlight_t *rtlight)
1053 {
1054         rsurface.rtlight = rtlight;
1055 }
1056
1057 void R_Shadow_RenderMode_Reset(void)
1058 {
1059         CHECKGLERROR
1060         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1061         {
1062                 qglUseProgramObjectARB(0);CHECKGLERROR
1063         }
1064         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1065         {
1066                 qglDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
1067         }
1068         R_Mesh_ColorPointer(NULL, 0, 0);
1069         R_Mesh_ResetTextureState();
1070         GL_DepthRange(0, 1);
1071         GL_DepthTest(true);
1072         GL_DepthMask(false);
1073         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
1074         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);CHECKGLERROR
1075         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
1076         qglStencilMask(~0);CHECKGLERROR
1077         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
1078         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
1079         GL_CullFace(r_view.cullface_back);
1080         GL_Color(1, 1, 1, 1);
1081         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
1082         GL_BlendFunc(GL_ONE, GL_ZERO);
1083 }
1084
1085 void R_Shadow_RenderMode_StencilShadowVolumes(qboolean clearstencil)
1086 {
1087         CHECKGLERROR
1088         R_Shadow_RenderMode_Reset();
1089         GL_ColorMask(0, 0, 0, 0);
1090         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
1091         qglDepthFunc(GL_LESS);CHECKGLERROR
1092         qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1093         r_shadow_rendermode = r_shadow_shadowingrendermode;
1094         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_SEPARATESTENCIL)
1095         {
1096                 GL_CullFace(GL_NONE);
1097                 qglStencilOpSeparate(r_view.cullface_front, GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
1098                 qglStencilOpSeparate(r_view.cullface_back, GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
1099         }
1100         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1101         {
1102                 GL_CullFace(GL_NONE);
1103                 qglEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
1104                 qglActiveStencilFaceEXT(r_view.cullface_front);CHECKGLERROR
1105                 qglStencilMask(~0);CHECKGLERROR
1106                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
1107                 qglActiveStencilFaceEXT(r_view.cullface_back);CHECKGLERROR
1108                 qglStencilMask(~0);CHECKGLERROR
1109                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
1110         }
1111         if (clearstencil)
1112                 GL_Clear(GL_STENCIL_BUFFER_BIT);
1113         r_refdef.stats.lights_clears++;
1114 }
1115
1116 void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent)
1117 {
1118         CHECKGLERROR
1119         R_Shadow_RenderMode_Reset();
1120         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1121         if (!transparent)
1122         {
1123                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1124         }
1125         if (stenciltest)
1126         {
1127                 qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1128                 // only draw light where this geometry was already rendered AND the
1129                 // stencil is 128 (values other than this mean shadow)
1130                 qglStencilFunc(GL_EQUAL, 128, ~0);CHECKGLERROR
1131         }
1132         r_shadow_rendermode = r_shadow_lightingrendermode;
1133         // do global setup needed for the chosen lighting mode
1134         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1135         {
1136                 R_Mesh_TexBind(0, R_GetTexture(r_texture_blanknormalmap)); // normal
1137                 R_Mesh_TexBind(1, R_GetTexture(r_texture_white)); // diffuse
1138                 R_Mesh_TexBind(2, R_GetTexture(r_texture_white)); // gloss
1139                 R_Mesh_TexBindCubeMap(3, R_GetTexture(rsurface.rtlight->currentcubemap)); // light filter
1140                 R_Mesh_TexBind(4, R_GetTexture(r_texture_fogattenuation)); // fog
1141                 R_Mesh_TexBind(5, R_GetTexture(r_texture_white)); // pants
1142                 R_Mesh_TexBind(6, R_GetTexture(r_texture_white)); // shirt
1143                 R_Mesh_TexBind(7, R_GetTexture(r_texture_white)); // lightmap
1144                 R_Mesh_TexBind(8, R_GetTexture(r_texture_blanknormalmap)); // deluxemap
1145                 R_Mesh_TexBind(9, R_GetTexture(r_texture_black)); // glow
1146                 //R_Mesh_TexMatrix(3, rsurface.entitytolight); // light filter matrix
1147                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1148                 GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 0);
1149                 CHECKGLERROR
1150         }
1151 }
1152
1153 void R_Shadow_RenderMode_VisibleShadowVolumes(void)
1154 {
1155         CHECKGLERROR
1156         R_Shadow_RenderMode_Reset();
1157         GL_BlendFunc(GL_ONE, GL_ONE);
1158         GL_DepthRange(0, 1);
1159         GL_DepthTest(r_showshadowvolumes.integer < 2);
1160         GL_Color(0.0, 0.0125 * r_view.colorscale, 0.1 * r_view.colorscale, 1);
1161         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
1162         GL_CullFace(GL_NONE);
1163         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
1164 }
1165
1166 void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
1167 {
1168         CHECKGLERROR
1169         R_Shadow_RenderMode_Reset();
1170         GL_BlendFunc(GL_ONE, GL_ONE);
1171         GL_DepthRange(0, 1);
1172         GL_DepthTest(r_showlighting.integer < 2);
1173         GL_Color(0.1 * r_view.colorscale, 0.0125 * r_view.colorscale, 0, 1);
1174         if (!transparent)
1175         {
1176                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1177         }
1178         if (stenciltest)
1179         {
1180                 qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1181                 qglStencilFunc(GL_EQUAL, 128, ~0);CHECKGLERROR
1182         }
1183         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
1184 }
1185
1186 void R_Shadow_RenderMode_End(void)
1187 {
1188         CHECKGLERROR
1189         R_Shadow_RenderMode_Reset();
1190         R_Shadow_RenderMode_ActiveLight(NULL);
1191         GL_DepthMask(true);
1192         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
1193         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1194 }
1195
1196 int bboxedges[12][2] =
1197 {
1198         // top
1199         {0, 1}, // +X
1200         {0, 2}, // +Y
1201         {1, 3}, // Y, +X
1202         {2, 3}, // X, +Y
1203         // bottom
1204         {4, 5}, // +X
1205         {4, 6}, // +Y
1206         {5, 7}, // Y, +X
1207         {6, 7}, // X, +Y
1208         // verticals
1209         {0, 4}, // +Z
1210         {1, 5}, // X, +Z
1211         {2, 6}, // Y, +Z
1212         {3, 7}, // XY, +Z
1213 };
1214
1215 qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
1216 {
1217         int i, ix1, iy1, ix2, iy2;
1218         float x1, y1, x2, y2;
1219         vec4_t v, v2;
1220         float vertex[20][3];
1221         int j, k;
1222         vec4_t plane4f;
1223         int numvertices;
1224         float corner[8][4];
1225         float dist[8];
1226         int sign[8];
1227         float f;
1228
1229         if (!r_shadow_scissor.integer)
1230                 return false;
1231
1232         // if view is inside the light box, just say yes it's visible
1233         if (BoxesOverlap(r_view.origin, r_view.origin, mins, maxs))
1234         {
1235                 GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
1236                 return false;
1237         }
1238
1239         x1 = y1 = x2 = y2 = 0;
1240
1241         // transform all corners that are infront of the nearclip plane
1242         VectorNegate(r_view.frustum[4].normal, plane4f);
1243         plane4f[3] = r_view.frustum[4].dist;
1244         numvertices = 0;
1245         for (i = 0;i < 8;i++)
1246         {
1247                 Vector4Set(corner[i], (i & 1) ? maxs[0] : mins[0], (i & 2) ? maxs[1] : mins[1], (i & 4) ? maxs[2] : mins[2], 1);
1248                 dist[i] = DotProduct4(corner[i], plane4f);
1249                 sign[i] = dist[i] > 0;
1250                 if (!sign[i])
1251                 {
1252                         VectorCopy(corner[i], vertex[numvertices]);
1253                         numvertices++;
1254                 }
1255         }
1256         // if some points are behind the nearclip, add clipped edge points to make
1257         // sure that the scissor boundary is complete
1258         if (numvertices > 0 && numvertices < 8)
1259         {
1260                 // add clipped edge points
1261                 for (i = 0;i < 12;i++)
1262                 {
1263                         j = bboxedges[i][0];
1264                         k = bboxedges[i][1];
1265                         if (sign[j] != sign[k])
1266                         {
1267                                 f = dist[j] / (dist[j] - dist[k]);
1268                                 VectorLerp(corner[j], f, corner[k], vertex[numvertices]);
1269                                 numvertices++;
1270                         }
1271                 }
1272         }
1273
1274         // if we have no points to check, the light is behind the view plane
1275         if (!numvertices)
1276                 return true;
1277
1278         // if we have some points to transform, check what screen area is covered
1279         x1 = y1 = x2 = y2 = 0;
1280         v[3] = 1.0f;
1281         //Con_Printf("%i vertices to transform...\n", numvertices);
1282         for (i = 0;i < numvertices;i++)
1283         {
1284                 VectorCopy(vertex[i], v);
1285                 GL_TransformToScreen(v, v2);
1286                 //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
1287                 if (i)
1288                 {
1289                         if (x1 > v2[0]) x1 = v2[0];
1290                         if (x2 < v2[0]) x2 = v2[0];
1291                         if (y1 > v2[1]) y1 = v2[1];
1292                         if (y2 < v2[1]) y2 = v2[1];
1293                 }
1294                 else
1295                 {
1296                         x1 = x2 = v2[0];
1297                         y1 = y2 = v2[1];
1298                 }
1299         }
1300
1301         // now convert the scissor rectangle to integer screen coordinates
1302         ix1 = (int)(x1 - 1.0f);
1303         iy1 = (int)(y1 - 1.0f);
1304         ix2 = (int)(x2 + 1.0f);
1305         iy2 = (int)(y2 + 1.0f);
1306         //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2);
1307
1308         // clamp it to the screen
1309         if (ix1 < r_view.x) ix1 = r_view.x;
1310         if (iy1 < r_view.y) iy1 = r_view.y;
1311         if (ix2 > r_view.x + r_view.width) ix2 = r_view.x + r_view.width;
1312         if (iy2 > r_view.y + r_view.height) iy2 = r_view.y + r_view.height;
1313
1314         // if it is inside out, it's not visible
1315         if (ix2 <= ix1 || iy2 <= iy1)
1316                 return true;
1317
1318         // the light area is visible, set up the scissor rectangle
1319         GL_Scissor(ix1, iy1, ix2 - ix1, iy2 - iy1);
1320         //qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1);CHECKGLERROR
1321         //qglEnable(GL_SCISSOR_TEST);CHECKGLERROR
1322         r_refdef.stats.lights_scissored++;
1323         return false;
1324 }
1325
1326 static void R_Shadow_RenderLighting_Light_Vertex_Shading(int firstvertex, int numverts, int numtriangles, const int *element3i, const float *diffusecolor, const float *ambientcolor)
1327 {
1328         float *vertex3f = rsurface.vertex3f + 3 * firstvertex;
1329         float *normal3f = rsurface.normal3f + 3 * firstvertex;
1330         float *color4f = rsurface.array_color4f + 4 * firstvertex;
1331         float dist, dot, distintensity, shadeintensity, v[3], n[3];
1332         if (r_textureunits.integer >= 3)
1333         {
1334                 if (VectorLength2(diffusecolor) > 0)
1335                 {
1336                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1337                         {
1338                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1339                                 Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1340                                 if ((dot = DotProduct(n, v)) < 0)
1341                                 {
1342                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1343                                         VectorMA(ambientcolor, shadeintensity, diffusecolor, color4f);
1344                                 }
1345                                 else
1346                                         VectorCopy(ambientcolor, color4f);
1347                                 if (r_refdef.fogenabled)
1348                                 {
1349                                         float f;
1350                                         f = FogPoint_Model(vertex3f);
1351                                         VectorScale(color4f, f, color4f);
1352                                 }
1353                                 color4f[3] = 1;
1354                         }
1355                 }
1356                 else
1357                 {
1358                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1359                         {
1360                                 VectorCopy(ambientcolor, color4f);
1361                                 if (r_refdef.fogenabled)
1362                                 {
1363                                         float f;
1364                                         Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1365                                         f = FogPoint_Model(vertex3f);
1366                                         VectorScale(color4f, f, color4f);
1367                                 }
1368                                 color4f[3] = 1;
1369                         }
1370                 }
1371         }
1372         else if (r_textureunits.integer >= 2)
1373         {
1374                 if (VectorLength2(diffusecolor) > 0)
1375                 {
1376                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1377                         {
1378                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1379                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1380                                 {
1381                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1382                                         if ((dot = DotProduct(n, v)) < 0)
1383                                         {
1384                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1385                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1386                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1387                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1388                                         }
1389                                         else
1390                                         {
1391                                                 color4f[0] = ambientcolor[0] * distintensity;
1392                                                 color4f[1] = ambientcolor[1] * distintensity;
1393                                                 color4f[2] = ambientcolor[2] * distintensity;
1394                                         }
1395                                         if (r_refdef.fogenabled)
1396                                         {
1397                                                 float f;
1398                                                 f = FogPoint_Model(vertex3f);
1399                                                 VectorScale(color4f, f, color4f);
1400                                         }
1401                                 }
1402                                 else
1403                                         VectorClear(color4f);
1404                                 color4f[3] = 1;
1405                         }
1406                 }
1407                 else
1408                 {
1409                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1410                         {
1411                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1412                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1413                                 {
1414                                         color4f[0] = ambientcolor[0] * distintensity;
1415                                         color4f[1] = ambientcolor[1] * distintensity;
1416                                         color4f[2] = ambientcolor[2] * distintensity;
1417                                         if (r_refdef.fogenabled)
1418                                         {
1419                                                 float f;
1420                                                 f = FogPoint_Model(vertex3f);
1421                                                 VectorScale(color4f, f, color4f);
1422                                         }
1423                                 }
1424                                 else
1425                                         VectorClear(color4f);
1426                                 color4f[3] = 1;
1427                         }
1428                 }
1429         }
1430         else
1431         {
1432                 if (VectorLength2(diffusecolor) > 0)
1433                 {
1434                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1435                         {
1436                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1437                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1438                                 {
1439                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
1440                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1441                                         if ((dot = DotProduct(n, v)) < 0)
1442                                         {
1443                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1444                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1445                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1446                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1447                                         }
1448                                         else
1449                                         {
1450                                                 color4f[0] = ambientcolor[0] * distintensity;
1451                                                 color4f[1] = ambientcolor[1] * distintensity;
1452                                                 color4f[2] = ambientcolor[2] * distintensity;
1453                                         }
1454                                         if (r_refdef.fogenabled)
1455                                         {
1456                                                 float f;
1457                                                 f = FogPoint_Model(vertex3f);
1458                                                 VectorScale(color4f, f, color4f);
1459                                         }
1460                                 }
1461                                 else
1462                                         VectorClear(color4f);
1463                                 color4f[3] = 1;
1464                         }
1465                 }
1466                 else
1467                 {
1468                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1469                         {
1470                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1471                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1472                                 {
1473                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
1474                                         color4f[0] = ambientcolor[0] * distintensity;
1475                                         color4f[1] = ambientcolor[1] * distintensity;
1476                                         color4f[2] = ambientcolor[2] * distintensity;
1477                                         if (r_refdef.fogenabled)
1478                                         {
1479                                                 float f;
1480                                                 f = FogPoint_Model(vertex3f);
1481                                                 VectorScale(color4f, f, color4f);
1482                                         }
1483                                 }
1484                                 else
1485                                         VectorClear(color4f);
1486                                 color4f[3] = 1;
1487                         }
1488                 }
1489         }
1490 }
1491
1492 // TODO: use glTexGen instead of feeding vertices to texcoordpointer?
