be more clear in the overflow message of OGG_FetchSound
[divverent/darkplaces.git] / r_shadow.c
1
2 /*
3 Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
4 An extrusion of the lit faces, beginning at the original geometry and ending
5 further from the light source than the original geometry (presumably at least
6 as far as the light's radius, if the light has a radius at all), capped at
7 both front and back to avoid any problems (extrusion from dark faces also
8 works but has a different set of problems)
9
10 This is normally rendered using Carmack's Reverse technique, in which
11 backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
12 zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
13 where shadows did not intersect the visible geometry, suitable as a stencil
14 mask for rendering lighting everywhere but shadow.
15
16 In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
17 as decrement and the frontfaces as increment, and we redefine the DepthFunc to
18 GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
19 and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
20 additionally we clear stencil to 128 to avoid the need for the unclamped
21 incr/decr extension (not related to patent).
22
23 Patent warning:
24 This algorithm may be covered by Creative's patent (US Patent #6384822),
25 however that patent is quite specific about increment on backfaces and
26 decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
27 opposite this implementation and partially opposite Carmack's Reverse paper
28 (which uses GL_LESS, but increments on backfaces and decrements on frontfaces).
29
30
31
32 Terminology: Stencil Light Volume (sometimes called Light Volumes)
33 Similar to a Stencil Shadow Volume, but inverted; rather than containing the
34 areas in shadow it contains the areas in light, this can only be built
35 quickly for certain limited cases (such as portal visibility from a point),
36 but is quite useful for some effects (sunlight coming from sky polygons is
37 one possible example, translucent occluders is another example).
38
39
40
41 Terminology: Optimized Stencil Shadow Volume
42 A Stencil Shadow Volume that has been processed sufficiently to ensure it has
43 no duplicate coverage of areas (no need to shadow an area twice), often this
44 greatly improves performance but is an operation too costly to use on moving
45 lights (however completely optimal Stencil Light Volumes can be constructed
46 in some ideal cases).
47
48
49
50 Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
51 Per pixel evaluation of lighting equations, at a bare minimum this involves
52 DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
53 vector and surface normal, using a texture of the surface bumps, called a
54 NormalMap) if supported by hardware; in our case there is support for cards
55 which are incapable of DOT3, the quality is quite poor however.  Additionally
56 it is desirable to have specular evaluation per pixel, per vertex
57 normalization of specular halfangle vectors causes noticable distortion but
58 is unavoidable on hardware without GL_ARB_fragment_program or
59 GL_ARB_fragment_shader.
60
61
62
63 Terminology: Normalization CubeMap
64 A cubemap containing normalized dot3-encoded (vectors of length 1 or less
65 encoded as RGB colors) for any possible direction, this technique allows per
66 pixel calculation of incidence vector for per pixel lighting purposes, which
67 would not otherwise be possible per pixel without GL_ARB_fragment_program or
68 GL_ARB_fragment_shader.
69
70
71
72 Terminology: 2D+1D Attenuation Texturing
73 A very crude approximation of light attenuation with distance which results
74 in cylindrical light shapes which fade vertically as a streak (some games
75 such as Doom3 allow this to be rotated to be less noticable in specific
76 cases), the technique is simply modulating lighting by two 2D textures (which
77 can be the same) on different axes of projection (XY and Z, typically), this
78 is the second best technique available without 3D Attenuation Texturing,
79 GL_ARB_fragment_program or GL_ARB_fragment_shader technology.
80
81
82
83 Terminology: 2D+1D Inverse Attenuation Texturing
84 A clever method described in papers on the Abducted engine, this has a squared
85 distance texture (bright on the outside, black in the middle), which is used
86 twice using GL_ADD blending, the result of this is used in an inverse modulate
87 (GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
88 lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
89 texturing).
90
91
92
93 Terminology: 3D Attenuation Texturing
94 A slightly crude approximation of light attenuation with distance, its flaws
95 are limited radius and resolution (performance tradeoffs).
96
97
98
99 Terminology: 3D Attenuation-Normalization Texturing
100 A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
101 vectors shorter the lighting becomes darker, a very effective optimization of
102 diffuse lighting if 3D Attenuation Textures are already used.
103
104
105
106 Terminology: Light Cubemap Filtering
107 A technique for modeling non-uniform light distribution according to
108 direction, for example a lantern may use a cubemap to describe the light
109 emission pattern of the cage around the lantern (as well as soot buildup
110 discoloring the light in certain areas), often also used for softened grate
111 shadows and light shining through a stained glass window (done crudely by
112 texturing the lighting with a cubemap), another good example would be a disco
113 light.  This technique is used heavily in many games (Doom3 does not support
114 this however).
115
116
117
118 Terminology: Light Projection Filtering
119 A technique for modeling shadowing of light passing through translucent
120 surfaces, allowing stained glass windows and other effects to be done more
121 elegantly than possible with Light Cubemap Filtering by applying an occluder
122 texture to the lighting combined with a stencil light volume to limit the lit
123 area, this technique is used by Doom3 for spotlights and flashlights, among
124 other things, this can also be used more generally to render light passing
125 through multiple translucent occluders in a scene (using a light volume to
126 describe the area beyond the occluder, and thus mask off rendering of all
127 other areas).
128
129
130
131 Terminology: Doom3 Lighting
132 A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
133 CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
134 demonstrated by the game Doom3.
135 */
136
137 #include "quakedef.h"
138 #include "r_shadow.h"
139 #include "cl_collision.h"
140 #include "portals.h"
141 #include "image.h"
142
143 #ifdef SUPPORTD3D
144 #include <d3d9.h>
145 extern LPDIRECT3DDEVICE9 vid_d3d9dev;
146 #endif
147
148 extern void R_Shadow_EditLights_Init(void);
149
150 typedef enum r_shadow_rendermode_e
151 {
152         R_SHADOW_RENDERMODE_NONE,
153         R_SHADOW_RENDERMODE_ZPASS_STENCIL,
154         R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL,
155         R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE,
156         R_SHADOW_RENDERMODE_ZFAIL_STENCIL,
157         R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL,
158         R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE,
159         R_SHADOW_RENDERMODE_LIGHT_VERTEX,
160         R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN,
161         R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN,
162         R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN,
163         R_SHADOW_RENDERMODE_LIGHT_GLSL,
164         R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
165         R_SHADOW_RENDERMODE_VISIBLELIGHTING,
166         R_SHADOW_RENDERMODE_SHADOWMAP2D
167 }
168 r_shadow_rendermode_t;
169
170 typedef enum r_shadow_shadowmode_e
171 {
172     R_SHADOW_SHADOWMODE_STENCIL,
173     R_SHADOW_SHADOWMODE_SHADOWMAP2D
174 }
175 r_shadow_shadowmode_t;
176
177 r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
178 r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
179 r_shadow_rendermode_t r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_NONE;
180 r_shadow_rendermode_t r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_NONE;
181 qboolean r_shadow_usingshadowmap2d;
182 qboolean r_shadow_usingshadowmaportho;
183 int r_shadow_shadowmapside;
184 float r_shadow_shadowmap_texturescale[2];
185 float r_shadow_shadowmap_parameters[4];
186 #if 0
187 int r_shadow_drawbuffer;
188 int r_shadow_readbuffer;
189 #endif
190 int r_shadow_cullface_front, r_shadow_cullface_back;
191 GLuint r_shadow_fbo2d;
192 r_shadow_shadowmode_t r_shadow_shadowmode;
193 int r_shadow_shadowmapfilterquality;
194 int r_shadow_shadowmapdepthbits;
195 int r_shadow_shadowmapmaxsize;
196 qboolean r_shadow_shadowmapvsdct;
197 qboolean r_shadow_shadowmapsampler;
198 int r_shadow_shadowmappcf;
199 int r_shadow_shadowmapborder;
200 matrix4x4_t r_shadow_shadowmapmatrix;
201 int r_shadow_lightscissor[4];
202 qboolean r_shadow_usingdeferredprepass;
203
204 int maxshadowtriangles;
205 int *shadowelements;
206
207 int maxshadowvertices;
208 float *shadowvertex3f;
209
210 int maxshadowmark;
211 int numshadowmark;
212 int *shadowmark;
213 int *shadowmarklist;
214 int shadowmarkcount;
215
216 int maxshadowsides;
217 int numshadowsides;
218 unsigned char *shadowsides;
219 int *shadowsideslist;
220
221 int maxvertexupdate;
222 int *vertexupdate;
223 int *vertexremap;
224 int vertexupdatenum;
225
226 int r_shadow_buffer_numleafpvsbytes;
227 unsigned char *r_shadow_buffer_visitingleafpvs;
228 unsigned char *r_shadow_buffer_leafpvs;
229 int *r_shadow_buffer_leaflist;
230
231 int r_shadow_buffer_numsurfacepvsbytes;
232 unsigned char *r_shadow_buffer_surfacepvs;
233 int *r_shadow_buffer_surfacelist;
234 unsigned char *r_shadow_buffer_surfacesides;
235
236 int r_shadow_buffer_numshadowtrispvsbytes;
237 unsigned char *r_shadow_buffer_shadowtrispvs;
238 int r_shadow_buffer_numlighttrispvsbytes;
239 unsigned char *r_shadow_buffer_lighttrispvs;
240
241 rtexturepool_t *r_shadow_texturepool;
242 rtexture_t *r_shadow_attenuationgradienttexture;
243 rtexture_t *r_shadow_attenuation2dtexture;
244 rtexture_t *r_shadow_attenuation3dtexture;
245 skinframe_t *r_shadow_lightcorona;
246 rtexture_t *r_shadow_shadowmap2dtexture;
247 rtexture_t *r_shadow_shadowmap2dcolortexture;
248 rtexture_t *r_shadow_shadowmapvsdcttexture;
249 int r_shadow_shadowmapsize; // changes for each light based on distance
250 int r_shadow_shadowmaplod; // changes for each light based on distance
251
252 GLuint r_shadow_prepassgeometryfbo;
253 GLuint r_shadow_prepasslightingfbo;
254 int r_shadow_prepass_width;
255 int r_shadow_prepass_height;
256 rtexture_t *r_shadow_prepassgeometrydepthtexture;
257 rtexture_t *r_shadow_prepassgeometrydepthcolortexture;
258 rtexture_t *r_shadow_prepassgeometrynormalmaptexture;
259 rtexture_t *r_shadow_prepasslightingdiffusetexture;
260 rtexture_t *r_shadow_prepasslightingspeculartexture;
261
262 // lights are reloaded when this changes
263 char r_shadow_mapname[MAX_QPATH];
264
265 // used only for light filters (cubemaps)
266 rtexturepool_t *r_shadow_filters_texturepool;
267