1493
1494 static void R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(int firstvertex, int numvertices, int numtriangles, const int *element3i)
1495 {
1496         int i;
1497         float       *out3f     = rsurface.array_texcoord3f + 3 * firstvertex;
1498         const float *vertex3f  = rsurface.vertex3f         + 3 * firstvertex;
1499         const float *svector3f = rsurface.svector3f        + 3 * firstvertex;
1500         const float *tvector3f = rsurface.tvector3f        + 3 * firstvertex;
1501         const float *normal3f  = rsurface.normal3f         + 3 * firstvertex;
1502         float lightdir[3];
1503         for (i = 0;i < numvertices;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1504         {
1505                 VectorSubtract(rsurface.entitylightorigin, vertex3f, lightdir);
1506                 // the cubemap normalizes this for us
1507                 out3f[0] = DotProduct(svector3f, lightdir);
1508                 out3f[1] = DotProduct(tvector3f, lightdir);
1509                 out3f[2] = DotProduct(normal3f, lightdir);
1510         }
1511 }
1512
1513 static void R_Shadow_GenTexCoords_Specular_NormalCubeMap(int firstvertex, int numvertices, int numtriangles, const int *element3i)
1514 {
1515         int i;
1516         float       *out3f     = rsurface.array_texcoord3f + 3 * firstvertex;
1517         const float *vertex3f  = rsurface.vertex3f         + 3 * firstvertex;
1518         const float *svector3f = rsurface.svector3f        + 3 * firstvertex;
1519         const float *tvector3f = rsurface.tvector3f        + 3 * firstvertex;
1520         const float *normal3f  = rsurface.normal3f         + 3 * firstvertex;
1521         float lightdir[3], eyedir[3], halfdir[3];
1522         for (i = 0;i < numvertices;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1523         {
1524                 VectorSubtract(rsurface.entitylightorigin, vertex3f, lightdir);
1525                 VectorNormalize(lightdir);
1526                 VectorSubtract(rsurface.modelorg, vertex3f, eyedir);
1527                 VectorNormalize(eyedir);
1528                 VectorAdd(lightdir, eyedir, halfdir);
1529                 // the cubemap normalizes this for us
1530                 out3f[0] = DotProduct(svector3f, halfdir);
1531                 out3f[1] = DotProduct(tvector3f, halfdir);
1532                 out3f[2] = DotProduct(normal3f, halfdir);
1533         }
1534 }
1535
1536 static void R_Shadow_RenderLighting_VisibleLighting(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
1537 {
1538         // used to display how many times a surface is lit for level design purposes
1539         GL_Color(0.1 * r_view.colorscale, 0.025 * r_view.colorscale, 0, 1);
1540         R_Mesh_ColorPointer(NULL, 0, 0);
1541         R_Mesh_ResetTextureState();
1542         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1543 }
1544
1545 static void R_Shadow_RenderLighting_Light_GLSL(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
1546 {
1547         // ARB2 GLSL shader path (GFFX5200, Radeon 9500)
1548         R_SetupSurfaceShader(lightcolorbase, false, ambientscale, diffusescale, specularscale, RSURFPASS_RTLIGHT);
1549         R_Mesh_TexMatrix(0, &rsurface.texture->currenttexmatrix);
1550         R_Mesh_TexBind(0, R_GetTexture(rsurface.texture->currentskinframe->nmap));
1551         R_Mesh_TexBind(1, R_GetTexture(rsurface.texture->basetexture));
1552         R_Mesh_TexBind(2, R_GetTexture(rsurface.texture->glosstexture));
1553         R_Mesh_TexBindCubeMap(3, R_GetTexture(rsurface.rtlight->currentcubemap));
1554         R_Mesh_TexBind(4, R_GetTexture(r_texture_fogattenuation));
1555         R_Mesh_TexBind(5, R_GetTexture(rsurface.texture->currentskinframe->pants));
1556         R_Mesh_TexBind(6, R_GetTexture(rsurface.texture->currentskinframe->shirt));
1557         R_Mesh_TexBind(10, R_GetTexture(r_shadow_attenuationgradienttexture));
1558         R_Mesh_TexCoordPointer(0, 2, rsurface.texcoordtexture2f, rsurface.texcoordtexture2f_bufferobject, rsurface.texcoordtexture2f_bufferoffset);
1559         R_Mesh_TexCoordPointer(1, 3, rsurface.svector3f, rsurface.svector3f_bufferobject, rsurface.svector3f_bufferoffset);
1560         R_Mesh_TexCoordPointer(2, 3, rsurface.tvector3f, rsurface.tvector3f_bufferobject, rsurface.tvector3f_bufferoffset);
1561         R_Mesh_TexCoordPointer(3, 3, rsurface.normal3f, rsurface.normal3f_bufferobject, rsurface.normal3f_bufferoffset);
1562         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1563         {
1564                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1565         }
1566         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1567         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1568         {
1569                 qglDepthFunc(GL_LEQUAL);CHECKGLERROR
1570         }
1571 }
1572
1573 static void R_Shadow_RenderLighting_Light_Dot3_Finalize(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, float r, float g, float b)
1574 {
1575         // shared final code for all the dot3 layers
1576         int renders;
1577         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 0);
1578         for (renders = 0;renders < 64 && (r > 0 || g > 0 || b > 0);renders++, r--, g--, b--)
1579         {
1580                 GL_Color(bound(0, r, 1), bound(0, g, 1), bound(0, b, 1), 1);
1581                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1582         }
1583 }
1584
1585 static void R_Shadow_RenderLighting_Light_Dot3_AmbientPass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *basetexture, float colorscale)
1586 {
1587         rmeshstate_t m;
1588         // colorscale accounts for how much we multiply the brightness
1589         // during combine.
1590         //
1591         // mult is how many times the final pass of the lighting will be
1592         // performed to get more brightness than otherwise possible.
1593         //
1594         // Limit mult to 64 for sanity sake.
1595         GL_Color(1,1,1,1);
1596         if (r_shadow_texture3d.integer && rsurface.rtlight->currentcubemap != r_texture_whitecube && r_textureunits.integer >= 4)
1597         {
1598                 // 3 3D combine path (Geforce3, Radeon 8500)
1599                 memset(&m, 0, sizeof(m));
1600                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1601                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1602                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1603                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1604                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1605                 m.tex[1] = R_GetTexture(basetexture);
1606                 m.pointer_texcoord[1] = rsurface.texcoordtexture2f;
1607                 m.pointer_texcoord_bufferobject[1] = rsurface.texcoordtexture2f_bufferobject;
1608                 m.pointer_texcoord_bufferoffset[1] = rsurface.texcoordtexture2f_bufferoffset;
1609                 m.texmatrix[1] = rsurface.texture->currenttexmatrix;
1610                 m.texcubemap[2] = R_GetTexture(rsurface.rtlight->currentcubemap);
1611                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1612                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1613                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1614                 m.texmatrix[2] = rsurface.entitytolight;
1615                 GL_BlendFunc(GL_ONE, GL_ONE);
1616         }
1617         else if (r_shadow_texture3d.integer && rsurface.rtlight->currentcubemap == r_texture_whitecube && r_textureunits.integer >= 2)
1618         {
1619                 // 2 3D combine path (Geforce3, original Radeon)
1620                 memset(&m, 0, sizeof(m));
1621                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1622                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1623                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1624                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1625                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1626                 m.tex[1] = R_GetTexture(basetexture);
1627                 m.pointer_texcoord[1] = rsurface.texcoordtexture2f;
1628                 m.pointer_texcoord_bufferobject[1] = rsurface.texcoordtexture2f_bufferobject;
1629                 m.pointer_texcoord_bufferoffset[1] = rsurface.texcoordtexture2f_bufferoffset;
1630                 m.texmatrix[1] = rsurface.texture->currenttexmatrix;
1631                 GL_BlendFunc(GL_ONE, GL_ONE);
1632         }
1633         else if (r_textureunits.integer >= 4 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1634         {
1635                 // 4 2D combine path (Geforce3, Radeon 8500)
1636                 memset(&m, 0, sizeof(m));
1637                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1638                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1639                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1640                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1641                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1642                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1643                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1644                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1645                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1646                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1647                 m.tex[2] = R_GetTexture(basetexture);
1648                 m.pointer_texcoord[2] = rsurface.texcoordtexture2f;
1649                 m.pointer_texcoord_bufferobject[2] = rsurface.texcoordtexture2f_bufferobject;
1650                 m.pointer_texcoord_bufferoffset[2] = rsurface.texcoordtexture2f_bufferoffset;
1651                 m.texmatrix[2] = rsurface.texture->currenttexmatrix;
1652                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1653                 {
1654                         m.texcubemap[3] = R_GetTexture(rsurface.rtlight->currentcubemap);
1655                         m.pointer_texcoord3f[3] = rsurface.vertex3f;
1656                         m.pointer_texcoord_bufferobject[3] = rsurface.vertex3f_bufferobject;
1657                         m.pointer_texcoord_bufferoffset[3] = rsurface.vertex3f_bufferoffset;
1658                         m.texmatrix[3] = rsurface.entitytolight;
1659                 }
1660                 GL_BlendFunc(GL_ONE, GL_ONE);
1661         }
1662         else if (r_textureunits.integer >= 3 && rsurface.rtlight->currentcubemap == r_texture_whitecube)
1663         {
1664                 // 3 2D combine path (Geforce3, original Radeon)
1665                 memset(&m, 0, sizeof(m));
1666                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1667                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1668                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1669                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1670                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1671                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1672                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1673                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1674                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1675                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1676                 m.tex[2] = R_GetTexture(basetexture);
1677                 m.pointer_texcoord[2] = rsurface.texcoordtexture2f;
1678                 m.pointer_texcoord_bufferobject[2] = rsurface.texcoordtexture2f_bufferobject;
1679                 m.pointer_texcoord_bufferoffset[2] = rsurface.texcoordtexture2f_bufferoffset;
1680                 m.texmatrix[2] = rsurface.texture->currenttexmatrix;
1681                 GL_BlendFunc(GL_ONE, GL_ONE);
1682         }
1683         else
1684         {
1685                 // 2/2/2 2D combine path (any dot3 card)
1686                 memset(&m, 0, sizeof(m));
1687                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1688                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1689                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1690                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1691                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1692                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1693                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1694                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1695                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1696                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1697                 R_Mesh_TextureState(&m);
1698                 GL_ColorMask(0,0,0,1);
1699                 GL_BlendFunc(GL_ONE, GL_ZERO);
1700                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1701
1702                 // second pass
1703                 memset(&m, 0, sizeof(m));
1704                 m.tex[0] = R_GetTexture(basetexture);
1705                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1706                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1707                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1708                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1709                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1710                 {
1711                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1712                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1713                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1714                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1715                         m.texmatrix[1] = rsurface.entitytolight;
1716                 }
1717                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1718         }
1719         // this final code is shared
1720         R_Mesh_TextureState(&m);
1721         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
1722 }
1723
1724 static void R_Shadow_RenderLighting_Light_Dot3_DiffusePass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *basetexture, rtexture_t *normalmaptexture, float colorscale)
1725 {
1726         rmeshstate_t m;
1727         // colorscale accounts for how much we multiply the brightness
1728         // during combine.
1729         //
1730         // mult is how many times the final pass of the lighting will be
1731         // performed to get more brightness than otherwise possible.
1732         //
1733         // Limit mult to 64 for sanity sake.
1734         GL_Color(1,1,1,1);
1735         // generate normalization cubemap texcoords
1736         R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(firstvertex, numvertices, numtriangles, element3i);
1737         if (r_shadow_texture3d.integer && r_textureunits.integer >= 4)
1738         {
1739                 // 3/2 3D combine path (Geforce3, Radeon 8500)
1740                 memset(&m, 0, sizeof(m));
1741                 m.tex[0] = R_GetTexture(normalmaptexture);
1742                 m.texcombinergb[0] = GL_REPLACE;
1743                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1744                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1745                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1746                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1747                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1748                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1749                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1750                 m.pointer_texcoord_bufferobject[1] = 0;
1751                 m.pointer_texcoord_bufferoffset[1] = 0;
1752                 m.tex3d[2] = R_GetTexture(r_shadow_attenuation3dtexture);
1753                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1754                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1755                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1756                 m.texmatrix[2] = rsurface.entitytoattenuationxyz;
1757                 R_Mesh_TextureState(&m);
1758                 GL_ColorMask(0,0,0,1);
1759                 GL_BlendFunc(GL_ONE, GL_ZERO);
1760                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1761
1762                 // second pass
1763                 memset(&m, 0, sizeof(m));
1764                 m.tex[0] = R_GetTexture(basetexture);
1765                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1766                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1767                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1768                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1769                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1770                 {
1771                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1772                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1773                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1774                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1775                         m.texmatrix[1] = rsurface.entitytolight;
1776                 }
1777                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1778         }
1779         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1780         {
1781                 // 1/2/2 3D combine path (original Radeon)
1782                 memset(&m, 0, sizeof(m));
1783                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1784                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1785                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1786                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1787                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1788                 R_Mesh_TextureState(&m);
1789                 GL_ColorMask(0,0,0,1);
1790                 GL_BlendFunc(GL_ONE, GL_ZERO);
1791                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1792
1793                 // second pass
1794                 memset(&m, 0, sizeof(m));
1795                 m.tex[0] = R_GetTexture(normalmaptexture);
1796                 m.texcombinergb[0] = GL_REPLACE;
1797                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1798                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1799                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1800                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1801                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1802                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1803                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1804                 m.pointer_texcoord_bufferobject[1] = 0;
1805                 m.pointer_texcoord_bufferoffset[1] = 0;
1806                 R_Mesh_TextureState(&m);
1807                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1808                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1809
1810                 // second pass
1811                 memset(&m, 0, sizeof(m));
1812                 m.tex[0] = R_GetTexture(basetexture);
1813                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1814                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1815                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1816                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1817                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1818                 {
1819                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1820                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1821                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1822                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1823                         m.texmatrix[1] = rsurface.entitytolight;
1824                 }
1825                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1826         }
1827         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap == r_texture_whitecube)
1828         {
1829                 // 2/2 3D combine path (original Radeon)
1830                 memset(&m, 0, sizeof(m));
1831                 m.tex[0] = R_GetTexture(normalmaptexture);
1832                 m.texcombinergb[0] = GL_REPLACE;
1833                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1834                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1835                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1836                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1837                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1838                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1839                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1840                 m.pointer_texcoord_bufferobject[1] = 0;
1841                 m.pointer_texcoord_bufferoffset[1] = 0;
1842                 R_Mesh_TextureState(&m);
1843                 GL_ColorMask(0,0,0,1);
1844                 GL_BlendFunc(GL_ONE, GL_ZERO);
1845                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1846
1847                 // second pass
1848                 memset(&m, 0, sizeof(m));
1849                 m.tex[0] = R_GetTexture(basetexture);
1850                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1851                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1852                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1853                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1854                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
1855                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1856                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1857                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1858                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
1859                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1860         }
1861         else if (r_textureunits.integer >= 4)
1862         {
1863                 // 4/2 2D combine path (Geforce3, Radeon 8500)
1864                 memset(&m, 0, sizeof(m));
1865                 m.tex[0] = R_GetTexture(normalmaptexture);
1866                 m.texcombinergb[0] = GL_REPLACE;
1867                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1868                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1869                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1870                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1871                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1872                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1873                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1874                 m.pointer_texcoord_bufferobject[1] = 0;
1875                 m.pointer_texcoord_bufferoffset[1] = 0;
1876                 m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
1877                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1878                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1879                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1880                 m.texmatrix[2] = rsurface.entitytoattenuationxyz;
1881                 m.tex[3] = R_GetTexture(r_shadow_attenuation2dtexture);
1882                 m.pointer_texcoord3f[3] = rsurface.vertex3f;
1883                 m.pointer_texcoord_bufferobject[3] = rsurface.vertex3f_bufferobject;
1884                 m.pointer_texcoord_bufferoffset[3] = rsurface.vertex3f_bufferoffset;
1885                 m.texmatrix[3] = rsurface.entitytoattenuationz;
1886                 R_Mesh_TextureState(&m);
1887                 GL_ColorMask(0,0,0,1);
1888                 GL_BlendFunc(GL_ONE, GL_ZERO);
1889                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1890
1891                 // second pass
1892                 memset(&m, 0, sizeof(m));
1893                 m.tex[0] = R_GetTexture(basetexture);
1894                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1895                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1896                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1897                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1898                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1899                 {
1900                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1901                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1902                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1903                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1904                         m.texmatrix[1] = rsurface.entitytolight;
1905                 }
1906                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1907         }
1908         else
1909         {
1910                 // 2/2/2 2D combine path (any dot3 card)
1911                 memset(&m, 0, sizeof(m));
1912                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1913                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1914                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1915                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1916                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1917                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1918                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1919                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1920                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1921                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1922                 R_Mesh_TextureState(&m);
1923                 GL_ColorMask(0,0,0,1);
1924                 GL_BlendFunc(GL_ONE, GL_ZERO);
1925                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1926
1927                 // second pass
1928                 memset(&m, 0, sizeof(m));
1929                 m.tex[0] = R_GetTexture(normalmaptexture);
1930                 m.texcombinergb[0] = GL_REPLACE;
1931                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1932                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1933                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1934                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1935                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1936                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1937                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1938                 m.pointer_texcoord_bufferobject[1] = 0;
1939                 m.pointer_texcoord_bufferoffset[1] = 0;
1940                 R_Mesh_TextureState(&m);
1941                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1942                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1943
1944                 // second pass
1945                 memset(&m, 0, sizeof(m));
1946                 m.tex[0] = R_GetTexture(basetexture);
1947                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1948                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1949                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1950                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1951                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1952                 {
1953                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1954                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1955                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1956                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1957                         m.texmatrix[1] = rsurface.entitytolight;
1958                 }
1959                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1960         }
1961         // this final code is shared
1962         R_Mesh_TextureState(&m);
1963         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
1964 }
1965
1966 static void R_Shadow_RenderLighting_Light_Dot3_SpecularPass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *glosstexture, rtexture_t *normalmaptexture, float colorscale)
1967 {
1968         float glossexponent;
1969         rmeshstate_t m;
1970         // FIXME: detect blendsquare!
1971         //if (!gl_support_blendsquare)
1972         //      return;
1973         GL_Color(1,1,1,1);
1974         // generate normalization cubemap texcoords
1975         R_Shadow_GenTexCoords_Specular_NormalCubeMap(firstvertex, numvertices, numtriangles, element3i);
1976         if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1977         {
1978                 // 2/0/0/1/2 3D combine blendsquare path
1979                 memset(&m, 0, sizeof(m));
1980                 m.tex[0] = R_GetTexture(normalmaptexture);
1981                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1982                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1983                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1984                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1985                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1986                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1987                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1988                 m.pointer_texcoord_bufferobject[1] = 0;
1989                 m.pointer_texcoord_bufferoffset[1] = 0;
1990                 R_Mesh_TextureState(&m);
1991                 GL_ColorMask(0,0,0,1);
1992                 // this squares the result
1993                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
1994                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1995
1996                 // second and third pass
1997                 R_Mesh_ResetTextureState();
1998                 // square alpha in framebuffer a few times to make it shiny
1999                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2000                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
2001                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2002
2003                 // fourth pass
2004                 memset(&m, 0, sizeof(m));
2005                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
2006                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
2007                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
2008                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
2009                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
2010                 R_Mesh_TextureState(&m);
2011                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
2012                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2013
2014                 // fifth pass
2015                 memset(&m, 0, sizeof(m));
2016                 m.tex[0] = R_GetTexture(glosstexture);
2017                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2018                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2019                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2020                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2021                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
2022                 {
2023                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
2024                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
2025                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2026                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2027                         m.texmatrix[1] = rsurface.entitytolight;
2028                 }
2029                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2030         }
2031         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap == r_texture_whitecube /* && gl_support_blendsquare*/) // FIXME: detect blendsquare!