268 static const GLenum r_shadow_prepasslightingdrawbuffers[2] = {GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT};
269
270 cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
271 cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
272 cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
273 cvar_t r_shadow_deferred = {CVAR_SAVE, "r_shadow_deferred", "0", "uses image-based lighting instead of geometry-based lighting, the method used renders a depth image and a normalmap image, renders lights into separate diffuse and specular images, and then combines this into the normal rendering, requires r_shadow_shadowmapping"};
274 cvar_t r_shadow_deferred_8bitrange = {CVAR_SAVE, "r_shadow_deferred_8bitrange", "2", "dynamic range of image-based lighting when using 32bit color (does not apply to fp)"};
275 //cvar_t r_shadow_deferred_fp = {CVAR_SAVE, "r_shadow_deferred_fp", "0", "use 16bit (1) or 32bit (2) floating point for accumulation of image-based lighting"};
276 cvar_t r_shadow_usenormalmap = {CVAR_SAVE, "r_shadow_usenormalmap", "1", "enables use of directional shading on lights"};
277 cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
278 cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.125", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
279 cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
280 cvar_t r_shadow_glossexponent = {0, "r_shadow_glossexponent", "32", "how 'sharp' the gloss should appear (specular power)"};
281 cvar_t r_shadow_gloss2exponent = {0, "r_shadow_gloss2exponent", "32", "same as r_shadow_glossexponent but for forced gloss (gloss 2) surfaces"};
282 cvar_t r_shadow_glossexact = {0, "r_shadow_glossexact", "0", "use exact reflection math for gloss (slightly slower, but should look a tad better)"};
283 cvar_t r_shadow_lightattenuationdividebias = {0, "r_shadow_lightattenuationdividebias", "1", "changes attenuation texture generation"};
284 cvar_t r_shadow_lightattenuationlinearscale = {0, "r_shadow_lightattenuationlinearscale", "2", "changes attenuation texture generation"};
285 cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
286 cvar_t r_shadow_lightradiusscale = {0, "r_shadow_lightradiusscale", "1", "renders all world lights larger or smaller"};
287 cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "0", "how far to cast shadows"};
288 cvar_t r_shadow_frontsidecasting = {0, "r_shadow_frontsidecasting", "1", "whether to cast shadows from illuminated triangles (front side of model) or unlit triangles (back side of model)"};
289 cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
290 cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
291 cvar_t r_shadow_realtime_dlight_svbspculling = {0, "r_shadow_realtime_dlight_svbspculling", "0", "enables svbsp optimization on dynamic lights (very slow!)"};
292 cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal optimization on dynamic lights (slow!)"};
293 cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
294 cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
295 cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
296 cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
297 cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
298 cvar_t r_shadow_realtime_world_compilesvbsp = {0, "r_shadow_realtime_world_compilesvbsp", "1", "enables svbsp optimization during compilation (slower than compileportalculling but more exact)"};
299 cvar_t r_shadow_realtime_world_compileportalculling = {0, "r_shadow_realtime_world_compileportalculling", "0", "enables portal-based culling optimization during compilation (overrides compilesvbsp)"};
300 cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
301 cvar_t r_shadow_shadowmapping = {CVAR_SAVE, "r_shadow_shadowmapping", "0", "enables use of shadowmapping (depth texture sampling) instead of stencil shadow volumes, requires gl_fbo 1"};
302 cvar_t r_shadow_shadowmapping_filterquality = {CVAR_SAVE, "r_shadow_shadowmapping_filterquality", "-1", "shadowmap filter modes: -1 = auto-select, 0 = no filtering, 1 = bilinear, 2 = bilinear 2x2 blur (fast), 3 = 3x3 blur (moderate), 4 = 4x4 blur (slow)"};
303 cvar_t r_shadow_shadowmapping_depthbits = {CVAR_SAVE, "r_shadow_shadowmapping_depthbits", "24", "requested minimum shadowmap texture depth bits"};
304 cvar_t r_shadow_shadowmapping_vsdct = {CVAR_SAVE, "r_shadow_shadowmapping_vsdct", "1", "enables use of virtual shadow depth cube texture"};
305 cvar_t r_shadow_shadowmapping_minsize = {CVAR_SAVE, "r_shadow_shadowmapping_minsize", "32", "shadowmap size limit"};
306 cvar_t r_shadow_shadowmapping_maxsize = {CVAR_SAVE, "r_shadow_shadowmapping_maxsize", "512", "shadowmap size limit"};
307 cvar_t r_shadow_shadowmapping_precision = {CVAR_SAVE, "r_shadow_shadowmapping_precision", "1", "makes shadowmaps have a maximum resolution of this number of pixels per light source radius unit such that, for example, at precision 0.5 a light with radius 200 will have a maximum resolution of 100 pixels"};
308 //cvar_t r_shadow_shadowmapping_lod_bias = {CVAR_SAVE, "r_shadow_shadowmapping_lod_bias", "16", "shadowmap size bias"};
309 //cvar_t r_shadow_shadowmapping_lod_scale = {CVAR_SAVE, "r_shadow_shadowmapping_lod_scale", "128", "shadowmap size scaling parameter"};
310 cvar_t r_shadow_shadowmapping_bordersize = {CVAR_SAVE, "r_shadow_shadowmapping_bordersize", "4", "shadowmap size bias for filtering"};
311 cvar_t r_shadow_shadowmapping_nearclip = {CVAR_SAVE, "r_shadow_shadowmapping_nearclip", "1", "shadowmap nearclip in world units"};
312 cvar_t r_shadow_shadowmapping_bias = {CVAR_SAVE, "r_shadow_shadowmapping_bias", "0.03", "shadowmap bias parameter (this is multiplied by nearclip * 1024 / lodsize)"};
313 cvar_t r_shadow_shadowmapping_polygonfactor = {CVAR_SAVE, "r_shadow_shadowmapping_polygonfactor", "2", "slope-dependent shadowmapping bias"};
314 cvar_t r_shadow_shadowmapping_polygonoffset = {CVAR_SAVE, "r_shadow_shadowmapping_polygonoffset", "0", "constant shadowmapping bias"};
315 cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
316 cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
317 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect OpenGL 2.0 render path)"};
318 cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1", "brightness of corona flare effects around certain lights, 0 disables corona effects"};
319 cvar_t r_coronas_occlusionsizescale = {CVAR_SAVE, "r_coronas_occlusionsizescale", "0.1", "size of light source for corona occlusion checksm the proportion of hidden pixels controls corona intensity"};
320 cvar_t r_coronas_occlusionquery = {CVAR_SAVE, "r_coronas_occlusionquery", "1", "use GL_ARB_occlusion_query extension if supported (fades coronas according to visibility)"};
321 cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0", "render bright coronas for dynamic lights instead of actual lighting, fast but ugly"};
322 cvar_t gl_ext_separatestencil = {0, "gl_ext_separatestencil", "1", "make use of OpenGL 2.0 glStencilOpSeparate or GL_ATI_separate_stencil extension"};
323 cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
324 cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
325 cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
326 cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
327 cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
328 cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
329 cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
330
331 // note the table actually includes one more value, just to avoid the need to clamp the distance index due to minor math error
332 #define ATTENTABLESIZE 256
333 // 1D gradient, 2D circle and 3D sphere attenuation textures
334 #define ATTEN1DSIZE 32
335 #define ATTEN2DSIZE 64
336 #define ATTEN3DSIZE 32
337
338 static float r_shadow_attendividebias; // r_shadow_lightattenuationdividebias
339 static float r_shadow_attenlinearscale; // r_shadow_lightattenuationlinearscale
340 static float r_shadow_attentable[ATTENTABLESIZE+1];
341
342 rtlight_t *r_shadow_compilingrtlight;
343 static memexpandablearray_t r_shadow_worldlightsarray;
344 dlight_t *r_shadow_selectedlight;
345 dlight_t r_shadow_bufferlight;
346 vec3_t r_editlights_cursorlocation;
347 qboolean r_editlights_lockcursor;
348
349 extern int con_vislines;
350
351 void R_Shadow_UncompileWorldLights(void);
352 void R_Shadow_ClearWorldLights(void);
353 void R_Shadow_SaveWorldLights(void);
354 void R_Shadow_LoadWorldLights(void);
355 void R_Shadow_LoadLightsFile(void);
356 void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
357 void R_Shadow_EditLights_Reload_f(void);
358 void R_Shadow_ValidateCvars(void);
359 static void R_Shadow_MakeTextures(void);
360
361 #define EDLIGHTSPRSIZE                  8
362 skinframe_t *r_editlights_sprcursor;
363 skinframe_t *r_editlights_sprlight;
364 skinframe_t *r_editlights_sprnoshadowlight;
365 skinframe_t *r_editlights_sprcubemaplight;
366 skinframe_t *r_editlights_sprcubemapnoshadowlight;
367 skinframe_t *r_editlights_sprselection;
368
369 void R_Shadow_SetShadowMode(void)
370 {
371         r_shadow_shadowmapmaxsize = bound(1, r_shadow_shadowmapping_maxsize.integer, (int)vid.maxtexturesize_2d / 4);
372         r_shadow_shadowmapvsdct = r_shadow_shadowmapping_vsdct.integer != 0 && vid.renderpath == RENDERPATH_GL20;
373         r_shadow_shadowmapfilterquality = r_shadow_shadowmapping_filterquality.integer;
374         r_shadow_shadowmapdepthbits = r_shadow_shadowmapping_depthbits.integer;
375         r_shadow_shadowmapborder = bound(0, r_shadow_shadowmapping_bordersize.integer, 16);
376         r_shadow_shadowmaplod = -1;
377         r_shadow_shadowmapsize = 0;
378         r_shadow_shadowmapsampler = false;
379         r_shadow_shadowmappcf = 0;
380         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
381         if ((r_shadow_shadowmapping.integer || r_shadow_deferred.integer) && vid.support.ext_framebuffer_object)
382         {
383                 switch(vid.renderpath)
384                 {
385                 case RENDERPATH_GL20:
386                         if(r_shadow_shadowmapfilterquality < 0)
387                         {
388                                 if(vid.support.amd_texture_texture4 || vid.support.arb_texture_gather)
389                                         r_shadow_shadowmappcf = 1;
390                                 else if(strstr(gl_vendor, "NVIDIA") || strstr(gl_renderer, "Radeon HD")) 
391                                 {
392                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
393                                         r_shadow_shadowmappcf = 1;
394                                 }
395                                 else if(strstr(gl_vendor, "ATI")) 
396                                         r_shadow_shadowmappcf = 1;
397                                 else 
398                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
399                         }
400                         else 
401                         {
402                                 switch (r_shadow_shadowmapfilterquality)
403                                 {
404                                 case 1:
405                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
406                                         break;
407                                 case 2:
408                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
409                                         r_shadow_shadowmappcf = 1;
410                                         break;
411                                 case 3:
412                                         r_shadow_shadowmappcf = 1;
413                                         break;
414                                 case 4:
415                                         r_shadow_shadowmappcf = 2;
416                                         break;
417                                 }
418                         }
419                         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
420                         // Cg has very little choice in depth texture sampling
421                         if (vid.cgcontext)
422                                 r_shadow_shadowmapsampler = false;
423                         break;
424                 case RENDERPATH_CGGL:
425                 case RENDERPATH_D3D9:
426                 case RENDERPATH_D3D10:
427                 case RENDERPATH_D3D11:
428                         r_shadow_shadowmapsampler = false;
429                         r_shadow_shadowmappcf = 1;
430                         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
431                         break;
432                 case RENDERPATH_GL13:
433                         break;
434                 case RENDERPATH_GL11:
435                         break;
436                 }
437         }
438 }
439
440 qboolean R_Shadow_ShadowMappingEnabled(void)
441 {
442         switch (r_shadow_shadowmode)
443         {
444         case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
445                 return true;
446         default:
447                 return false;
448         }
449 }
450
451 void R_Shadow_FreeShadowMaps(void)
452 {
453         R_Shadow_SetShadowMode();
454
455         R_Mesh_DestroyFramebufferObject(r_shadow_fbo2d);
456
457         r_shadow_fbo2d = 0;
458
459         if (r_shadow_shadowmap2dtexture)
460                 R_FreeTexture(r_shadow_shadowmap2dtexture);
461         r_shadow_shadowmap2dtexture = NULL;
462
463         if (r_shadow_shadowmap2dcolortexture)
464                 R_FreeTexture(r_shadow_shadowmap2dcolortexture);
465         r_shadow_shadowmap2dcolortexture = NULL;
466
467         if (r_shadow_shadowmapvsdcttexture)
468                 R_FreeTexture(r_shadow_shadowmapvsdcttexture);
469         r_shadow_shadowmapvsdcttexture = NULL;
470 }
471
472 void r_shadow_start(void)
473 {
474         // allocate vertex processing arrays
475         r_shadow_attenuationgradienttexture = NULL;
476         r_shadow_attenuation2dtexture = NULL;
477         r_shadow_attenuation3dtexture = NULL;
478         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
479         r_shadow_shadowmap2dtexture = NULL;
480         r_shadow_shadowmap2dcolortexture = NULL;
481         r_shadow_shadowmapvsdcttexture = NULL;
482         r_shadow_shadowmapmaxsize = 0;
483         r_shadow_shadowmapsize = 0;
484         r_shadow_shadowmaplod = 0;
485         r_shadow_shadowmapfilterquality = -1;
486         r_shadow_shadowmapdepthbits = 0;
487         r_shadow_shadowmapvsdct = false;
488         r_shadow_shadowmapsampler = false;
489         r_shadow_shadowmappcf = 0;
490         r_shadow_fbo2d = 0;
491
492         R_Shadow_FreeShadowMaps();
493
494         r_shadow_texturepool = NULL;
495         r_shadow_filters_texturepool = NULL;
496         R_Shadow_ValidateCvars();
497         R_Shadow_MakeTextures();
498         maxshadowtriangles = 0;
499         shadowelements = NULL;
500         maxshadowvertices = 0;
501         shadowvertex3f = NULL;
502         maxvertexupdate = 0;
503         vertexupdate = NULL;
504         vertexremap = NULL;
505         vertexupdatenum = 0;
506         maxshadowmark = 0;
507         numshadowmark = 0;
508         shadowmark = NULL;
509         shadowmarklist = NULL;
510         shadowmarkcount = 0;
511         maxshadowsides = 0;
512         numshadowsides = 0;
513         shadowsides = NULL;
514         shadowsideslist = NULL;
515         r_shadow_buffer_numleafpvsbytes = 0;
516         r_shadow_buffer_visitingleafpvs = NULL;
517         r_shadow_buffer_leafpvs = NULL;
518         r_shadow_buffer_leaflist = NULL;
519         r_shadow_buffer_numsurfacepvsbytes = 0;
520         r_shadow_buffer_surfacepvs = NULL;
521         r_shadow_buffer_surfacelist = NULL;
522         r_shadow_buffer_surfacesides = NULL;
523         r_shadow_buffer_numshadowtrispvsbytes = 0;
524         r_shadow_buffer_shadowtrispvs = NULL;
525         r_shadow_buffer_numlighttrispvsbytes = 0;
526         r_shadow_buffer_lighttrispvs = NULL;
527
528         r_shadow_usingdeferredprepass = false;
529         r_shadow_prepass_width = r_shadow_prepass_height = 0;
530 }
531
532 static void R_Shadow_FreeDeferred(void);
533 void r_shadow_shutdown(void)
534 {
535         CHECKGLERROR
536         R_Shadow_UncompileWorldLights();
537
538         R_Shadow_FreeShadowMaps();
539
540         r_shadow_usingdeferredprepass = false;
541         if (r_shadow_prepass_width)
542                 R_Shadow_FreeDeferred();
543         r_shadow_prepass_width = r_shadow_prepass_height = 0;
544
545         CHECKGLERROR
546         r_shadow_attenuationgradienttexture = NULL;
547         r_shadow_attenuation2dtexture = NULL;
548         r_shadow_attenuation3dtexture = NULL;
549         R_FreeTexturePool(&r_shadow_texturepool);
550         R_FreeTexturePool(&r_shadow_filters_texturepool);
551         maxshadowtriangles = 0;
552         if (shadowelements)
553                 Mem_Free(shadowelements);
554         shadowelements = NULL;
555         if (shadowvertex3f)
556                 Mem_Free(shadowvertex3f);
557         shadowvertex3f = NULL;
558         maxvertexupdate = 0;
559         if (vertexupdate)
560                 Mem_Free(vertexupdate);
561         vertexupdate = NULL;
562         if (vertexremap)
563                 Mem_Free(vertexremap);
564         vertexremap = NULL;
565         vertexupdatenum = 0;
566         maxshadowmark = 0;
567         numshadowmark = 0;
568         if (shadowmark)
569                 Mem_Free(shadowmark);
570         shadowmark = NULL;
571         if (shadowmarklist)
572                 Mem_Free(shadowmarklist);
573         shadowmarklist = NULL;
574         shadowmarkcount = 0;
575         maxshadowsides = 0;
576         numshadowsides = 0;
577         if (shadowsides)
578                 Mem_Free(shadowsides);
579         shadowsides = NULL;
580         if (shadowsideslist)
581                 Mem_Free(shadowsideslist);
582         shadowsideslist = NULL;
583         r_shadow_buffer_numleafpvsbytes = 0;
584         if (r_shadow_buffer_visitingleafpvs)
585                 Mem_Free(r_shadow_buffer_visitingleafpvs);
586         r_shadow_buffer_visitingleafpvs = NULL;
587         if (r_shadow_buffer_leafpvs)
588                 Mem_Free(r_shadow_buffer_leafpvs);
589         r_shadow_buffer_leafpvs = NULL;
590         if (r_shadow_buffer_leaflist)
591                 Mem_Free(r_shadow_buffer_leaflist);
592         r_shadow_buffer_leaflist = NULL;
593         r_shadow_buffer_numsurfacepvsbytes = 0;
594         if (r_shadow_buffer_surfacepvs)
595                 Mem_Free(r_shadow_buffer_surfacepvs);
596         r_shadow_buffer_surfacepvs = NULL;
597         if (r_shadow_buffer_surfacelist)
598                 Mem_Free(r_shadow_buffer_surfacelist);
599         r_shadow_buffer_surfacelist = NULL;
600         if (r_shadow_buffer_surfacesides)
601                 Mem_Free(r_shadow_buffer_surfacesides);
602         r_shadow_buffer_surfacesides = NULL;
603         r_shadow_buffer_numshadowtrispvsbytes = 0;
604         if (r_shadow_buffer_shadowtrispvs)
605                 Mem_Free(r_shadow_buffer_shadowtrispvs);
606         r_shadow_buffer_numlighttrispvsbytes = 0;
607         if (r_shadow_buffer_lighttrispvs)
608                 Mem_Free(r_shadow_buffer_lighttrispvs);
609 }
610
611 void r_shadow_newmap(void)
612 {
613         if (r_shadow_lightcorona)                 R_SkinFrame_MarkUsed(r_shadow_lightcorona);
614         if (r_editlights_sprcursor)               R_SkinFrame_MarkUsed(r_editlights_sprcursor);
615         if (r_editlights_sprlight)                R_SkinFrame_MarkUsed(r_editlights_sprlight);
616         if (r_editlights_sprnoshadowlight)        R_SkinFrame_MarkUsed(r_editlights_sprnoshadowlight);
617         if (r_editlights_sprcubemaplight)         R_SkinFrame_MarkUsed(r_editlights_sprcubemaplight);
618         if (r_editlights_sprcubemapnoshadowlight) R_SkinFrame_MarkUsed(r_editlights_sprcubemapnoshadowlight);
619         if (r_editlights_sprselection)            R_SkinFrame_MarkUsed(r_editlights_sprselection);
620         if (strncmp(cl.worldname, r_shadow_mapname, sizeof(r_shadow_mapname)))
621                 R_Shadow_EditLights_Reload_f();
622 }
623
624 void R_Shadow_Init(void)
625 {
626         Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
627         Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
628         Cvar_RegisterVariable(&r_shadow_usenormalmap);
629         Cvar_RegisterVariable(&r_shadow_debuglight);
630         Cvar_RegisterVariable(&r_shadow_deferred);
631         Cvar_RegisterVariable(&r_shadow_deferred_8bitrange);
632 //      Cvar_RegisterVariable(&r_shadow_deferred_fp);
633         Cvar_RegisterVariable(&r_shadow_gloss);
634         Cvar_RegisterVariable(&r_shadow_gloss2intensity);
635         Cvar_RegisterVariable(&r_shadow_glossintensity);
636         Cvar_RegisterVariable(&r_shadow_glossexponent);
637         Cvar_RegisterVariable(&r_shadow_gloss2exponent);
638         Cvar_RegisterVariable(&r_shadow_glossexact);
639         Cvar_RegisterVariable(&r_shadow_lightattenuationdividebias);
640         Cvar_RegisterVariable(&r_shadow_lightattenuationlinearscale);
641         Cvar_RegisterVariable(&r_shadow_lightintensityscale);
642         Cvar_RegisterVariable(&r_shadow_lightradiusscale);
643         Cvar_RegisterVariable(&r_shadow_projectdistance);
644         Cvar_RegisterVariable(&r_shadow_frontsidecasting);
645         Cvar_RegisterVariable(&r_shadow_realtime_dlight);
646         Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
647         Cvar_RegisterVariable(&r_shadow_realtime_dlight_svbspculling);
648         Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
649         Cvar_RegisterVariable(&r_shadow_realtime_world);
650         Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
651         Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
652         Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
653         Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
654         Cvar_RegisterVariable(&r_shadow_realtime_world_compilesvbsp);
655         Cvar_RegisterVariable(&r_shadow_realtime_world_compileportalculling);
656         Cvar_RegisterVariable(&r_shadow_scissor);
657         Cvar_RegisterVariable(&r_shadow_shadowmapping);
658         Cvar_RegisterVariable(&r_shadow_shadowmapping_vsdct);
659         Cvar_RegisterVariable(&r_shadow_shadowmapping_filterquality);
660         Cvar_RegisterVariable(&r_shadow_shadowmapping_depthbits);
661         Cvar_RegisterVariable(&r_shadow_shadowmapping_precision);