2032         {
2033                 // 2/0/0/2 3D combine blendsquare path
2034                 memset(&m, 0, sizeof(m));
2035                 m.tex[0] = R_GetTexture(normalmaptexture);
2036                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2037                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2038                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2039                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2040                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2041                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2042                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
2043                 m.pointer_texcoord_bufferobject[1] = 0;
2044                 m.pointer_texcoord_bufferoffset[1] = 0;
2045                 R_Mesh_TextureState(&m);
2046                 GL_ColorMask(0,0,0,1);
2047                 // this squares the result
2048                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
2049                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2050
2051                 // second and third pass
2052                 R_Mesh_ResetTextureState();
2053                 // square alpha in framebuffer a few times to make it shiny
2054                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2055                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
2056                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2057
2058                 // fourth pass
2059                 memset(&m, 0, sizeof(m));
2060                 m.tex[0] = R_GetTexture(glosstexture);
2061                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2062                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2063                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2064                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2065                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
2066                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
2067                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2068                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2069                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
2070                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2071         }
2072         else
2073         {
2074                 // 2/0/0/2/2 2D combine blendsquare path
2075                 memset(&m, 0, sizeof(m));
2076                 m.tex[0] = R_GetTexture(normalmaptexture);
2077                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2078                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2079                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2080                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2081                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
2082                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
2083                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
2084                 m.pointer_texcoord_bufferobject[1] = 0;
2085                 m.pointer_texcoord_bufferoffset[1] = 0;
2086                 R_Mesh_TextureState(&m);
2087                 GL_ColorMask(0,0,0,1);
2088                 // this squares the result
2089                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
2090                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2091
2092                 // second and third pass
2093                 R_Mesh_ResetTextureState();
2094                 // square alpha in framebuffer a few times to make it shiny
2095                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2096                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
2097                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2098
2099                 // fourth pass
2100                 memset(&m, 0, sizeof(m));
2101                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
2102                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
2103                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
2104                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
2105                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
2106                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2107                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
2108                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2109                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2110                 m.texmatrix[1] = rsurface.entitytoattenuationz;
2111                 R_Mesh_TextureState(&m);
2112                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
2113                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2114
2115                 // fifth pass
2116                 memset(&m, 0, sizeof(m));
2117                 m.tex[0] = R_GetTexture(glosstexture);
2118                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2119                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2120                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2121                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2122                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
2123                 {
2124                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
2125                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
2126                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2127                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2128                         m.texmatrix[1] = rsurface.entitytolight;
2129                 }
2130                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2131         }
2132         // this final code is shared
2133         R_Mesh_TextureState(&m);
2134         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
2135 }
2136
2137 static void R_Shadow_RenderLighting_Light_Dot3(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
2138 {
2139         // ARB path (any Geforce, any Radeon)
2140         qboolean doambient = ambientscale > 0;
2141         qboolean dodiffuse = diffusescale > 0;
2142         qboolean dospecular = specularscale > 0;
2143         if (!doambient && !dodiffuse && !dospecular)
2144                 return;
2145         R_Mesh_ColorPointer(NULL, 0, 0);
2146         if (doambient)
2147                 R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, basetexture, ambientscale * r_view.colorscale);
2148         if (dodiffuse)
2149                 R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, basetexture, normalmaptexture, diffusescale * r_view.colorscale);
2150         if (dopants)
2151         {
2152                 if (doambient)
2153                         R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorpants, pantstexture, ambientscale * r_view.colorscale);
2154                 if (dodiffuse)
2155                         R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorpants, pantstexture, normalmaptexture, diffusescale * r_view.colorscale);
2156         }
2157         if (doshirt)
2158         {
2159                 if (doambient)
2160                         R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorshirt, shirttexture, ambientscale * r_view.colorscale);
2161                 if (dodiffuse)
2162                         R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorshirt, shirttexture, normalmaptexture, diffusescale * r_view.colorscale);
2163         }
2164         if (dospecular)
2165                 R_Shadow_RenderLighting_Light_Dot3_SpecularPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, glosstexture, normalmaptexture, specularscale * r_view.colorscale);
2166 }
2167
2168 void R_Shadow_RenderLighting_Light_Vertex_Pass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, vec3_t diffusecolor2, vec3_t ambientcolor2)
2169 {
2170         int renders;
2171         int i;
2172         int stop;
2173         int newfirstvertex;
2174         int newlastvertex;
2175         int newnumtriangles;
2176         int *newe;
2177         const int *e;
2178         float *c;
2179         int newelements[4096*3];
2180         R_Shadow_RenderLighting_Light_Vertex_Shading(firstvertex, numvertices, numtriangles, element3i, diffusecolor2, ambientcolor2);
2181         for (renders = 0;renders < 64;renders++)
2182         {
2183                 stop = true;
2184                 newfirstvertex = 0;
2185                 newlastvertex = 0;
2186                 newnumtriangles = 0;
2187                 newe = newelements;
2188                 // due to low fillrate on the cards this vertex lighting path is
2189                 // designed for, we manually cull all triangles that do not
2190                 // contain a lit vertex
2191                 // this builds batches of triangles from multiple surfaces and
2192                 // renders them at once
2193                 for (i = 0, e = element3i;i < numtriangles;i++, e += 3)
2194                 {
2195                         if (VectorLength2(rsurface.array_color4f + e[0] * 4) + VectorLength2(rsurface.array_color4f + e[1] * 4) + VectorLength2(rsurface.array_color4f + e[2] * 4) >= 0.01)
2196                         {
2197                                 if (newnumtriangles)
2198                                 {
2199                                         newfirstvertex = min(newfirstvertex, e[0]);
2200                                         newlastvertex  = max(newlastvertex, e[0]);
2201                                 }
2202                                 else
2203                                 {
2204                                         newfirstvertex = e[0];
2205                                         newlastvertex = e[0];
2206                                 }
2207                                 newfirstvertex = min(newfirstvertex, e[1]);
2208                                 newlastvertex  = max(newlastvertex, e[1]);
2209                                 newfirstvertex = min(newfirstvertex, e[2]);
2210                                 newlastvertex  = max(newlastvertex, e[2]);
2211                                 newe[0] = e[0];
2212                                 newe[1] = e[1];
2213                                 newe[2] = e[2];
2214                                 newnumtriangles++;
2215                                 newe += 3;
2216                                 if (newnumtriangles >= (int)(sizeof(newelements)/sizeof(float[3])))
2217                                 {
2218                                         R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, newnumtriangles, newelements, 0, 0);
2219                                         newnumtriangles = 0;
2220                                         newe = newelements;
2221                                         stop = false;
2222                                 }
2223                         }
2224                 }
2225                 if (newnumtriangles >= 1)
2226                 {
2227                         // if all triangles are included, use the original array to take advantage of the bufferobject if possible
2228                         if (newnumtriangles == numtriangles)
2229                                 R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2230                         else
2231                                 R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, newnumtriangles, newelements, 0, 0);
2232                         stop = false;
2233                 }
2234                 // if we couldn't find any lit triangles, exit early
2235                 if (stop)
2236                         break;
2237                 // now reduce the intensity for the next overbright pass
2238                 // we have to clamp to 0 here incase the drivers have improper
2239                 // handling of negative colors
2240                 // (some old drivers even have improper handling of >1 color)
2241                 stop = true;
2242                 for (i = 0, c = rsurface.array_color4f + 4 * firstvertex;i < numvertices;i++, c += 4)
2243                 {
2244                         if (c[0] > 1 || c[1] > 1 || c[2] > 1)
2245                         {
2246                                 c[0] = max(0, c[0] - 1);
2247                                 c[1] = max(0, c[1] - 1);
2248                                 c[2] = max(0, c[2] - 1);
2249                                 stop = false;
2250                         }
2251                         else
2252                                 VectorClear(c);
2253                 }
2254                 // another check...
2255                 if (stop)
2256                         break;
2257         }
2258 }
2259
2260 static void R_Shadow_RenderLighting_Light_Vertex(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
2261 {
2262         // OpenGL 1.1 path (anything)
2263         float ambientcolorbase[3], diffusecolorbase[3];
2264         float ambientcolorpants[3], diffusecolorpants[3];
2265         float ambientcolorshirt[3], diffusecolorshirt[3];
2266         rmeshstate_t m;
2267         VectorScale(lightcolorbase, ambientscale * 2 * r_view.colorscale, ambientcolorbase);
2268         VectorScale(lightcolorbase, diffusescale * 2 * r_view.colorscale, diffusecolorbase);
2269         VectorScale(lightcolorpants, ambientscale * 2 * r_view.colorscale, ambientcolorpants);
2270         VectorScale(lightcolorpants, diffusescale * 2 * r_view.colorscale, diffusecolorpants);
2271         VectorScale(lightcolorshirt, ambientscale * 2 * r_view.colorscale, ambientcolorshirt);
2272         VectorScale(lightcolorshirt, diffusescale * 2 * r_view.colorscale, diffusecolorshirt);
2273         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2274         R_Mesh_ColorPointer(rsurface.array_color4f, 0, 0);
2275         memset(&m, 0, sizeof(m));
2276         m.tex[0] = R_GetTexture(basetexture);
2277         m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2278         m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2279         m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2280         m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2281         if (r_textureunits.integer >= 2)
2282         {
2283                 // voodoo2 or TNT
2284                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2285                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
2286                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
2287                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2288                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2289                 if (r_textureunits.integer >= 3)
2290                 {
2291                         // Voodoo4 or Kyro (or Geforce3/Radeon with gl_combine off)
2292                         m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
2293                         m.texmatrix[2] = rsurface.entitytoattenuationz;
2294                         m.pointer_texcoord3f[2] = rsurface.vertex3f;
2295                         m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
2296                         m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
2297                 }
2298         }
2299         R_Mesh_TextureState(&m);
2300         //R_Mesh_TexBind(0, R_GetTexture(basetexture));
2301         R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorbase, ambientcolorbase);
2302         if (dopants)
2303         {
2304                 R_Mesh_TexBind(0, R_GetTexture(pantstexture));
2305                 R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorpants, ambientcolorpants);
2306         }
2307         if (doshirt)
2308         {
2309                 R_Mesh_TexBind(0, R_GetTexture(shirttexture));
2310                 R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorshirt, ambientcolorshirt);
2311         }
2312 }
2313
2314 extern cvar_t gl_lightmaps;
2315 void R_Shadow_RenderLighting(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset)
2316 {
2317         float ambientscale, diffusescale, specularscale;
2318         vec3_t lightcolorbase, lightcolorpants, lightcolorshirt;
2319         rtexture_t *nmap;
2320         // calculate colors to render this texture with
2321         lightcolorbase[0] = rsurface.rtlight->currentcolor[0] * rsurface.texture->dlightcolor[0];
2322         lightcolorbase[1] = rsurface.rtlight->currentcolor[1] * rsurface.texture->dlightcolor[1];
2323         lightcolorbase[2] = rsurface.rtlight->currentcolor[2] * rsurface.texture->dlightcolor[2];
2324         ambientscale = rsurface.rtlight->ambientscale;