662         Cvar_RegisterVariable(&r_shadow_shadowmapping_maxsize);
663         Cvar_RegisterVariable(&r_shadow_shadowmapping_minsize);
664 //      Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_bias);
665 //      Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_scale);
666         Cvar_RegisterVariable(&r_shadow_shadowmapping_bordersize);
667         Cvar_RegisterVariable(&r_shadow_shadowmapping_nearclip);
668         Cvar_RegisterVariable(&r_shadow_shadowmapping_bias);
669         Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonfactor);
670         Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonoffset);
671         Cvar_RegisterVariable(&r_shadow_polygonfactor);
672         Cvar_RegisterVariable(&r_shadow_polygonoffset);
673         Cvar_RegisterVariable(&r_shadow_texture3d);
674         Cvar_RegisterVariable(&r_coronas);
675         Cvar_RegisterVariable(&r_coronas_occlusionsizescale);
676         Cvar_RegisterVariable(&r_coronas_occlusionquery);
677         Cvar_RegisterVariable(&gl_flashblend);
678         Cvar_RegisterVariable(&gl_ext_separatestencil);
679         Cvar_RegisterVariable(&gl_ext_stenciltwoside);
680         if (gamemode == GAME_TENEBRAE)
681         {
682                 Cvar_SetValue("r_shadow_gloss", 2);
683                 Cvar_SetValue("r_shadow_bumpscale_basetexture", 4);
684         }
685         R_Shadow_EditLights_Init();
686         Mem_ExpandableArray_NewArray(&r_shadow_worldlightsarray, r_main_mempool, sizeof(dlight_t), 128);
687         maxshadowtriangles = 0;
688         shadowelements = NULL;
689         maxshadowvertices = 0;
690         shadowvertex3f = NULL;
691         maxvertexupdate = 0;
692         vertexupdate = NULL;
693         vertexremap = NULL;
694         vertexupdatenum = 0;
695         maxshadowmark = 0;
696         numshadowmark = 0;
697         shadowmark = NULL;
698         shadowmarklist = NULL;
699         shadowmarkcount = 0;
700         maxshadowsides = 0;
701         numshadowsides = 0;
702         shadowsides = NULL;
703         shadowsideslist = NULL;
704         r_shadow_buffer_numleafpvsbytes = 0;
705         r_shadow_buffer_visitingleafpvs = NULL;
706         r_shadow_buffer_leafpvs = NULL;
707         r_shadow_buffer_leaflist = NULL;
708         r_shadow_buffer_numsurfacepvsbytes = 0;
709         r_shadow_buffer_surfacepvs = NULL;
710         r_shadow_buffer_surfacelist = NULL;
711         r_shadow_buffer_surfacesides = NULL;
712         r_shadow_buffer_shadowtrispvs = NULL;
713         r_shadow_buffer_lighttrispvs = NULL;
714         R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap, NULL, NULL);
715 }
716
717 matrix4x4_t matrix_attenuationxyz =
718 {
719         {
720                 {0.5, 0.0, 0.0, 0.5},
721                 {0.0, 0.5, 0.0, 0.5},
722                 {0.0, 0.0, 0.5, 0.5},
723                 {0.0, 0.0, 0.0, 1.0}
724         }
725 };
726
727 matrix4x4_t matrix_attenuationz =
728 {
729         {
730                 {0.0, 0.0, 0.5, 0.5},
731                 {0.0, 0.0, 0.0, 0.5},
732                 {0.0, 0.0, 0.0, 0.5},
733                 {0.0, 0.0, 0.0, 1.0}
734         }
735 };
736
737 void R_Shadow_ResizeShadowArrays(int numvertices, int numtriangles, int vertscale, int triscale)
738 {
739         numvertices = ((numvertices + 255) & ~255) * vertscale;
740         numtriangles = ((numtriangles + 255) & ~255) * triscale;
741         // make sure shadowelements is big enough for this volume
742         if (maxshadowtriangles < numtriangles)
743         {
744                 maxshadowtriangles = numtriangles;
745                 if (shadowelements)
746                         Mem_Free(shadowelements);
747                 shadowelements = (int *)Mem_Alloc(r_main_mempool, maxshadowtriangles * sizeof(int[3]));
748         }
749         // make sure shadowvertex3f is big enough for this volume
750         if (maxshadowvertices < numvertices)
751         {
752                 maxshadowvertices = numvertices;
753                 if (shadowvertex3f)
754                         Mem_Free(shadowvertex3f);
755                 shadowvertex3f = (float *)Mem_Alloc(r_main_mempool, maxshadowvertices * sizeof(float[3]));
756         }
757 }
758
759 static void R_Shadow_EnlargeLeafSurfaceTrisBuffer(int numleafs, int numsurfaces, int numshadowtriangles, int numlighttriangles)
760 {
761         int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
762         int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
763         int numshadowtrispvsbytes = (((numshadowtriangles + 7) >> 3) + 255) & ~255;
764         int numlighttrispvsbytes = (((numlighttriangles + 7) >> 3) + 255) & ~255;
765         if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
766         {
767                 if (r_shadow_buffer_visitingleafpvs)
768                         Mem_Free(r_shadow_buffer_visitingleafpvs);
769                 if (r_shadow_buffer_leafpvs)
770                         Mem_Free(r_shadow_buffer_leafpvs);
771                 if (r_shadow_buffer_leaflist)
772                         Mem_Free(r_shadow_buffer_leaflist);
773                 r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
774                 r_shadow_buffer_visitingleafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
775                 r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
776                 r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
777         }
778         if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
779         {
780                 if (r_shadow_buffer_surfacepvs)
781                         Mem_Free(r_shadow_buffer_surfacepvs);
782                 if (r_shadow_buffer_surfacelist)
783                         Mem_Free(r_shadow_buffer_surfacelist);
784                 if (r_shadow_buffer_surfacesides)
785                         Mem_Free(r_shadow_buffer_surfacesides);
786                 r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
787                 r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes);
788                 r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
789                 r_shadow_buffer_surfacesides = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
790         }
791         if (r_shadow_buffer_numshadowtrispvsbytes < numshadowtrispvsbytes)
792         {
793                 if (r_shadow_buffer_shadowtrispvs)
794                         Mem_Free(r_shadow_buffer_shadowtrispvs);
795                 r_shadow_buffer_numshadowtrispvsbytes = numshadowtrispvsbytes;
796                 r_shadow_buffer_shadowtrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numshadowtrispvsbytes);
797         }
798         if (r_shadow_buffer_numlighttrispvsbytes < numlighttrispvsbytes)
799         {
800                 if (r_shadow_buffer_lighttrispvs)
801                         Mem_Free(r_shadow_buffer_lighttrispvs);
802                 r_shadow_buffer_numlighttrispvsbytes = numlighttrispvsbytes;
803                 r_shadow_buffer_lighttrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numlighttrispvsbytes);
804         }
805 }
806
807 void R_Shadow_PrepareShadowMark(int numtris)
808 {
809         // make sure shadowmark is big enough for this volume
810         if (maxshadowmark < numtris)
811         {
812                 maxshadowmark = numtris;
813                 if (shadowmark)
814                         Mem_Free(shadowmark);
815                 if (shadowmarklist)
816                         Mem_Free(shadowmarklist);
817                 shadowmark = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmark));
818                 shadowmarklist = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmarklist));
819                 shadowmarkcount = 0;
820         }
821         shadowmarkcount++;
822         // if shadowmarkcount wrapped we clear the array and adjust accordingly
823         if (shadowmarkcount == 0)
824         {
825                 shadowmarkcount = 1;
826                 memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
827         }
828         numshadowmark = 0;
829 }
830
831 void R_Shadow_PrepareShadowSides(int numtris)
832 {
833     if (maxshadowsides < numtris)
834     {
835         maxshadowsides = numtris;
836         if (shadowsides)
837                         Mem_Free(shadowsides);
838                 if (shadowsideslist)
839                         Mem_Free(shadowsideslist);
840                 shadowsides = (unsigned char *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsides));
841                 shadowsideslist = (int *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsideslist));
842         }
843         numshadowsides = 0;
844 }
845
846 static int R_Shadow_ConstructShadowVolume_ZFail(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
847 {
848         int i, j;
849         int outtriangles = 0, outvertices = 0;
850         const int *element;
851         const float *vertex;
852         float ratio, direction[3], projectvector[3];
853
854         if (projectdirection)
855                 VectorScale(projectdirection, projectdistance, projectvector);
856         else
857                 VectorClear(projectvector);
858
859         // create the vertices
860         if (projectdirection)
861         {
862                 for (i = 0;i < numshadowmarktris;i++)
863                 {
864                         element = inelement3i + shadowmarktris[i] * 3;
865                         for (j = 0;j < 3;j++)
866                         {
867                                 if (vertexupdate[element[j]] != vertexupdatenum)
868                                 {
869                                         vertexupdate[element[j]] = vertexupdatenum;
870                                         vertexremap[element[j]] = outvertices;
871                                         vertex = invertex3f + element[j] * 3;
872                                         // project one copy of the vertex according to projectvector
873                                         VectorCopy(vertex, outvertex3f);
874                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
875                                         outvertex3f += 6;
876                                         outvertices += 2;
877                                 }
878                         }
879                 }
880         }
881         else
882         {
883                 for (i = 0;i < numshadowmarktris;i++)
884                 {
885                         element = inelement3i + shadowmarktris[i] * 3;
886                         for (j = 0;j < 3;j++)
887                         {
888                                 if (vertexupdate[element[j]] != vertexupdatenum)
889                                 {
890                                         vertexupdate[element[j]] = vertexupdatenum;
891                                         vertexremap[element[j]] = outvertices;
892                                         vertex = invertex3f + element[j] * 3;
893                                         // project one copy of the vertex to the sphere radius of the light
894                                         // (FIXME: would projecting it to the light box be better?)
895                                         VectorSubtract(vertex, projectorigin, direction);
896                                         ratio = projectdistance / VectorLength(direction);
897                                         VectorCopy(vertex, outvertex3f);
898                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
899                                         outvertex3f += 6;
900                                         outvertices += 2;
901                                 }
902                         }
903                 }
904         }
905
906         if (r_shadow_frontsidecasting.integer)
907         {
908                 for (i = 0;i < numshadowmarktris;i++)
909                 {
910                         int remappedelement[3];
911                         int markindex;
912                         const int *neighbortriangle;
913
914                         markindex = shadowmarktris[i] * 3;
915                         element = inelement3i + markindex;
916                         neighbortriangle = inneighbor3i + markindex;
917                         // output the front and back triangles
918                         outelement3i[0] = vertexremap[element[0]];
919                         outelement3i[1] = vertexremap[element[1]];
920                         outelement3i[2] = vertexremap[element[2]];
921                         outelement3i[3] = vertexremap[element[2]] + 1;
922                         outelement3i[4] = vertexremap[element[1]] + 1;
923                         outelement3i[5] = vertexremap[element[0]] + 1;
924
925                         outelement3i += 6;
926                         outtriangles += 2;
927                         // output the sides (facing outward from this triangle)
928                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
929                         {
930                                 remappedelement[0] = vertexremap[element[0]];
931                                 remappedelement[1] = vertexremap[element[1]];
932                                 outelement3i[0] = remappedelement[1];
933                                 outelement3i[1] = remappedelement[0];
934                                 outelement3i[2] = remappedelement[0] + 1;
935                                 outelement3i[3] = remappedelement[1];
936                                 outelement3i[4] = remappedelement[0] + 1;
937                                 outelement3i[5] = remappedelement[1] + 1;
938
939                                 outelement3i += 6;
940                                 outtriangles += 2;
941                         }
942                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
943                         {
944                                 remappedelement[1] = vertexremap[element[1]];
945                                 remappedelement[2] = vertexremap[element[2]];
946                                 outelement3i[0] = remappedelement[2];
947                                 outelement3i[1] = remappedelement[1];
948                                 outelement3i[2] = remappedelement[1] + 1;
949                                 outelement3i[3] = remappedelement[2];
950                                 outelement3i[4] = remappedelement[1] + 1;
951                                 outelement3i[5] = remappedelement[2] + 1;
952
953                                 outelement3i += 6;
954                                 outtriangles += 2;
955                         }
956                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
957                         {
958                                 remappedelement[0] = vertexremap[element[0]];
959                                 remappedelement[2] = vertexremap[element[2]];
960                                 outelement3i[0] = remappedelement[0];
961                                 outelement3i[1] = remappedelement[2];
962                                 outelement3i[2] = remappedelement[2] + 1;
963                                 outelement3i[3] = remappedelement[0];
964                                 outelement3i[4] = remappedelement[2] + 1;
965                                 outelement3i[5] = remappedelement[0] + 1;
966
967                                 outelement3i += 6;
968                                 outtriangles += 2;
969                         }
970                 }
971         }
972         else
973         {
974                 for (i = 0;i < numshadowmarktris;i++)
975                 {
976                         int remappedelement[3];
977                         int markindex;
978                         const int *neighbortriangle;
979
980                         markindex = shadowmarktris[i] * 3;
981                         element = inelement3i + markindex;
982                         neighbortriangle = inneighbor3i + markindex;
983                         // output the front and back triangles
984                         outelement3i[0] = vertexremap[element[2]];
985                         outelement3i[1] = vertexremap[element[1]];
986                         outelement3i[2] = vertexremap[element[0]];
987                         outelement3i[3] = vertexremap[element[0]] + 1;
988                         outelement3i[4] = vertexremap[element[1]] + 1;
989                         outelement3i[5] = vertexremap[element[2]] + 1;
990
991                         outelement3i += 6;
992                         outtriangles += 2;
993                         // output the sides (facing outward from this triangle)
994                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
995                         {
996                                 remappedelement[0] = vertexremap[element[0]];
997                                 remappedelement[1] = vertexremap[element[1]];
998                                 outelement3i[0] = remappedelement[0];
999                                 outelement3i[1] = remappedelement[1];
1000                                 outelement3i[2] = remappedelement[1] + 1;
1001                                 outelement3i[3] = remappedelement[0];
1002                                 outelement3i[4] = remappedelement[1] + 1;
1003                                 outelement3i[5] = remappedelement[0] + 1;
1004
1005                                 outelement3i += 6;
1006                                 outtriangles += 2;
1007                         }
1008                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
1009                         {
1010                                 remappedelement[1] = vertexremap[element[1]];
1011                                 remappedelement[2] = vertexremap[element[2]];
1012                                 outelement3i[0] = remappedelement[1];
1013                                 outelement3i[1] = remappedelement[2];
1014                                 outelement3i[2] = remappedelement[2] + 1;
1015                                 outelement3i[3] = remappedelement[1];
1016                                 outelement3i[4] = remappedelement[2] + 1;
1017                                 outelement3i[5] = remappedelement[1] + 1;
1018
1019                                 outelement3i += 6;
1020                                 outtriangles += 2;
1021                         }
1022                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
1023                         {
1024                                 remappedelement[0] = vertexremap[element[0]];
1025                                 remappedelement[2] = vertexremap[element[2]];
1026                                 outelement3i[0] = remappedelement[2];
1027                                 outelement3i[1] = remappedelement[0];
1028                                 outelement3i[2] = remappedelement[0] + 1;
1029                                 outelement3i[3] = remappedelement[2];
1030                                 outelement3i[4] = remappedelement[0] + 1;
1031                                 outelement3i[5] = remappedelement[2] + 1;
1032
1033                                 outelement3i += 6;
1034                                 outtriangles += 2;
1035                         }
1036                 }
1037         }
1038         if (outnumvertices)
1039                 *outnumvertices = outvertices;
1040         return outtriangles;
1041 }
1042
1043 static int R_Shadow_ConstructShadowVolume_ZPass(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
1044 {
1045         int i, j, k;
1046         int outtriangles = 0, outvertices = 0;
1047         const int *element;
1048         const float *vertex;
1049         float ratio, direction[3], projectvector[3];
1050         qboolean side[4];
1051
1052         if (projectdirection)
1053                 VectorScale(projectdirection, projectdistance, projectvector);
1054         else
1055                 VectorClear(projectvector);
1056
1057         for (i = 0;i < numshadowmarktris;i++)
1058         {
1059                 int remappedelement[3];
1060                 int markindex;
1061                 const int *neighbortriangle;
1062
1063                 markindex = shadowmarktris[i] * 3;
1064                 neighbortriangle = inneighbor3i + markindex;
1065                 side[0] = shadowmark[neighbortriangle[0]] == shadowmarkcount;
1066                 side[1] = shadowmark[neighbortriangle[1]] == shadowmarkcount;
1067                 side[2] = shadowmark[neighbortriangle[2]] == shadowmarkcount;
1068                 if (side[0] + side[1] + side[2] == 0)
1069                         continue;
1070
1071                 side[3] = side[0];
1072                 element = inelement3i + markindex;
1073
1074                 // create the vertices
1075                 for (j = 0;j < 3;j++)
1076                 {
1077                         if (side[j] + side[j+1] == 0)
1078                                 continue;
1079                         k = element[j];
1080                         if (vertexupdate[k] != vertexupdatenum)
1081                         {
1082                                 vertexupdate[k] = vertexupdatenum;
1083                                 vertexremap[k] = outvertices;
1084                                 vertex = invertex3f + k * 3;
1085                                 VectorCopy(vertex, outvertex3f);
1086                                 if (projectdirection)
1087                                 {
1088                                         // project one copy of the vertex according to projectvector
1089                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
1090                                 }
1091                                 else
1092                                 {
1093                                         // project one copy of the vertex to the sphere radius of the light
1094                                         // (FIXME: would projecting it to the light box be better?)
1095                                         VectorSubtract(vertex, projectorigin, direction);
1096                                         ratio = projectdistance / VectorLength(direction);
1097                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
1098                                 }
1099                                 outvertex3f += 6;
1100                                 outvertices += 2;
1101                         }
1102                 }
1103
1104                 // output the sides (facing outward from this triangle)
1105                 if (!side[0])
1106                 {
1107                         remappedelement[0] = vertexremap[element[0]];
1108                         remappedelement[1] = vertexremap[element[1]];
1109                         outelement3i[0] = remappedelement[1];
1110                         outelement3i[1] = remappedelement[0];
1111                         outelement3i[2] = remappedelement[0] + 1;
1112                         outelement3i[3] = remappedelement[1];
1113                         outelement3i[4] = remappedelement[0] + 1;
1114                         outelement3i[5] = remappedelement[1] + 1;
1115
1116                         outelement3i += 6;
1117                         outtriangles += 2;
1118                 }
1119                 if (!side[1])
1120                 {
1121                         remappedelement[1] = vertexremap[element[1]];
1122                         remappedelement[2] = vertexremap[element[2]];
1123                         outelement3i[0] = remappedelement[2];
1124                         outelement3i[1] = remappedelement[1];
1125                         outelement3i[2] = remappedelement[1] + 1;
1126                         outelement3i[3] = remappedelement[2];
1127                         outelement3i[4] = remappedelement[1] + 1;
1128                         outelement3i[5] = remappedelement[2] + 1;
1129
1130                         outelement3i += 6;
1131                         outtriangles += 2;
1132                 }
1133                 if (!side[2])
1134                 {
1135                         remappedelement[0] = vertexremap[element[0]];
1136                         remappedelement[2] = vertexremap[element[2]];
1137                         outelement3i[0] = remappedelement[0];
1138                         outelement3i[1] = remappedelement[2];
1139                         outelement3i[2] = remappedelement[2] + 1;
1140                         outelement3i[3] = remappedelement[0];
1141                         outelement3i[4] = remappedelement[2] + 1;
1142                         outelement3i[5] = remappedelement[0] + 1;
1143
1144                         outelement3i += 6;
1145                         outtriangles += 2;
1146                 }
1147         }
1148         if (outnumvertices)
1149                 *outnumvertices = outvertices;
1150         return outtriangles;
1151 }
1152
1153 void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
1154 {
1155         int t, tend;
1156         const int *e;
1157         const float *v[3];
1158         float normal[3];
1159         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
1160                 return;
1161         tend = firsttriangle + numtris;
1162         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
1163         {
1164                 // surface box entirely inside light box, no box cull
1165                 if (projectdirection)
1166                 {
1167                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1168                         {
1169                                 TriangleNormal(invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3, normal);
1170                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
1171                                         shadowmarklist[numshadowmark++] = t;
1172                         }
1173                 }
1174                 else
1175                 {
1176                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1177                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
1178                                         shadowmarklist[numshadowmark++] = t;
1179                 }
1180         }
1181         else
1182         {
1183                 // surface box not entirely inside light box, cull each triangle
1184                 if (projectdirection)
1185                 {
1186                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1187                         {
1188                                 v[0] = invertex3f + e[0] * 3;
1189                                 v[1] = invertex3f + e[1] * 3;
1190                                 v[2] = invertex3f + e[2] * 3;
1191                                 TriangleNormal(v[0], v[1], v[2], normal);
1192                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
1193                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1194                                         shadowmarklist[numshadowmark++] = t;
1195                         }
1196                 }
1197                 else
1198                 {
1199                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1200                         {
1201                                 v[0] = invertex3f + e[0] * 3;
1202                                 v[1] = invertex3f + e[1] * 3;
1203                                 v[2] = invertex3f + e[2] * 3;
1204                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
1205                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1206                                         shadowmarklist[numshadowmark++] = t;
1207                         }
1208                 }
1209         }
1210 }
1211
1212 qboolean R_Shadow_UseZPass(vec3_t mins, vec3_t maxs)
1213 {
1214 #if 1
1215         return false;
1216 #else
1217         if (r_shadow_compilingrtlight || !r_shadow_frontsidecasting.integer || !r_shadow_usezpassifpossible.integer)
1218                 return false;
1219         // check if the shadow volume intersects the near plane
1220         //
1221         // a ray between the eye and light origin may intersect the caster,
1222         // indicating that the shadow may touch the eye location, however we must
1223         // test the near plane (a polygon), not merely the eye location, so it is
1224         // easiest to enlarge the caster bounding shape slightly for this.