2325         diffusescale = rsurface.rtlight->diffusescale;
2326         specularscale = rsurface.rtlight->specularscale * rsurface.texture->specularscale;
2327         if (!r_shadow_usenormalmap.integer)
2328         {
2329                 ambientscale += 1.0f * diffusescale;
2330                 diffusescale = 0;
2331                 specularscale = 0;
2332         }
2333         if ((ambientscale + diffusescale) * VectorLength2(lightcolorbase) + specularscale * VectorLength2(lightcolorbase) < (1.0f / 1048576.0f))
2334                 return;
2335         RSurf_SetupDepthAndCulling();
2336         nmap = rsurface.texture->currentskinframe->nmap;
2337         if (gl_lightmaps.integer)
2338                 nmap = r_texture_blanknormalmap;
2339         if (rsurface.texture->colormapping && !gl_lightmaps.integer)
2340         {
2341                 qboolean dopants = rsurface.texture->currentskinframe->pants != NULL && VectorLength2(rsurface.colormap_pantscolor) >= (1.0f / 1048576.0f);
2342                 qboolean doshirt = rsurface.texture->currentskinframe->shirt != NULL && VectorLength2(rsurface.colormap_shirtcolor) >= (1.0f / 1048576.0f);
2343                 if (dopants)
2344                 {
2345                         lightcolorpants[0] = lightcolorbase[0] * rsurface.colormap_pantscolor[0];
2346                         lightcolorpants[1] = lightcolorbase[1] * rsurface.colormap_pantscolor[1];
2347                         lightcolorpants[2] = lightcolorbase[2] * rsurface.colormap_pantscolor[2];
2348                 }
2349                 else
2350                         VectorClear(lightcolorpants);
2351                 if (doshirt)
2352                 {
2353                         lightcolorshirt[0] = lightcolorbase[0] * rsurface.colormap_shirtcolor[0];
2354                         lightcolorshirt[1] = lightcolorbase[1] * rsurface.colormap_shirtcolor[1];
2355                         lightcolorshirt[2] = lightcolorbase[2] * rsurface.colormap_shirtcolor[2];
2356                 }
2357                 else
2358                         VectorClear(lightcolorshirt);
2359                 switch (r_shadow_rendermode)
2360                 {
2361                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2362                         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
2363                         R_Shadow_RenderLighting_VisibleLighting(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2364                         break;
2365                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2366                         R_Shadow_RenderLighting_Light_GLSL(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2367                         break;
2368                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2369                         R_Shadow_RenderLighting_Light_Dot3(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2370                         break;
2371                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2372                         R_Shadow_RenderLighting_Light_Vertex(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2373                         break;
2374                 default:
2375                         Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2376                         break;
2377                 }
2378         }
2379         else
2380         {
2381                 switch (r_shadow_rendermode)
2382                 {
2383                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2384                         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
2385                         R_Shadow_RenderLighting_VisibleLighting(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2386                         break;
2387                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2388                         R_Shadow_RenderLighting_Light_GLSL(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2389                         break;
2390                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2391                         R_Shadow_RenderLighting_Light_Dot3(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2392                         break;
2393                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2394                         R_Shadow_RenderLighting_Light_Vertex(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2395                         break;
2396                 default:
2397                         Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2398                         break;
2399                 }
2400         }
2401 }
2402
2403 void R_RTLight_Update(rtlight_t *rtlight, int isstatic, matrix4x4_t *matrix, vec3_t color, int style, const char *cubemapname, qboolean shadow, vec_t corona, vec_t coronasizescale, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int flags)
2404 {
2405         matrix4x4_t tempmatrix = *matrix;
2406         Matrix4x4_Scale(&tempmatrix, r_shadow_lightradiusscale.value, 1);
2407
2408         // if this light has been compiled before, free the associated data
2409         R_RTLight_Uncompile(rtlight);
2410
2411         // clear it completely to avoid any lingering data
2412         memset(rtlight, 0, sizeof(*rtlight));
2413
2414         // copy the properties
2415         rtlight->matrix_lighttoworld = tempmatrix;
2416         Matrix4x4_Invert_Simple(&rtlight->matrix_worldtolight, &tempmatrix);
2417         Matrix4x4_OriginFromMatrix(&tempmatrix, rtlight->shadoworigin);
2418         rtlight->radius = Matrix4x4_ScaleFromMatrix(&tempmatrix);
2419         VectorCopy(color, rtlight->color);
2420         rtlight->cubemapname[0] = 0;
2421         if (cubemapname && cubemapname[0])
2422                 strlcpy(rtlight->cubemapname, cubemapname, sizeof(rtlight->cubemapname));
2423         rtlight->shadow = shadow;
2424         rtlight->corona = corona;
2425         rtlight->style = style;
2426         rtlight->isstatic = isstatic;
2427         rtlight->coronasizescale = coronasizescale;
2428         rtlight->ambientscale = ambientscale;
2429         rtlight->diffusescale = diffusescale;
2430         rtlight->specularscale = specularscale;
2431         rtlight->flags = flags;
2432
2433         // compute derived data
2434         //rtlight->cullradius = rtlight->radius;
2435         //rtlight->cullradius2 = rtlight->radius * rtlight->radius;
2436         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2437         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2438         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2439         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2440         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2441         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2442 }
2443
2444 // compiles rtlight geometry
2445 // (undone by R_FreeCompiledRTLight, which R_UpdateLight calls)
2446 void R_RTLight_Compile(rtlight_t *rtlight)
2447 {
2448         int i;
2449         int numsurfaces, numleafs, numleafpvsbytes, numshadowtrispvsbytes, numlighttrispvsbytes;
2450         int lighttris, shadowtris, shadowmeshes, shadowmeshtris;
2451         entity_render_t *ent = r_refdef.worldentity;
2452         model_t *model = r_refdef.worldmodel;
2453         unsigned char *data;
2454
2455         // compile the light
2456         rtlight->compiled = true;
2457         rtlight->static_numleafs = 0;
2458         rtlight->static_numleafpvsbytes = 0;
2459         rtlight->static_leaflist = NULL;
2460         rtlight->static_leafpvs = NULL;
2461         rtlight->static_numsurfaces = 0;
2462         rtlight->static_surfacelist = NULL;
2463         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2464         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2465         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2466         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2467         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2468         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2469
2470         if (model && model->GetLightInfo)
2471         {
2472                 // this variable must be set for the CompileShadowVolume code
2473                 r_shadow_compilingrtlight = rtlight;
2474                 R_Shadow_EnlargeLeafSurfaceTrisBuffer(model->brush.num_leafs, model->num_surfaces, model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles, model->surfmesh.num_triangles);
2475                 model->GetLightInfo(ent, rtlight->shadoworigin, rtlight->radius, rtlight->cullmins, rtlight->cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs);
2476                 numleafpvsbytes = (model->brush.num_leafs + 7) >> 3;
2477                 numshadowtrispvsbytes = ((model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles) + 7) >> 3;
2478                 numlighttrispvsbytes = (model->surfmesh.num_triangles + 7) >> 3;
2479                 data = (unsigned char *)Mem_Alloc(r_main_mempool, sizeof(int) * numsurfaces + sizeof(int) * numleafs + numleafpvsbytes + numshadowtrispvsbytes + numlighttrispvsbytes);
2480                 rtlight->static_numsurfaces = numsurfaces;
2481                 rtlight->static_surfacelist = (int *)data;data += sizeof(int) * numsurfaces;
2482                 rtlight->static_numleafs = numleafs;
2483                 rtlight->static_leaflist = (int *)data;data += sizeof(int) * numleafs;
2484                 rtlight->static_numleafpvsbytes = numleafpvsbytes;
2485                 rtlight->static_leafpvs = (unsigned char *)data;data += numleafpvsbytes;
2486                 rtlight->static_numshadowtrispvsbytes = numshadowtrispvsbytes;
2487                 rtlight->static_shadowtrispvs = (unsigned char *)data;data += numshadowtrispvsbytes;
2488                 rtlight->static_numlighttrispvsbytes = numlighttrispvsbytes;
2489                 rtlight->static_lighttrispvs = (unsigned char *)data;data += numlighttrispvsbytes;
2490                 if (rtlight->static_numsurfaces)
2491                         memcpy(rtlight->static_surfacelist, r_shadow_buffer_surfacelist, rtlight->static_numsurfaces * sizeof(*rtlight->static_surfacelist));
2492                 if (rtlight->static_numleafs)
2493                         memcpy(rtlight->static_leaflist, r_shadow_buffer_leaflist, rtlight->static_numleafs * sizeof(*rtlight->static_leaflist));
2494                 if (rtlight->static_numleafpvsbytes)
2495                         memcpy(rtlight->static_leafpvs, r_shadow_buffer_leafpvs, rtlight->static_numleafpvsbytes);
2496                 if (rtlight->static_numshadowtrispvsbytes)
2497                         memcpy(rtlight->static_shadowtrispvs, r_shadow_buffer_shadowtrispvs, rtlight->static_numshadowtrispvsbytes);
2498                 if (rtlight->static_numlighttrispvsbytes)
2499                         memcpy(rtlight->static_lighttrispvs, r_shadow_buffer_lighttrispvs, rtlight->static_numlighttrispvsbytes);
2500                 if (model->CompileShadowVolume && rtlight->shadow)
2501                         model->CompileShadowVolume(ent, rtlight->shadoworigin, NULL, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
2502                 // now we're done compiling the rtlight
2503                 r_shadow_compilingrtlight = NULL;
2504         }
2505
2506
2507         // use smallest available cullradius - box radius or light radius
2508         //rtlight->cullradius = RadiusFromBoundsAndOrigin(rtlight->cullmins, rtlight->cullmaxs, rtlight->shadoworigin);
2509         //rtlight->cullradius = min(rtlight->cullradius, rtlight->radius);
2510
2511         shadowmeshes = 0;
2512         shadowmeshtris = 0;
2513         if (rtlight->static_meshchain_shadow)
2514         {
2515                 shadowmesh_t *mesh;
2516                 for (mesh = rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2517                 {
2518                         shadowmeshes++;
2519                         shadowmeshtris += mesh->numtriangles;
2520                 }
2521         }
2522
2523         lighttris = 0;
2524         if (rtlight->static_numlighttrispvsbytes)
2525                 for (i = 0;i < rtlight->static_numlighttrispvsbytes*8;i++)
2526                         if (CHECKPVSBIT(rtlight->static_lighttrispvs, i))
2527                                 lighttris++;
2528
2529         shadowtris = 0;
2530         if (rtlight->static_numlighttrispvsbytes)
2531                 for (i = 0;i < rtlight->static_numshadowtrispvsbytes*8;i++)
2532                         if (CHECKPVSBIT(rtlight->static_shadowtrispvs, i))
2533                                 shadowtris++;
2534
2535         if (developer.integer >= 10)
2536                 Con_Printf("static light built: %f %f %f : %f %f %f box, %i light triangles, %i shadow triangles, %i compiled shadow volume triangles (in %i meshes)\n", rtlight->cullmins[0], rtlight->cullmins[1], rtlight->cullmins[2], rtlight->cullmaxs[0], rtlight->cullmaxs[1], rtlight->cullmaxs[2], lighttris, shadowtris, shadowmeshtris, shadowmeshes);
2537 }
2538
2539 void R_RTLight_Uncompile(rtlight_t *rtlight)
2540 {
2541         if (rtlight->compiled)
2542         {
2543                 if (rtlight->static_meshchain_shadow)
2544                         Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow);
2545                 rtlight->static_meshchain_shadow = NULL;
2546                 // these allocations are grouped
2547                 if (rtlight->static_surfacelist)
2548                         Mem_Free(rtlight->static_surfacelist);
2549                 rtlight->static_numleafs = 0;
2550                 rtlight->static_numleafpvsbytes = 0;
2551                 rtlight->static_leaflist = NULL;
2552                 rtlight->static_leafpvs = NULL;
2553                 rtlight->static_numsurfaces = 0;
2554                 rtlight->static_surfacelist = NULL;
2555                 rtlight->static_numshadowtrispvsbytes = 0;
2556                 rtlight->static_shadowtrispvs = NULL;
2557                 rtlight->static_numlighttrispvsbytes = 0;
2558                 rtlight->static_lighttrispvs = NULL;
2559                 rtlight->compiled = false;
2560         }
2561 }
2562
2563 void R_Shadow_UncompileWorldLights(void)
2564 {
2565         size_t lightindex;
2566         dlight_t *light;
2567         for (lightindex = 0;lightindex < Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray);lightindex++)
2568         {
2569                 light = Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2570                 if (!light)
2571                         continue;
2572                 R_RTLight_Uncompile(&light->rtlight);
2573         }
2574 }
2575
2576 void R_Shadow_ComputeShadowCasterCullingPlanes(rtlight_t *rtlight)
2577 {
2578         int i, j;
2579         mplane_t plane;
2580         // reset the count of frustum planes
2581         // see rsurface.rtlight_frustumplanes definition for how much this array
2582         // can hold
2583         rsurface.rtlight_numfrustumplanes = 0;
2584
2585         // haven't implemented a culling path for ortho rendering
2586         if (!r_view.useperspective)
2587         {
2588                 // check if the light is on screen and copy the 4 planes if it is
2589                 for (i = 0;i < 4;i++)
2590                         if (PlaneDiff(rtlight->shadoworigin, &r_view.frustum[i]) < -0.03125)
2591                                 break;
2592                 if (i == 4)
2593                         for (i = 0;i < 4;i++)
2594                                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = r_view.frustum[i];
2595                 return;
2596         }
2597
2598 #if 1
2599         // generate a deformed frustum that includes the light origin, this is
2600         // used to cull shadow casting surfaces that can not possibly cast a
2601         // shadow onto the visible light-receiving surfaces, which can be a
2602         // performance gain
2603         //
2604         // if the light origin is onscreen the result will be 4 planes exactly
2605         // if the light origin is offscreen on only one axis the result will
2606         // be exactly 5 planes (split-side case)
2607         // if the light origin is offscreen on two axes the result will be
2608         // exactly 4 planes (stretched corner case)
2609         for (i = 0;i < 4;i++)
2610         {
2611                 // quickly reject standard frustum planes that put the light
2612                 // origin outside the frustum
2613                 if (PlaneDiff(rtlight->shadoworigin, &r_view.frustum[i]) < -0.03125)
2614                         continue;
2615                 // copy the plane
2616                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = r_view.frustum[i];
2617         }
2618         // if all the standard frustum planes were accepted, the light is onscreen
2619         // otherwise we need to generate some more planes below...
2620         if (rsurface.rtlight_numfrustumplanes < 4)
2621         {
2622                 // at least one of the stock frustum planes failed, so we need to
2623                 // create one or two custom planes to enclose the light origin
2624                 for (i = 0;i < 4;i++)
2625                 {
2626                         // create a plane using the view origin and light origin, and a
2627                         // single point from the frustum corner set
2628                         TriangleNormal(r_view.origin, r_view.frustumcorner[i], rtlight->shadoworigin, plane.normal);
2629                         VectorNormalize(plane.normal);
2630                         plane.dist = DotProduct(r_view.origin, plane.normal);
2631                         // see if this plane is backwards and flip it if so
2632                         for (j = 0;j < 4;j++)
2633                                 if (j != i && DotProduct(r_view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2634                                         break;
2635                         if (j < 4)
2636                         {
2637                                 VectorNegate(plane.normal, plane.normal);
2638                                 plane.dist *= -1;
2639                                 // flipped plane, test again to see if it is now valid
2640                                 for (j = 0;j < 4;j++)
2641                                         if (j != i && DotProduct(r_view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2642                                                 break;
2643                                 // if the plane is still not valid, then it is dividing the
2644                                 // frustum and has to be rejected
2645                                 if (j < 4)
2646                                         continue;
2647                         }
2648                         // we have created a valid plane, compute extra info
2649                         PlaneClassify(&plane);
2650                         // copy the plane
2651                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2652 #if 1
2653                         // if we've found 5 frustum planes then we have constructed a
2654                         // proper split-side case and do not need to keep searching for
2655                         // planes to enclose the light origin
2656                         if (rsurface.rtlight_numfrustumplanes == 5)
2657                                 break;
2658 #endif
2659                 }
2660         }
2661 #endif
2662
2663 #if 0
2664         for (i = 0;i < rsurface.rtlight_numfrustumplanes;i++)
2665         {
2666                 plane = rsurface.rtlight_frustumplanes[i];
2667                 Con_Printf("light %p plane #%i %f %f %f : %f (%f %f %f %f %f)\n", rtlight, i, plane.normal[0], plane.normal[1], plane.normal[2], plane.dist, PlaneDiff(r_view.frustumcorner[0], &plane), PlaneDiff(r_view.frustumcorner[1], &plane), PlaneDiff(r_view.frustumcorner[2], &plane), PlaneDiff(r_view.frustumcorner[3], &plane), PlaneDiff(rtlight->shadoworigin, &plane));
2668         }
2669 #endif
2670
2671 #if 0
2672         // now add the light-space box planes if the light box is rotated, as any
2673         // caster outside the oriented light box is irrelevant (even if it passed
2674         // the worldspace light box, which is axial)
2675         if (rtlight->matrix_lighttoworld.m[0][0] != 1 || rtlight->matrix_lighttoworld.m[1][1] != 1 || rtlight->matrix_lighttoworld.m[2][2] != 1)
2676         {
2677                 for (i = 0;i < 6;i++)
2678                 {
2679                         vec3_t v;
2680                         VectorClear(v);
2681                         v[i >> 1] = (i & 1) ? -1 : 1;
2682                         Matrix4x4_Transform(&rtlight->matrix_lighttoworld, v, plane.normal);
2683                         VectorSubtract(plane.normal, rtlight->shadoworigin, plane.normal);
2684                         plane.dist = VectorNormalizeLength(plane.normal);
2685                         plane.dist += DotProduct(plane.normal, rtlight->shadoworigin);
2686                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2687                 }
2688         }
2689 #endif
2690
2691 #if 0
2692         // add the world-space reduced box planes
2693         for (i = 0;i < 6;i++)
2694         {
2695                 VectorClear(plane.normal);
2696                 plane.normal[i >> 1] = (i & 1) ? -1 : 1;
2697                 plane.dist = (i & 1) ? -rsurface.rtlight_cullmaxs[i >> 1] : rsurface.rtlight_cullmins[i >> 1];
2698                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2699         }
2700 #endif
2701
2702 #if 0
2703         {
2704         int j, oldnum;
2705         vec3_t points[8];
2706         vec_t bestdist;
2707         // reduce all plane distances to tightly fit the rtlight cull box, which
2708         // is in worldspace
2709         VectorSet(points[0], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmins[2]);
2710         VectorSet(points[1], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmins[2]);
2711         VectorSet(points[2], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmins[2]);
2712         VectorSet(points[3], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmins[2]);
2713         VectorSet(points[4], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmaxs[2]);
2714         VectorSet(points[5], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmaxs[2]);
2715         VectorSet(points[6], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmaxs[2]);
2716         VectorSet(points[7], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmaxs[2]);
2717         oldnum = rsurface.rtlight_numfrustumplanes;
2718         rsurface.rtlight_numfrustumplanes = 0;
2719         for (j = 0;j < oldnum;j++)
2720         {
2721                 // find the nearest point on the box to this plane
2722                 bestdist = DotProduct(rsurface.rtlight_frustumplanes[j].normal, points[0]);
2723                 for (i = 1;i < 8;i++)
2724                 {
2725                         dist = DotProduct(rsurface.rtlight_frustumplanes[j].normal, points[i]);
2726                         if (bestdist > dist)
2727                                 bestdist = dist;
2728                 }
2729                 Con_Printf("light %p %splane #%i %f %f %f : %f < %f\n", rtlight, rsurface.rtlight_frustumplanes[j].dist < bestdist + 0.03125 ? "^2" : "^1", j, rsurface.rtlight_frustumplanes[j].normal[0], rsurface.rtlight_frustumplanes[j].normal[1], rsurface.rtlight_frustumplanes[j].normal[2], rsurface.rtlight_frustumplanes[j].dist, bestdist);
2730                 // if the nearest point is near or behind the plane, we want this
2731                 // plane, otherwise the plane is useless as it won't cull anything
2732                 if (rsurface.rtlight_frustumplanes[j].dist < bestdist + 0.03125)
2733                 {
2734                         PlaneClassify(&rsurface.rtlight_frustumplanes[j]);
2735                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = rsurface.rtlight_frustumplanes[j];
2736                 }
2737         }
2738         }
2739 #endif
2740 }
2741
2742 void R_Shadow_DrawWorldShadow(int numsurfaces, int *surfacelist, const unsigned char *trispvs)
2743 {
2744         RSurf_ActiveWorldEntity();
2745         if (rsurface.rtlight->compiled && r_shadow_realtime_world_compile.integer && r_shadow_realtime_world_compileshadow.integer)
2746         {
2747                 shadowmesh_t *mesh;
2748                 CHECKGLERROR
2749                 for (mesh = rsurface.rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2750                 {
2751                         r_refdef.stats.lights_shadowtriangles += mesh->numtriangles;
2752                         R_Mesh_VertexPointer(mesh->vertex3f, mesh->vbo, mesh->vbooffset_vertex3f);
2753                         GL_LockArrays(0, mesh->numverts);
2754                         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
2755                         {
2756                                 // decrement stencil if backface is behind depthbuffer
2757                                 GL_CullFace(r_view.cullface_front);
2758                                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
2759                                 R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i, mesh->ebo, 0);
2760                                 // increment stencil if frontface is behind depthbuffer
2761                                 GL_CullFace(r_view.cullface_back);
2762                                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
2763                         }
2764                         R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i, mesh->ebo, 0);
2765                         GL_LockArrays(0, 0);
2766                 }
2767                 CHECKGLERROR
2768         }
2769         else if (numsurfaces && r_refdef.worldmodel->brush.shadowmesh && r_shadow_culltriangles.integer)
2770         {
2771                 int t, tend;
2772                 int surfacelistindex;
2773                 msurface_t *surface;
2774                 R_Shadow_PrepareShadowMark(r_refdef.worldmodel->brush.shadowmesh->numtriangles);
2775                 for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
2776                 {
2777                         surface = r_refdef.worldmodel->data_surfaces + surfacelist[surfacelistindex];
2778                         for (t = surface->num_firstshadowmeshtriangle, tend = t + surface->num_triangles;t < tend;t++)
2779                                 if (CHECKPVSBIT(trispvs, t))
2780                                         shadowmarklist[numshadowmark++] = t;
2781                 }
2782                 R_Shadow_VolumeFromList(r_refdef.worldmodel->brush.shadowmesh->numverts, r_refdef.worldmodel->brush.shadowmesh->numtriangles, r_refdef.worldmodel->brush.shadowmesh->vertex3f, r_refdef.worldmodel->brush.shadowmesh->element3i, r_refdef.worldmodel->brush.shadowmesh->neighbor3i, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius + r_refdef.worldmodel->radius*2 + r_shadow_projectdistance.value, numshadowmark, shadowmarklist);
2783         }
2784         else if (numsurfaces)
2785                 r_refdef.worldmodel->DrawShadowVolume(r_refdef.worldentity, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius, numsurfaces, surfacelist, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs);
2786 }
2787
2788 void R_Shadow_DrawEntityShadow(entity_render_t *ent)
2789 {
2790         vec3_t relativeshadoworigin, relativeshadowmins, relativeshadowmaxs;
2791         vec_t relativeshadowradius;
2792         RSurf_ActiveModelEntity(ent, false, false);
2793         Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, relativeshadoworigin);
2794         relativeshadowradius = rsurface.rtlight->radius / ent->scale;
2795         relativeshadowmins[0] = relativeshadoworigin[0] - relativeshadowradius;
2796         relativeshadowmins[1] = relativeshadoworigin[1] - relativeshadowradius;
2797         relativeshadowmins[2] = relativeshadoworigin[2] - relativeshadowradius;
2798         relativeshadowmaxs[0] = relativeshadoworigin[0] + relativeshadowradius;
2799         relativeshadowmaxs[1] = relativeshadoworigin[1] + relativeshadowradius;
2800         relativeshadowmaxs[2] = relativeshadoworigin[2] + relativeshadowradius;
2801         ent->model->DrawShadowVolume(ent, relativeshadoworigin, NULL, relativeshadowradius, ent->model->nummodelsurfaces, ent->model->surfacelist, relativeshadowmins, relativeshadowmaxs);
2802 }
2803
2804 void R_Shadow_SetupEntityLight(const entity_render_t *ent)
2805 {
2806         // set up properties for rendering light onto this entity
2807         RSurf_ActiveModelEntity(ent, true, true);
2808         Matrix4x4_Concat(&rsurface.entitytolight, &rsurface.rtlight->matrix_worldtolight, &ent->matrix);
2809         Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
2810         Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
2811         Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);
2812         if (r_shadow_lightingrendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2813                 R_Mesh_TexMatrix(3, &rsurface.entitytolight);
2814 }
2815
2816 void R_Shadow_DrawWorldLight(int numsurfaces, int *surfacelist, const unsigned char *trispvs)
2817 {
2818         if (!r_refdef.worldmodel->DrawLight)
2819                 return;
2820
2821         // set up properties for rendering light onto this entity
2822         RSurf_ActiveWorldEntity();
2823         rsurface.entitytolight = rsurface.rtlight->matrix_worldtolight;
2824         Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
2825         Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
2826         VectorCopy(rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);
2827         if (r_shadow_lightingrendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2828                 R_Mesh_TexMatrix(3, &rsurface.entitytolight);
2829
2830         r_refdef.worldmodel->DrawLight(r_refdef.worldentity, numsurfaces, surfacelist, trispvs);
2831 }
2832
2833 void R_Shadow_DrawEntityLight(entity_render_t *ent)
2834 {
2835         model_t *model = ent->model;
2836         if (!model->DrawLight)
2837                 return;
2838
2839         R_Shadow_SetupEntityLight(ent);
2840         R_UpdateAllTextureInfo(ent);
2841
2842         model->DrawLight(ent, model->nummodelsurfaces, model->surfacelist, NULL);
2843 }
2844
2845 void R_DrawRTLight(rtlight_t *rtlight, qboolean visible)
2846 {
2847         int i;
2848         float f;
2849         int numleafs, numsurfaces;
2850         int *leaflist, *surfacelist;
2851         unsigned char *leafpvs, *shadowtrispvs, *lighttrispvs;
2852         int numlightentities;
2853         int numlightentities_noselfshadow;
2854         int numshadowentities;
2855         int numshadowentities_noselfshadow;
2856         entity_render_t *lightentities[MAX_EDICTS];
2857         entity_render_t *lightentities_noselfshadow[MAX_EDICTS];
2858         entity_render_t *shadowentities[MAX_EDICTS];
2859         entity_render_t *shadowentities_noselfshadow[MAX_EDICTS];
2860
2861         // skip lights that don't light because of ambientscale+diffusescale+specularscale being 0 (corona only lights)
2862         // skip lights that are basically invisible (color 0 0 0)
2863         if (VectorLength2(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale) < (1.0f / 1048576.0f))
2864                 return;
2865
2866         // loading is done before visibility checks because loading should happen
2867         // all at once at the start of a level, not when it stalls gameplay.