1225         // TODO
1226         return true;
1227 #endif
1228 }
1229
1230 void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, const vec3_t projectdirection, float projectdistance, int nummarktris, const int *marktris, vec3_t trismins, vec3_t trismaxs)
1231 {
1232         int i, tris, outverts;
1233         if (projectdistance < 0.1)
1234         {
1235                 Con_Printf("R_Shadow_Volume: projectdistance %f\n", projectdistance);
1236                 return;
1237         }
1238         if (!numverts || !nummarktris)
1239                 return;
1240         // make sure shadowelements is big enough for this volume
1241         if (maxshadowtriangles < nummarktris*8 || maxshadowvertices < numverts*2)
1242                 R_Shadow_ResizeShadowArrays(numverts, nummarktris, 2, 8);
1243
1244         if (maxvertexupdate < numverts)
1245         {
1246                 maxvertexupdate = numverts;
1247                 if (vertexupdate)
1248                         Mem_Free(vertexupdate);
1249                 if (vertexremap)
1250                         Mem_Free(vertexremap);
1251                 vertexupdate = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
1252                 vertexremap = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
1253                 vertexupdatenum = 0;
1254         }
1255         vertexupdatenum++;
1256         if (vertexupdatenum == 0)
1257         {
1258                 vertexupdatenum = 1;
1259                 memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
1260                 memset(vertexremap, 0, maxvertexupdate * sizeof(int));
1261         }
1262
1263         for (i = 0;i < nummarktris;i++)
1264                 shadowmark[marktris[i]] = shadowmarkcount;
1265
1266         if (r_shadow_compilingrtlight)
1267         {
1268                 // if we're compiling an rtlight, capture the mesh
1269                 //tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1270                 //Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zpass, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
1271                 tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1272                 Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zfail, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
1273         }
1274         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_VISIBLEVOLUMES)
1275         {
1276                 tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1277                 R_Mesh_PrepareVertices_Position_Arrays(outverts, shadowvertex3f);
1278                 R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1279         }
1280         else
1281         {
1282                 // decide which type of shadow to generate and set stencil mode
1283                 R_Shadow_RenderMode_StencilShadowVolumes(R_Shadow_UseZPass(trismins, trismaxs));
1284                 // generate the sides or a solid volume, depending on type
1285                 if (r_shadow_rendermode >= R_SHADOW_RENDERMODE_ZPASS_STENCIL && r_shadow_rendermode <= R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE)
1286                         tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1287                 else
1288                         tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1289                 r_refdef.stats.lights_dynamicshadowtriangles += tris;
1290                 r_refdef.stats.lights_shadowtriangles += tris;
1291                 if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZPASS_STENCIL)
1292                 {
1293                         // increment stencil if frontface is infront of depthbuffer
1294                         GL_CullFace(r_refdef.view.cullface_front);
1295                         R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, 128, 255);
1296                         R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1297                         // decrement stencil if backface is infront of depthbuffer
1298                         GL_CullFace(r_refdef.view.cullface_back);
1299                         R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_ALWAYS, 128, 255);
1300                 }
1301                 else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZFAIL_STENCIL)
1302                 {
1303                         // decrement stencil if backface is behind depthbuffer
1304                         GL_CullFace(r_refdef.view.cullface_front);
1305                         R_SetStencil(true, 255, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, 128, 255);
1306                         R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1307                         // increment stencil if frontface is behind depthbuffer
1308                         GL_CullFace(r_refdef.view.cullface_back);
1309                         R_SetStencil(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_ALWAYS, 128, 255);
1310                 }
1311                 R_Mesh_PrepareVertices_Position_Arrays(outverts, shadowvertex3f);
1312                 R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1313         }
1314 }
1315
1316 int R_Shadow_CalcTriangleSideMask(const vec3_t p1, const vec3_t p2, const vec3_t p3, float bias)
1317 {
1318     // p1, p2, p3 are in the cubemap's local coordinate system
1319     // bias = border/(size - border)
1320         int mask = 0x3F;
1321
1322     float dp1 = p1[0] + p1[1], dn1 = p1[0] - p1[1], ap1 = fabs(dp1), an1 = fabs(dn1),
1323           dp2 = p2[0] + p2[1], dn2 = p2[0] - p2[1], ap2 = fabs(dp2), an2 = fabs(dn2),
1324           dp3 = p3[0] + p3[1], dn3 = p3[0] - p3[1], ap3 = fabs(dp3), an3 = fabs(dn3);
1325         if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1326         mask &= (3<<4)
1327                         | (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1328                         | (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1329                         | (dp3 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1330     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1331         mask &= (3<<4)
1332             | (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
1333             | (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))            
1334             | (dn3 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1335
1336     dp1 = p1[1] + p1[2], dn1 = p1[1] - p1[2], ap1 = fabs(dp1), an1 = fabs(dn1),
1337     dp2 = p2[1] + p2[2], dn2 = p2[1] - p2[2], ap2 = fabs(dp2), an2 = fabs(dn2),
1338     dp3 = p3[1] + p3[2], dn3 = p3[1] - p3[2], ap3 = fabs(dp3), an3 = fabs(dn3);
1339     if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1340         mask &= (3<<0)
1341             | (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
1342             | (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))            
1343             | (dp3 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1344     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1345         mask &= (3<<0)
1346             | (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1347             | (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1348             | (dn3 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1349
1350     dp1 = p1[2] + p1[0], dn1 = p1[2] - p1[0], ap1 = fabs(dp1), an1 = fabs(dn1),
1351     dp2 = p2[2] + p2[0], dn2 = p2[2] - p2[0], ap2 = fabs(dp2), an2 = fabs(dn2),
1352     dp3 = p3[2] + p3[0], dn3 = p3[2] - p3[0], ap3 = fabs(dp3), an3 = fabs(dn3);
1353     if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1354         mask &= (3<<2)
1355             | (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1356             | (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1357             | (dp3 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1358     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1359         mask &= (3<<2)
1360             | (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1361             | (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1362             | (dn3 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1363
1364         return mask;
1365 }
1366
1367 int R_Shadow_CalcBBoxSideMask(const vec3_t mins, const vec3_t maxs, const matrix4x4_t *worldtolight, const matrix4x4_t *radiustolight, float bias)
1368 {
1369         vec3_t center, radius, lightcenter, lightradius, pmin, pmax;
1370         float dp1, dn1, ap1, an1, dp2, dn2, ap2, an2;
1371         int mask = 0x3F;
1372
1373         VectorSubtract(maxs, mins, radius);
1374     VectorScale(radius, 0.5f, radius);
1375     VectorAdd(mins, radius, center);
1376     Matrix4x4_Transform(worldtolight, center, lightcenter);
1377         Matrix4x4_Transform3x3(radiustolight, radius, lightradius);
1378         VectorSubtract(lightcenter, lightradius, pmin);
1379         VectorAdd(lightcenter, lightradius, pmax);
1380
1381     dp1 = pmax[0] + pmax[1], dn1 = pmax[0] - pmin[1], ap1 = fabs(dp1), an1 = fabs(dn1),
1382     dp2 = pmin[0] + pmin[1], dn2 = pmin[0] - pmax[1], ap2 = fabs(dp2), an2 = fabs(dn2);
1383     if(ap1 > bias*an1 && ap2 > bias*an2)
1384         mask &= (3<<4)
1385             | (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1386             | (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1387     if(an1 > bias*ap1 && an2 > bias*ap2)
1388         mask &= (3<<4)
1389             | (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
1390             | (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1391
1392     dp1 = pmax[1] + pmax[2], dn1 = pmax[1] - pmin[2], ap1 = fabs(dp1), an1 = fabs(dn1),
1393     dp2 = pmin[1] + pmin[2], dn2 = pmin[1] - pmax[2], ap2 = fabs(dp2), an2 = fabs(dn2);
1394     if(ap1 > bias*an1 && ap2 > bias*an2)
1395         mask &= (3<<0)
1396             | (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
1397             | (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1398     if(an1 > bias*ap1 && an2 > bias*ap2)
1399         mask &= (3<<0)
1400             | (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1401             | (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1402
1403     dp1 = pmax[2] + pmax[0], dn1 = pmax[2] - pmin[0], ap1 = fabs(dp1), an1 = fabs(dn1),
1404     dp2 = pmin[2] + pmin[0], dn2 = pmin[2] - pmax[0], ap2 = fabs(dp2), an2 = fabs(dn2);
1405     if(ap1 > bias*an1 && ap2 > bias*an2)
1406         mask &= (3<<2)
1407             | (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1408             | (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1409     if(an1 > bias*ap1 && an2 > bias*ap2)
1410         mask &= (3<<2)
1411             | (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1412             | (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1413
1414     return mask;
1415 }
1416
1417 #define R_Shadow_CalcEntitySideMask(ent, worldtolight, radiustolight, bias) R_Shadow_CalcBBoxSideMask((ent)->mins, (ent)->maxs, worldtolight, radiustolight, bias)
1418
1419 int R_Shadow_CalcSphereSideMask(const vec3_t p, float radius, float bias)
1420 {
1421     // p is in the cubemap's local coordinate system
1422     // bias = border/(size - border)
1423     float dxyp = p[0] + p[1], dxyn = p[0] - p[1], axyp = fabs(dxyp), axyn = fabs(dxyn);
1424     float dyzp = p[1] + p[2], dyzn = p[1] - p[2], ayzp = fabs(dyzp), ayzn = fabs(dyzn);
1425     float dzxp = p[2] + p[0], dzxn = p[2] - p[0], azxp = fabs(dzxp), azxn = fabs(dzxn);
1426     int mask = 0x3F;
1427     if(axyp > bias*axyn + radius) mask &= dxyp < 0 ? ~((1<<0)|(1<<2)) : ~((2<<0)|(2<<2));
1428     if(axyn > bias*axyp + radius) mask &= dxyn < 0 ? ~((1<<0)|(2<<2)) : ~((2<<0)|(1<<2));
1429     if(ayzp > bias*ayzn + radius) mask &= dyzp < 0 ? ~((1<<2)|(1<<4)) : ~((2<<2)|(2<<4));
1430     if(ayzn > bias*ayzp + radius) mask &= dyzn < 0 ? ~((1<<2)|(2<<4)) : ~((2<<2)|(1<<4));
1431     if(azxp > bias*azxn + radius) mask &= dzxp < 0 ? ~((1<<4)|(1<<0)) : ~((2<<4)|(2<<0));
1432     if(azxn > bias*azxp + radius) mask &= dzxn < 0 ? ~((1<<4)|(2<<0)) : ~((2<<4)|(1<<0));
1433     return mask;
1434 }
1435
1436 int R_Shadow_CullFrustumSides(rtlight_t *rtlight, float size, float border)
1437 {
1438         int i;
1439         vec3_t p, n;
1440         int sides = 0x3F, masks[6] = { 3<<4, 3<<4, 3<<0, 3<<0, 3<<2, 3<<2 };
1441         float scale = (size - 2*border)/size, len;
1442         float bias = border / (float)(size - border), dp, dn, ap, an;
1443         // check if cone enclosing side would cross frustum plane 
1444         scale = 2 / (scale*scale + 2);
1445         for (i = 0;i < 5;i++)
1446         {
1447                 if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[i]) > -0.03125)
1448                         continue;
1449                 Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[i].normal, n);
1450                 len = scale*VectorLength2(n);
1451                 if(n[0]*n[0] > len) sides &= n[0] < 0 ? ~(1<<0) : ~(2 << 0);
1452                 if(n[1]*n[1] > len) sides &= n[1] < 0 ? ~(1<<2) : ~(2 << 2);
1453                 if(n[2]*n[2] > len) sides &= n[2] < 0 ? ~(1<<4) : ~(2 << 4);
1454         }
1455         if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[4]) >= r_refdef.farclip - r_refdef.nearclip + 0.03125)
1456         {
1457         Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[4].normal, n);
1458         len = scale*VectorLength(n);
1459                 if(n[0]*n[0] > len) sides &= n[0] >= 0 ? ~(1<<0) : ~(2 << 0);
1460                 if(n[1]*n[1] > len) sides &= n[1] >= 0 ? ~(1<<2) : ~(2 << 2);
1461                 if(n[2]*n[2] > len) sides &= n[2] >= 0 ? ~(1<<4) : ~(2 << 4);
1462         }
1463         // this next test usually clips off more sides than the former, but occasionally clips fewer/different ones, so do both and combine results
1464         // check if frustum corners/origin cross plane sides
1465 #if 1
1466     // infinite version, assumes frustum corners merely give direction and extend to infinite distance
1467     Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.origin, p);
1468     dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
1469     masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1470     masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1471     dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
1472     masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1473     masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1474     dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
1475     masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1476     masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1477     for (i = 0;i < 4;i++)
1478     {
1479         Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.frustumcorner[i], n);
1480         VectorSubtract(n, p, n);
1481         dp = n[0] + n[1], dn = n[0] - n[1], ap = fabs(dp), an = fabs(dn);
1482         if(ap > 0) masks[0] |= dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2);
1483         if(an > 0) masks[1] |= dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2);
1484         dp = n[1] + n[2], dn = n[1] - n[2], ap = fabs(dp), an = fabs(dn);
1485         if(ap > 0) masks[2] |= dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4);
1486         if(an > 0) masks[3] |= dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4);
1487         dp = n[2] + n[0], dn = n[2] - n[0], ap = fabs(dp), an = fabs(dn);
1488         if(ap > 0) masks[4] |= dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0);
1489         if(an > 0) masks[5] |= dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0);
1490     }
1491 #else