2868         // (especially important to benchmarks)
2869         // compile light
2870         if (rtlight->isstatic && !rtlight->compiled && r_shadow_realtime_world_compile.integer)
2871                 R_RTLight_Compile(rtlight);
2872         // load cubemap
2873         rtlight->currentcubemap = rtlight->cubemapname[0] ? R_Shadow_Cubemap(rtlight->cubemapname) : r_texture_whitecube;
2874
2875         // look up the light style value at this time
2876         f = (rtlight->style >= 0 ? r_refdef.rtlightstylevalue[rtlight->style] : 1) * r_shadow_lightintensityscale.value;
2877         VectorScale(rtlight->color, f, rtlight->currentcolor);
2878         /*
2879         if (rtlight->selected)
2880         {
2881                 f = 2 + sin(realtime * M_PI * 4.0);
2882                 VectorScale(rtlight->currentcolor, f, rtlight->currentcolor);
2883         }
2884         */
2885
2886         // if lightstyle is currently off, don't draw the light
2887         if (VectorLength2(rtlight->currentcolor) < (1.0f / 1048576.0f))
2888                 return;
2889
2890         // if the light box is offscreen, skip it
2891         if (R_CullBox(rtlight->cullmins, rtlight->cullmaxs))
2892                 return;
2893
2894         VectorCopy(rtlight->cullmins, rsurface.rtlight_cullmins);
2895         VectorCopy(rtlight->cullmaxs, rsurface.rtlight_cullmaxs);
2896
2897         if (rtlight->compiled && r_shadow_realtime_world_compile.integer)
2898         {
2899                 // compiled light, world available and can receive realtime lighting
2900                 // retrieve leaf information
2901                 numleafs = rtlight->static_numleafs;
2902                 leaflist = rtlight->static_leaflist;
2903                 leafpvs = rtlight->static_leafpvs;
2904                 numsurfaces = rtlight->static_numsurfaces;
2905                 surfacelist = rtlight->static_surfacelist;
2906                 shadowtrispvs = rtlight->static_shadowtrispvs;
2907                 lighttrispvs = rtlight->static_lighttrispvs;
2908         }
2909         else if (r_refdef.worldmodel && r_refdef.worldmodel->GetLightInfo)
2910         {
2911                 // dynamic light, world available and can receive realtime lighting
2912                 // calculate lit surfaces and leafs
2913                 R_Shadow_EnlargeLeafSurfaceTrisBuffer(r_refdef.worldmodel->brush.num_leafs, r_refdef.worldmodel->num_surfaces, r_refdef.worldmodel->brush.shadowmesh ? r_refdef.worldmodel->brush.shadowmesh->numtriangles : r_refdef.worldmodel->surfmesh.num_triangles, r_refdef.worldmodel->surfmesh.num_triangles);
2914                 r_refdef.worldmodel->GetLightInfo(r_refdef.worldentity, rtlight->shadoworigin, rtlight->radius, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs);
2915                 leaflist = r_shadow_buffer_leaflist;
2916                 leafpvs = r_shadow_buffer_leafpvs;
2917                 surfacelist = r_shadow_buffer_surfacelist;
2918                 shadowtrispvs = r_shadow_buffer_shadowtrispvs;
2919                 lighttrispvs = r_shadow_buffer_lighttrispvs;
2920                 // if the reduced leaf bounds are offscreen, skip it
2921                 if (R_CullBox(rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2922                         return;
2923         }
2924         else
2925         {
2926                 // no world
2927                 numleafs = 0;
2928                 leaflist = NULL;
2929                 leafpvs = NULL;
2930                 numsurfaces = 0;
2931                 surfacelist = NULL;
2932                 shadowtrispvs = NULL;
2933                 lighttrispvs = NULL;
2934         }
2935         // check if light is illuminating any visible leafs
2936         if (numleafs)
2937         {
2938                 for (i = 0;i < numleafs;i++)
2939                         if (r_viewcache.world_leafvisible[leaflist[i]])
2940                                 break;
2941                 if (i == numleafs)
2942                         return;
2943         }
2944         // set up a scissor rectangle for this light
2945         if (R_Shadow_ScissorForBBox(rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2946                 return;
2947
2948         R_Shadow_ComputeShadowCasterCullingPlanes(rtlight);
2949
2950         // make a list of lit entities and shadow casting entities
2951         numlightentities = 0;
2952         numlightentities_noselfshadow = 0;
2953         numshadowentities = 0;
2954         numshadowentities_noselfshadow = 0;
2955         // add dynamic entities that are lit by the light
2956         if (r_drawentities.integer)
2957         {
2958                 for (i = 0;i < r_refdef.numentities;i++)
2959                 {
2960                         model_t *model;
2961                         entity_render_t *ent = r_refdef.entities[i];
2962                         vec3_t org;
2963                         if (!BoxesOverlap(ent->mins, ent->maxs, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2964                                 continue;
2965                         // skip the object entirely if it is not within the valid
2966                         // shadow-casting region (which includes the lit region)
2967                         if (R_CullBoxCustomPlanes(ent->mins, ent->maxs, rsurface.rtlight_numfrustumplanes, rsurface.rtlight_frustumplanes))
2968                                 continue;
2969                         if (!(model = ent->model))
2970                                 continue;
2971                         if (r_viewcache.entityvisible[i] && model->DrawLight && (ent->flags & RENDER_LIGHT))
2972                         {
2973                                 // this entity wants to receive light, is visible, and is
2974                                 // inside the light box
2975                                 // TODO: check if the surfaces in the model can receive light
2976                                 // so now check if it's in a leaf seen by the light
2977                                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.worldmodel, leafpvs, ent->mins, ent->maxs))
2978                                         continue;
2979                                 if (ent->flags & RENDER_NOSELFSHADOW)
2980                                         lightentities_noselfshadow[numlightentities_noselfshadow++] = ent;
2981                                 else
2982                                         lightentities[numlightentities++] = ent;
2983                                 // since it is lit, it probably also casts a shadow...
2984                                 // about the VectorDistance2 - light emitting entities should not cast their own shadow
2985                                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
2986                                 if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
2987                                 {
2988                                         // note: exterior models without the RENDER_NOSELFSHADOW
2989                                         // flag still create a RENDER_NOSELFSHADOW shadow but
2990                                         // are lit normally, this means that they are
2991                                         // self-shadowing but do not shadow other
2992                                         // RENDER_NOSELFSHADOW entities such as the gun
2993                                         // (very weird, but keeps the player shadow off the gun)
2994                                         if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
2995                                                 shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
2996                                         else
2997                                                 shadowentities[numshadowentities++] = ent;
2998                                 }
2999                         }
3000                         else if (ent->flags & RENDER_SHADOW)
3001                         {
3002                                 // this entity is not receiving light, but may still need to
3003                                 // cast a shadow...
3004                                 // TODO: check if the surfaces in the model can cast shadow
3005                                 // now check if it is in a leaf seen by the light
3006                                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.worldmodel, leafpvs, ent->mins, ent->maxs))
3007                                         continue;
3008                                 // about the VectorDistance2 - light emitting entities should not cast their own shadow
3009                                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
3010                                 if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
3011                                 {
3012                                         if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
3013                                                 shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
3014                                         else
3015                                                 shadowentities[numshadowentities++] = ent;
3016                                 }
3017                         }
3018                 }
3019         }
3020
3021         // return if there's nothing at all to light
3022         if (!numlightentities && !numsurfaces)
3023                 return;
3024
3025         // don't let sound skip if going slow
3026         if (r_refdef.extraupdate)
3027                 S_ExtraUpdate ();
3028
3029         // make this the active rtlight for rendering purposes
3030         R_Shadow_RenderMode_ActiveLight(rtlight);
3031         // count this light in the r_speeds
3032         r_refdef.stats.lights++;
3033
3034         if (r_showshadowvolumes.integer && r_view.showdebug && numsurfaces + numshadowentities + numshadowentities_noselfshadow && rtlight->shadow && (rtlight->isstatic ? r_refdef.rtworldshadows : r_refdef.rtdlightshadows))
3035         {
3036                 // optionally draw visible shape of the shadow volumes
3037                 // for performance analysis by level designers
3038                 R_Shadow_RenderMode_VisibleShadowVolumes();
3039                 if (numsurfaces)
3040                         R_Shadow_DrawWorldShadow(numsurfaces, surfacelist, shadowtrispvs);
3041                 for (i = 0;i < numshadowentities;i++)
3042                         R_Shadow_DrawEntityShadow(shadowentities[i]);
3043                 for (i = 0;i < numshadowentities_noselfshadow;i++)
3044                         R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
3045         }
3046
3047         if (gl_stencil && numsurfaces + numshadowentities + numshadowentities_noselfshadow && rtlight->shadow && (rtlight->isstatic ? r_refdef.rtworldshadows : r_refdef.rtdlightshadows))
3048         {
3049                 // draw stencil shadow volumes to mask off pixels that are in shadow
3050                 // so that they won't receive lighting
3051                 R_Shadow_RenderMode_StencilShadowVolumes(true);
3052                 if (numsurfaces)
3053                         R_Shadow_DrawWorldShadow(numsurfaces, surfacelist, shadowtrispvs);
3054                 for (i = 0;i < numshadowentities;i++)
3055                         R_Shadow_DrawEntityShadow(shadowentities[i]);
3056                 if (numlightentities_noselfshadow)
3057                 {
3058                         // draw lighting in the unmasked areas
3059                         R_Shadow_RenderMode_Lighting(true, false);
3060                         for (i = 0;i < numlightentities_noselfshadow;i++)
3061                                 R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);
3062
3063                         // optionally draw the illuminated areas
3064                         // for performance analysis by level designers
3065                         if (r_showlighting.integer && r_view.showdebug)
3066                         {
3067                                 R_Shadow_RenderMode_VisibleLighting(!r_showdisabledepthtest.integer, false);
3068                                 for (i = 0;i < numlightentities_noselfshadow;i++)
3069                                         R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);
3070                         }
3071
3072                         R_Shadow_RenderMode_StencilShadowVolumes(false);
3073                 }
3074                 for (i = 0;i < numshadowentities_noselfshadow;i++)
3075                         R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
3076
3077                 if (numsurfaces + numlightentities)
3078                 {
3079                         // draw lighting in the unmasked areas
3080                         R_Shadow_RenderMode_Lighting(true, false);
3081                         if (numsurfaces)
3082                                 R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
3083                         for (i = 0;i < numlightentities;i++)
3084                                 R_Shadow_DrawEntityLight(lightentities[i]);
3085
3086                         // optionally draw the illuminated areas
3087                         // for performance analysis by level designers
3088                         if (r_showlighting.integer && r_view.showdebug)
3089                         {
3090                                 R_Shadow_RenderMode_VisibleLighting(!r_showdisabledepthtest.integer, false);
3091                                 if (numsurfaces)
3092                                         R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
3093                                 for (i = 0;i < numlightentities;i++)
3094                                         R_Shadow_DrawEntityLight(lightentities[i]);
3095                         }
3096                 }
3097         }
3098         else
3099         {
3100                 if (numsurfaces + numlightentities)
3101                 {
3102                         // draw lighting in the unmasked areas
3103                         R_Shadow_RenderMode_Lighting(false, false);
3104                         if (numsurfaces)
3105                                 R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
3106                         for (i = 0;i < numlightentities;i++)
3107                                 R_Shadow_DrawEntityLight(lightentities[i]);
3108                         for (i = 0;i < numlightentities_noselfshadow;i++)
3109                                 R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);
3110
3111                         // optionally draw the illuminated areas
3112                         // for performance analysis by level designers
3113                         if (r_showlighting.integer && r_view.showdebug)
3114                         {
3115                                 R_Shadow_RenderMode_VisibleLighting(false, false);
3116                                 if (numsurfaces)
3117                                         R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
3118                                 for (i = 0;i < numlightentities;i++)
3119                                         R_Shadow_DrawEntityLight(lightentities[i]);