1492     // finite version, assumes corners are a finite distance from origin dependent on far plane
1493         for (i = 0;i < 5;i++)
1494         {
1495                 Matrix4x4_Transform(&rtlight->matrix_worldtolight, !i ? r_refdef.view.origin : r_refdef.view.frustumcorner[i-1], p);
1496                 dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
1497                 masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1498                 masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1499                 dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
1500                 masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1501                 masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1502                 dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
1503                 masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1504                 masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1505         }
1506 #endif
1507         return sides & masks[0] & masks[1] & masks[2] & masks[3] & masks[4] & masks[5];
1508 }
1509
1510 int R_Shadow_ChooseSidesFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const matrix4x4_t *worldtolight, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs, int *totals)
1511 {
1512         int t, tend;
1513         const int *e;
1514         const float *v[3];
1515         float normal[3];
1516         vec3_t p[3];
1517         float bias;
1518         int mask, surfacemask = 0;
1519         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
1520                 return 0;
1521         bias = r_shadow_shadowmapborder / (float)(r_shadow_shadowmapmaxsize - r_shadow_shadowmapborder);
1522         tend = firsttriangle + numtris;
1523         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
1524         {
1525                 // surface box entirely inside light box, no box cull
1526                 if (projectdirection)
1527                 {
1528                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1529                         {
1530                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
1531                                 TriangleNormal(v[0], v[1], v[2], normal);
1532                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
1533                                 {
1534                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1535                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1536                                         surfacemask |= mask;
1537                                         if(totals)
1538                                         {
1539                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1540                                                 shadowsides[numshadowsides] = mask;
1541                                                 shadowsideslist[numshadowsides++] = t;
1542                                         }
1543                                 }
1544                         }
1545                 }
1546                 else
1547                 {
1548                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1549                         {
1550                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,     v[2] = invertex3f + e[2] * 3;
1551                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2]))
1552                                 {
1553                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1554                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1555                                         surfacemask |= mask;
1556                                         if(totals)
1557                                         {
1558                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1559                                                 shadowsides[numshadowsides] = mask;
1560                                                 shadowsideslist[numshadowsides++] = t;
1561                                         }
1562                                 }
1563                         }
1564                 }
1565         }
1566         else
1567         {
1568                 // surface box not entirely inside light box, cull each triangle
1569                 if (projectdirection)
1570                 {
1571                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1572                         {
1573                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,     v[2] = invertex3f + e[2] * 3;
1574                                 TriangleNormal(v[0], v[1], v[2], normal);
1575                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
1576                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1577                                 {
1578                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1579                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1580                                         surfacemask |= mask;
1581                                         if(totals)
1582                                         {
1583                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1584                                                 shadowsides[numshadowsides] = mask;
1585                                                 shadowsideslist[numshadowsides++] = t;
1586                                         }
1587                                 }
1588                         }
1589                 }
1590                 else
1591                 {
1592                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1593                         {
1594                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
1595                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
1596                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1597                                 {
1598                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1599                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1600                                         surfacemask |= mask;
1601                                         if(totals)
1602                                         {
1603                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1604                                                 shadowsides[numshadowsides] = mask;
1605                                                 shadowsideslist[numshadowsides++] = t;
1606                                         }
1607                                 }
1608                         }
1609                 }
1610         }
1611         return surfacemask;
1612 }
1613
1614 void R_Shadow_ShadowMapFromList(int numverts, int numtris, const float *vertex3f, const int *elements, int numsidetris, const int *sidetotals, const unsigned char *sides, const int *sidetris)
1615 {
1616         int i, j, outtriangles = 0;
1617         int *outelement3i[6];
1618         if (!numverts || !numsidetris || !r_shadow_compilingrtlight)
1619                 return;
1620         outtriangles = sidetotals[0] + sidetotals[1] + sidetotals[2] + sidetotals[3] + sidetotals[4] + sidetotals[5];
1621         // make sure shadowelements is big enough for this mesh
1622         if (maxshadowtriangles < outtriangles)
1623                 R_Shadow_ResizeShadowArrays(0, outtriangles, 0, 1);
1624
1625         // compute the offset and size of the separate index lists for each cubemap side
1626         outtriangles = 0;
1627         for (i = 0;i < 6;i++)
1628         {
1629                 outelement3i[i] = shadowelements + outtriangles * 3;
1630                 r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sideoffsets[i] = outtriangles;
1631                 r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sidetotals[i] = sidetotals[i];
1632                 outtriangles += sidetotals[i];
1633         }
1634
1635         // gather up the (sparse) triangles into separate index lists for each cubemap side
1636         for (i = 0;i < numsidetris;i++)
1637         {
1638                 const int *element = elements + sidetris[i] * 3;
1639                 for (j = 0;j < 6;j++)
1640                 {
1641                         if (sides[i] & (1 << j))
1642                         {
1643                                 outelement3i[j][0] = element[0];
1644                                 outelement3i[j][1] = element[1];
1645                                 outelement3i[j][2] = element[2];
1646                                 outelement3i[j] += 3;
1647                         }
1648                 }
1649         }
1650                         
1651         Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, outtriangles, shadowelements);
1652 }
1653
1654 static void R_Shadow_MakeTextures_MakeCorona(void)
1655 {
1656         float dx, dy;
1657         int x, y, a;
1658         unsigned char pixels[32][32][4];
1659         for (y = 0;y < 32;y++)
1660         {
1661                 dy = (y - 15.5f) * (1.0f / 16.0f);
1662                 for (x = 0;x < 32;x++)
1663                 {
1664                         dx = (x - 15.5f) * (1.0f / 16.0f);
1665                         a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
1666                         a = bound(0, a, 255);
1667                         pixels[y][x][0] = a;
1668                         pixels[y][x][1] = a;
1669                         pixels[y][x][2] = a;
1670                         pixels[y][x][3] = 255;
1671                 }
1672         }
1673         r_shadow_lightcorona = R_SkinFrame_LoadInternalBGRA("lightcorona", TEXF_FORCELINEAR, &pixels[0][0][0], 32, 32);
1674 }
1675
1676 static unsigned int R_Shadow_MakeTextures_SamplePoint(float x, float y, float z)
1677 {
1678         float dist = sqrt(x*x+y*y+z*z);
1679         float intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
1680         // note this code could suffer byte order issues except that it is multiplying by an integer that reads the same both ways
1681         return (unsigned char)bound(0, intensity * 256.0f, 255) * 0x01010101;
1682 }
1683
1684 static void R_Shadow_MakeTextures(void)
1685 {
1686         int x, y, z;
1687         float intensity, dist;
1688         unsigned int *data;
1689         R_Shadow_FreeShadowMaps();
1690         R_FreeTexturePool(&r_shadow_texturepool);
1691         r_shadow_texturepool = R_AllocTexturePool();
1692         r_shadow_attenlinearscale = r_shadow_lightattenuationlinearscale.value;
1693         r_shadow_attendividebias = r_shadow_lightattenuationdividebias.value;
1694         data = (unsigned int *)Mem_Alloc(tempmempool, max(max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE, ATTEN2DSIZE*ATTEN2DSIZE), ATTEN1DSIZE) * 4);
1695         // the table includes one additional value to avoid the need to clamp indexing due to minor math errors
1696         for (x = 0;x <= ATTENTABLESIZE;x++)
1697         {
1698                 dist = (x + 0.5f) * (1.0f / ATTENTABLESIZE) * (1.0f / 0.9375);
1699                 intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
1700                 r_shadow_attentable[x] = bound(0, intensity, 1);
1701         }
1702         // 1D gradient texture
1703         for (x = 0;x < ATTEN1DSIZE;x++)
1704                 data[x] = R_Shadow_MakeTextures_SamplePoint((x + 0.5f) * (1.0f / ATTEN1DSIZE) * (1.0f / 0.9375), 0, 0);
1705         r_shadow_attenuationgradienttexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation1d", ATTEN1DSIZE, 1, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1706         // 2D circle texture
1707         for (y = 0;y < ATTEN2DSIZE;y++)
1708                 for (x = 0;x < ATTEN2DSIZE;x++)
1709                         data[y*ATTEN2DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), 0);
1710         r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1711         // 3D sphere texture
1712         if (r_shadow_texture3d.integer && vid.support.ext_texture_3d)
1713         {
1714                 for (z = 0;z < ATTEN3DSIZE;z++)
1715                         for (y = 0;y < ATTEN3DSIZE;y++)
1716                                 for (x = 0;x < ATTEN3DSIZE;x++)
1717                                         data[(z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375));
1718                 r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1719         }
1720         else
1721                 r_shadow_attenuation3dtexture = NULL;
1722         Mem_Free(data);
1723
1724         R_Shadow_MakeTextures_MakeCorona();
1725
1726         // Editor light sprites
1727         r_editlights_sprcursor = R_SkinFrame_LoadInternal8bit("gfx/editlights/cursor", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1728         "................"
1729         ".3............3."
1730         "..5...2332...5.."
1731         "...7.3....3.7..."
1732         "....7......7...."
1733         "...3.7....7.3..."
1734         "..2...7..7...2.."
1735         "..3..........3.."
1736         "..3..........3.."
1737         "..2...7..7...2.."
1738         "...3.7....7.3..."
1739         "....7......7...."
1740         "...7.3....3.7..."
1741         "..5...2332...5.."
1742         ".3............3."
1743         "................"
1744         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1745         r_editlights_sprlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/light", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1746         "................"
1747         "................"
1748         "......1111......"
1749         "....11233211...."
1750         "...1234554321..."
1751         "...1356776531..."
1752         "..124677776421.."
1753         "..135777777531.."
1754         "..135777777531.."
1755         "..124677776421.."
1756         "...1356776531..."
1757         "...1234554321..."
1758         "....11233211...."
1759         "......1111......"
1760         "................"
1761         "................"
1762         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1763         r_editlights_sprnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/noshadow", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1764         "................"
1765         "................"
1766         "......1111......"
1767         "....11233211...."
1768         "...1234554321..."
1769         "...1356226531..."
1770         "..12462..26421.."
1771         "..1352....2531.."
1772         "..1352....2531.."
1773         "..12462..26421.."
1774         "...1356226531..."
1775         "...1234554321..."
1776         "....11233211...."
1777         "......1111......"
1778         "................"
1779         "................"
1780         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1781         r_editlights_sprcubemaplight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemaplight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1782         "................"
1783         "................"
1784         "......2772......"
1785         "....27755772...."
1786         "..277533335772.."
1787         "..753333333357.."
1788         "..777533335777.."
1789         "..735775577537.."
1790         "..733357753337.."
1791         "..733337733337.."
1792         "..753337733357.."
1793         "..277537735772.."
1794         "....27777772...."
1795         "......2772......"
1796         "................"
1797         "................"
1798         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1799         r_editlights_sprcubemapnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemapnoshadowlight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1800         "................"