3120                                 for (i = 0;i < numlightentities_noselfshadow;i++)
3121                                         R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);
3122                         }
3123                 }
3124         }
3125 }
3126
3127 void R_Shadow_DrawLightSprites(void);
3128 void R_ShadowVolumeLighting(qboolean visible)
3129 {
3130         int flag;
3131         int lnum;
3132         size_t lightindex;
3133         dlight_t *light;
3134
3135         if (r_refdef.worldmodel && strncmp(r_refdef.worldmodel->name, r_shadow_mapname, sizeof(r_shadow_mapname)))
3136                 R_Shadow_EditLights_Reload_f();
3137
3138         if (r_editlights.integer)
3139                 R_Shadow_DrawLightSprites();
3140
3141         R_Shadow_RenderMode_Begin();
3142
3143         flag = r_refdef.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
3144         if (r_shadow_debuglight.integer >= 0)
3145         {
3146                 lightindex = r_shadow_debuglight.integer;
3147                 light = Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
3148                 if (light && (light->flags & flag))
3149                         R_DrawRTLight(&light->rtlight, visible);
3150         }
3151         else
3152         {
3153                 for (lightindex = 0;lightindex < Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray);lightindex++)
3154                 {
3155                         light = Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
3156                         if (light && (light->flags & flag))
3157                                 R_DrawRTLight(&light->rtlight, visible);
3158                 }
3159         }
3160         if (r_refdef.rtdlight)
3161                 for (lnum = 0;lnum < r_refdef.numlights;lnum++)
3162                         R_DrawRTLight(&r_refdef.lights[lnum], visible);
3163
3164         R_Shadow_RenderMode_End();
3165 }
3166
3167 extern void R_SetupView(void);
3168 extern cvar_t r_shadows_throwdistance;
3169 void R_DrawModelShadows(void)
3170 {
3171         int i;
3172         float relativethrowdistance;
3173         entity_render_t *ent;
3174         vec3_t relativelightorigin;
3175         vec3_t relativelightdirection;
3176         vec3_t relativeshadowmins, relativeshadowmaxs;
3177         float vertex3f[12];
3178
3179         if (!r_drawentities.integer || !gl_stencil)
3180                 return;
3181
3182         CHECKGLERROR
3183         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
3184
3185         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
3186
3187         if (gl_ext_separatestencil.integer)
3188                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_SEPARATESTENCIL;
3189         else if (gl_ext_stenciltwoside.integer)
3190                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCILTWOSIDE;
3191         else
3192                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCIL;
3193
3194         R_Shadow_RenderMode_StencilShadowVolumes(true);
3195
3196         for (i = 0;i < r_refdef.numentities;i++)
3197         {
3198                 ent = r_refdef.entities[i];
3199                 // cast shadows from anything that is not a submodel of the map
3200                 if (ent->model && ent->model->DrawShadowVolume != NULL && !ent->model->brush.submodel && (ent->flags & RENDER_SHADOW))
3201                 {
3202                         relativethrowdistance = r_shadows_throwdistance.value * Matrix4x4_ScaleFromMatrix(&ent->inversematrix);
3203                         VectorSet(relativeshadowmins, -relativethrowdistance, -relativethrowdistance, -relativethrowdistance);
3204                         VectorSet(relativeshadowmaxs, relativethrowdistance, relativethrowdistance, relativethrowdistance);
3205                         VectorNegate(ent->modellight_lightdir, relativelightdirection);
3206                         VectorScale(relativelightdirection, -relativethrowdistance, relativelightorigin);
3207                         RSurf_ActiveModelEntity(ent, false, false);
3208                         ent->model->DrawShadowVolume(ent, relativelightorigin, relativelightdirection, relativethrowdistance, ent->model->nummodelsurfaces, ent->model->surfacelist, relativeshadowmins, relativeshadowmaxs);
3209                 }
3210         }
3211
3212         // not really the right mode, but this will disable any silly stencil features
3213         R_Shadow_RenderMode_VisibleLighting(true, true);
3214
3215         // vertex coordinates for a quad that covers the screen exactly
3216         vertex3f[0] = 0;vertex3f[1] = 0;vertex3f[2] = 0;
3217         vertex3f[3] = 1;vertex3f[4] = 0;vertex3f[5] = 0;
3218         vertex3f[6] = 1;vertex3f[7] = 1;vertex3f[8] = 0;
3219         vertex3f[9] = 0;vertex3f[10] = 1;vertex3f[11] = 0;
3220
3221         // set up ortho view for rendering this pass
3222         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
3223         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
3224         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
3225         GL_ScissorTest(true);
3226         R_Mesh_Matrix(&identitymatrix);
3227         R_Mesh_ResetTextureState();
3228         R_Mesh_VertexPointer(vertex3f, 0, 0);
3229         R_Mesh_ColorPointer(NULL, 0, 0);
3230
3231         // set up a 50% darkening blend on shadowed areas
3232         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3233         GL_DepthRange(0, 1);
3234         GL_DepthTest(false);
3235         GL_DepthMask(false);
3236         GL_PolygonOffset(0, 0);CHECKGLERROR
3237         GL_Color(0, 0, 0, 0.5);
3238         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
3239         qglDepthFunc(GL_ALWAYS);CHECKGLERROR
3240         qglEnable(GL_STENCIL_TEST);CHECKGLERROR
3241         qglStencilMask(~0);CHECKGLERROR
3242         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
3243         qglStencilFunc(GL_NOTEQUAL, 128, ~0);CHECKGLERROR
3244
3245         // apply the blend to the shadowed areas
3246         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3247
3248         // restoring the perspective view is done by R_RenderScene
3249         //R_SetupView();
3250
3251         // restore other state to normal
3252         R_Shadow_RenderMode_End();
3253 }
3254
3255 void R_DrawCoronas(void)
3256 {
3257         int i, flag;
3258         float cscale, scale;
3259         size_t lightindex;
3260         dlight_t *light;
3261         rtlight_t *rtlight;
3262         if (r_coronas.value < (1.0f / 256.0f) && !gl_flashblend.integer)
3263                 return;
3264         R_Mesh_Matrix(&identitymatrix);
3265         flag = r_refdef.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
3266         // FIXME: these traces should scan all render entities instead of cl.world
3267         for (lightindex = 0;lightindex < Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray);lightindex++)
3268         {
3269                 light = Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
3270                 if (!light)
3271                         continue;
3272                 rtlight = &light->rtlight;
3273                 if (!(rtlight->flags & flag))
3274                         continue;
3275                 if (rtlight->corona * r_coronas.value <= 0)
3276                         continue;
3277                 if (r_shadow_debuglight.integer >= 0 && r_shadow_debuglight.integer != (int)lightindex)
3278                         continue;
3279                 cscale = rtlight->corona * r_coronas.value* 0.25f;
3280                 scale = rtlight->radius * rtlight->coronasizescale;
3281                 if (VectorDistance2(rtlight->shadoworigin, r_view.origin) < 16.0f * 16.0f)
3282                         continue;
3283                 if (CL_Move(r_view.origin, vec3_origin, vec3_origin, rtlight->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, true, false, NULL, false).fraction < 1)
3284                         continue;
3285                 R_DrawSprite(GL_ONE, GL_ONE, r_shadow_lightcorona, NULL, true, false, rtlight->shadoworigin, r_view.right, r_view.up, scale, -scale, -scale, scale, rtlight->color[0] * cscale, rtlight->color[1] * cscale, rtlight->color[2] * cscale, 1);
3286         }
3287         for (i = 0;i < r_refdef.numlights;i++)
3288         {
3289                 rtlight = &r_refdef.lights[i];
3290                 if (!(rtlight->flags & flag))
3291                         continue;
3292                 if (rtlight->corona <= 0)
3293                         continue;
3294                 if (VectorDistance2(rtlight->shadoworigin, r_view.origin) < 32.0f * 32.0f)
3295                         continue;
3296                 if (gl_flashblend.integer)
3297                 {
3298                         cscale = rtlight->corona * 1.0f;
3299                         scale = rtlight->radius * rtlight->coronasizescale * 2.0f;
3300                 }
3301                 else
3302                 {
3303                         cscale = rtlight->corona * r_coronas.value* 0.25f;
3304                         scale = rtlight->radius * rtlight->coronasizescale;
3305                 }
3306                 if (VectorLength(rtlight->color) * cscale < (1.0f / 256.0f))
3307                         continue;
3308                 if (CL_Move(r_view.origin, vec3_origin, vec3_origin, rtlight->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, true, false, NULL, false).fraction < 1)
3309                         continue;
3310                 R_DrawSprite(GL_ONE, GL_ONE, r_shadow_lightcorona, NULL, true, false, rtlight->shadoworigin, r_view.right, r_view.up, scale, -scale, -scale, scale, rtlight->color[0] * cscale, rtlight->color[1] * cscale, rtlight->color[2] * cscale, 1);
3311         }
3312 }
3313
3314
3315
3316 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
3317 typedef struct suffixinfo_s
3318 {
3319         char *suffix;
3320         qboolean flipx, flipy, flipdiagonal;
3321 }
3322 suffixinfo_t;
3323 static suffixinfo_t suffix[3][6] =
3324 {
3325         {
3326                 {"px",   false, false, false},
3327                 {"nx",   false, false, false},
3328                 {"py",   false, false, false},
3329                 {"ny",   false, false, false},
3330                 {"pz",   false, false, false},
3331                 {"nz",   false, false, false}
3332         },
3333         {
3334                 {"posx", false, false, false},
3335                 {"negx", false, false, false},
3336                 {"posy", false, false, false},
3337                 {"negy", false, false, false},
3338                 {"posz", false, false, false},
3339                 {"negz", false, false, false}
3340         },
3341         {
3342                 {"rt",    true, false,  true},
3343                 {"lf",   false,  true,  true},
3344                 {"ft",    true,  true, false},
3345                 {"bk",   false, false, false},
3346                 {"up",    true, false,  true},
3347                 {"dn",    true, false,  true}
3348         }
3349 };
3350
3351 static int componentorder[4] = {0, 1, 2, 3};
3352
3353 rtexture_t *R_Shadow_LoadCubemap(const char *basename)
3354 {
3355         int i, j, cubemapsize;
3356         unsigned char *cubemappixels, *image_buffer;
3357         rtexture_t *cubemaptexture;
3358         char name[256];
3359         // must start 0 so the first loadimagepixels has no requested width/height
3360         cubemapsize = 0;
3361         cubemappixels = NULL;
3362         cubemaptexture = NULL;
3363         // keep trying different suffix groups (posx, px, rt) until one loads
3364         for (j = 0;j < 3 && !cubemappixels;j++)
3365         {
3366                 // load the 6 images in the suffix group
3367                 for (i = 0;i < 6;i++)
3368                 {
3369                         // generate an image name based on the base and and suffix
3370                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
3371                         // load it
3372                         if ((image_buffer = loadimagepixelsbgra(name, false, false)))
3373                         {
3374                                 // an image loaded, make sure width and height are equal
3375                                 if (image_width == image_height && (!cubemappixels || image_width == cubemapsize))
3376                                 {
3377                                         // if this is the first image to load successfully, allocate the cubemap memory
3378                                         if (!cubemappixels && image_width >= 1)
3379                                         {
3380                                                 cubemapsize = image_width;
3381                                                 // note this clears to black, so unavailable sides are black
3382                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
3383                                         }
3384                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
3385                                         if (cubemappixels)
3386                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
3387                                 }
3388                                 else
3389                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
3390                                 // free the image
3391                                 Mem_Free(image_buffer);
3392                         }
3393                 }
3394         }
3395         // if a cubemap loaded, upload it
3396         if (cubemappixels)
3397         {
3398                 if (!r_shadow_filters_texturepool)
3399                         r_shadow_filters_texturepool = R_AllocTexturePool();
3400                 cubemaptexture = R_LoadTextureCubeMap(r_shadow_filters_texturepool, basename, cubemapsize, cubemappixels, TEXTYPE_BGRA, TEXF_PRECACHE | (gl_texturecompression_lightcubemaps.integer ? TEXF_COMPRESS : 0), NULL);
3401                 Mem_Free(cubemappixels);
3402         }
3403         else
3404         {
3405                 Con_Printf("Failed to load Cubemap \"%s\", tried ", basename);
3406                 for (j = 0;j < 3;j++)
3407                         for (i = 0;i < 6;i++)
3408                                 Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
3409                 Con_Print(" and was unable to find any of them.\n");
3410         }
3411         return cubemaptexture;
3412 }
3413
3414 rtexture_t *R_Shadow_Cubemap(const char *basename)
3415 {
3416         int i;
3417         for (i = 0;i < numcubemaps;i++)
3418                 if (!strcasecmp(cubemaps[i].basename, basename))
3419                         return cubemaps[i].texture;
3420         if (i >= MAX_CUBEMAPS)
3421                 return r_texture_whitecube;
3422         numcubemaps++;
3423         strlcpy(cubemaps[i].basename, basename, sizeof(cubemaps[i].basename));
3424         cubemaps[i].texture = R_Shadow_LoadCubemap(cubemaps[i].basename);
3425         if (!cubemaps[i].texture)
3426                 cubemaps[i].texture = r_texture_whitecube;
3427         return cubemaps[i].texture;
3428 }
3429
3430 void R_Shadow_FreeCubemaps(void)
3431 {
3432         numcubemaps = 0;
3433         R_FreeTexturePool(&r_shadow_filters_texturepool);
3434 }