1801         "................"
1802         "......2772......"
1803         "....27722772...."
1804         "..2772....2772.."
1805         "..72........27.."
1806         "..7772....2777.."
1807         "..7.27722772.7.."
1808         "..7...2772...7.."
1809         "..7....77....7.."
1810         "..72...77...27.."
1811         "..2772.77.2772.."
1812         "....27777772...."
1813         "......2772......"
1814         "................"
1815         "................"
1816         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1817         r_editlights_sprselection = R_SkinFrame_LoadInternal8bit("gfx/editlights/selection", TEXF_ALPHA | TEXF_CLAMP, (unsigned char *)
1818         "................"
1819         ".777752..257777."
1820         ".742........247."
1821         ".72..........27."
1822         ".7............7."
1823         ".5............5."
1824         ".2............2."
1825         "................"
1826         "................"
1827         ".2............2."
1828         ".5............5."
1829         ".7............7."
1830         ".72..........27."
1831         ".742........247."
1832         ".777752..257777."
1833         "................"
1834         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1835 }
1836
1837 void R_Shadow_ValidateCvars(void)
1838 {
1839         if (r_shadow_texture3d.integer && !vid.support.ext_texture_3d)
1840                 Cvar_SetValueQuick(&r_shadow_texture3d, 0);
1841         if (gl_ext_separatestencil.integer && !vid.support.ati_separate_stencil)
1842                 Cvar_SetValueQuick(&gl_ext_separatestencil, 0);
1843         if (gl_ext_stenciltwoside.integer && !vid.support.ext_stencil_two_side)
1844                 Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
1845 }
1846
1847 //static const r_vertexposition_t resetvertexposition[3] = {{0, 0, 0}};
1848
1849 void R_Shadow_RenderMode_Begin(void)
1850 {
1851 #if 0
1852         GLint drawbuffer;
1853         GLint readbuffer;
1854 #endif
1855         R_Shadow_ValidateCvars();
1856
1857         if (!r_shadow_attenuation2dtexture
1858          || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
1859          || r_shadow_lightattenuationdividebias.value != r_shadow_attendividebias
1860          || r_shadow_lightattenuationlinearscale.value != r_shadow_attenlinearscale)
1861                 R_Shadow_MakeTextures();
1862
1863         CHECKGLERROR
1864         R_Mesh_ResetTextureState();
1865 //      R_Mesh_PrepareVertices_Position(0, resetvertexposition, NULL);
1866         GL_BlendFunc(GL_ONE, GL_ZERO);
1867         GL_DepthRange(0, 1);
1868         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
1869         GL_DepthTest(true);
1870         GL_DepthMask(false);
1871         GL_Color(0, 0, 0, 1);
1872         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
1873
1874         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1875
1876         if (gl_ext_separatestencil.integer && vid.support.ati_separate_stencil)
1877         {
1878                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL;
1879                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL;
1880         }
1881         else if (gl_ext_stenciltwoside.integer && vid.support.ext_stencil_two_side)
1882         {
1883                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE;
1884                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE;
1885         }
1886         else
1887         {
1888                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCIL;
1889                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCIL;
1890         }
1891
1892         switch(vid.renderpath)
1893         {
1894         case RENDERPATH_GL20:
1895         case RENDERPATH_CGGL:
1896         case RENDERPATH_D3D9:
1897         case RENDERPATH_D3D10:
1898         case RENDERPATH_D3D11:
1899                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
1900                 break;
1901         case RENDERPATH_GL13:
1902         case RENDERPATH_GL11:
1903                 if (r_textureunits.integer >= 2 && vid.texunits >= 2 && r_shadow_texture3d.integer && r_shadow_attenuation3dtexture)
1904                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN;
1905                 else if (r_textureunits.integer >= 3 && vid.texunits >= 3)
1906                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN;
1907                 else if (r_textureunits.integer >= 2 && vid.texunits >= 2)
1908                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN;
1909                 else
1910                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
1911                 break;
1912         }
1913
1914         CHECKGLERROR
1915 #if 0
1916         qglGetIntegerv(GL_DRAW_BUFFER, &drawbuffer);CHECKGLERROR
1917         qglGetIntegerv(GL_READ_BUFFER, &readbuffer);CHECKGLERROR
1918         r_shadow_drawbuffer = drawbuffer;
1919         r_shadow_readbuffer = readbuffer;
1920 #endif
1921         r_shadow_cullface_front = r_refdef.view.cullface_front;
1922         r_shadow_cullface_back = r_refdef.view.cullface_back;
1923 }
1924
1925 void R_Shadow_RenderMode_ActiveLight(const rtlight_t *rtlight)
1926 {
1927         rsurface.rtlight = rtlight;
1928 }
1929
1930 void R_Shadow_RenderMode_Reset(void)
1931 {
1932         R_Mesh_ResetRenderTargets();
1933         R_SetViewport(&r_refdef.view.viewport);
1934         GL_Scissor(r_shadow_lightscissor[0], r_shadow_lightscissor[1], r_shadow_lightscissor[2], r_shadow_lightscissor[3]);
1935         R_Mesh_ResetTextureState();
1936 //      R_Mesh_PrepareVertices_Position(0, resetvertexposition, NULL);
1937         GL_DepthRange(0, 1);
1938         GL_DepthTest(true);
1939         GL_DepthMask(false);
1940         GL_DepthFunc(GL_LEQUAL);
1941         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);CHECKGLERROR
1942         r_refdef.view.cullface_front = r_shadow_cullface_front;
1943         r_refdef.view.cullface_back = r_shadow_cullface_back;
1944         GL_CullFace(r_refdef.view.cullface_back);
1945         GL_Color(1, 1, 1, 1);
1946         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
1947         GL_BlendFunc(GL_ONE, GL_ZERO);
1948         R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1);
1949         r_shadow_usingshadowmap2d = false;
1950         r_shadow_usingshadowmaportho = false;
1951         R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
1952 }
1953
1954 void R_Shadow_ClearStencil(void)
1955 {
1956         GL_Clear(GL_STENCIL_BUFFER_BIT, NULL, 1.0f, 128);
1957         r_refdef.stats.lights_clears++;
1958 }
1959
1960 void R_Shadow_RenderMode_StencilShadowVolumes(qboolean zpass)
1961 {
1962         r_shadow_rendermode_t mode = zpass ? r_shadow_shadowingrendermode_zpass : r_shadow_shadowingrendermode_zfail;
1963         if (r_shadow_rendermode == mode)
1964                 return;
1965         R_Shadow_RenderMode_Reset();
1966         GL_DepthFunc(GL_LESS);
1967         GL_ColorMask(0, 0, 0, 0);
1968         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
1969         GL_CullFace(GL_NONE);
1970         R_SetupShader_DepthOrShadow();
1971         r_shadow_rendermode = mode;
1972         switch(mode)
1973         {
1974         default:
1975                 break;
1976         case R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE:
1977         case R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL:
1978                 R_SetStencilSeparate(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, GL_ALWAYS, 128, 255);
1979                 break;
1980         case R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE:
1981         case R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL:
1982                 R_SetStencilSeparate(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, GL_ALWAYS, 128, 255);
1983                 break;
1984         }
1985 }
1986
1987 static void R_Shadow_MakeVSDCT(void)
1988 {
1989         // maps to a 2x3 texture rectangle with normalized coordinates
1990         // +-
1991         // XX
1992         // YY
1993         // ZZ
1994         // stores abs(dir.xy), offset.xy/2.5
1995         unsigned char data[4*6] =
1996         {
1997                 255, 0, 0x33, 0x33, // +X: <1, 0>, <0.5, 0.5>
1998                 255, 0, 0x99, 0x33, // -X: <1, 0>, <1.5, 0.5>
1999                 0, 255, 0x33, 0x99, // +Y: <0, 1>, <0.5, 1.5>
2000                 0, 255, 0x99, 0x99, // -Y: <0, 1>, <1.5, 1.5>
2001                 0,   0, 0x33, 0xFF, // +Z: <0, 0>, <0.5, 2.5>
2002                 0,   0, 0x99, 0xFF, // -Z: <0, 0>, <1.5, 2.5>
2003         };
2004         r_shadow_shadowmapvsdcttexture = R_LoadTextureCubeMap(r_shadow_texturepool, "shadowmapvsdct", 1, data, TEXTYPE_RGBA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
2005 }
2006
2007 static void R_Shadow_MakeShadowMap(int side, int size)
2008 {
2009         switch (r_shadow_shadowmode)
2010         {
2011         case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
2012                 if (r_shadow_shadowmap2dtexture) return;
2013                 r_shadow_shadowmap2dtexture = R_LoadTextureShadowMap2D(r_shadow_texturepool, "shadowmap", size*2, size*(vid.support.arb_texture_non_power_of_two ? 3 : 4), r_shadow_shadowmapdepthbits, r_shadow_shadowmapsampler);
2014                 r_shadow_shadowmap2dcolortexture = NULL;
2015                 switch(vid.renderpath)
2016                 {
2017 #ifdef SUPPORTD3D
2018                 case RENDERPATH_D3D9:
2019                         r_shadow_shadowmap2dcolortexture = R_LoadTexture2D(r_shadow_texturepool, "shadowmaprendertarget", size*2, size*(vid.support.arb_texture_non_power_of_two ? 3 : 4), NULL, TEXTYPE_BGRA, TEXF_RENDERTARGET | TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
2020                         r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2dtexture, r_shadow_shadowmap2dcolortexture, NULL, NULL, NULL);
2021                         break;
2022 #endif
2023                 default:
2024                         r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2dtexture, NULL, NULL, NULL, NULL);
2025                         break;
2026                 }
2027                 break;
2028         default:
2029                 return;
2030         }
2031
2032         // render depth into the fbo, do not render color at all
2033         // validate the fbo now
2034         if (qglDrawBuffer)
2035         {
2036                 int status;
2037                 qglDrawBuffer(GL_NONE);CHECKGLERROR
2038                 qglReadBuffer(GL_NONE);CHECKGLERROR
2039                 status = qglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);CHECKGLERROR
2040                 if (status != GL_FRAMEBUFFER_COMPLETE_EXT && (r_shadow_shadowmapping.integer || r_shadow_deferred.integer))
2041                 {
2042                         Con_Printf("R_Shadow_MakeShadowMap: glCheckFramebufferStatusEXT returned %i\n", status);
2043                         Cvar_SetValueQuick(&r_shadow_shadowmapping, 0);
2044                         Cvar_SetValueQuick(&r_shadow_deferred, 0);
2045                 }
2046         }
2047 }
2048
2049 void R_Shadow_RenderMode_ShadowMap(int side, int clear, int size)
2050 {
2051         float nearclip, farclip, bias;
2052         r_viewport_t viewport;
2053         int flipped;
2054         GLuint fbo = 0;
2055         float clearcolor[4];
2056         nearclip = r_shadow_shadowmapping_nearclip.value / rsurface.rtlight->radius;
2057         farclip = 1.0f;
2058         bias = r_shadow_shadowmapping_bias.value * nearclip * (1024.0f / size);// * rsurface.rtlight->radius;
2059         r_shadow_shadowmap_parameters[1] = -nearclip * farclip / (farclip - nearclip) - 0.5f * bias;
2060         r_shadow_shadowmap_parameters[3] = 0.5f + 0.5f * (farclip + nearclip) / (farclip - nearclip);
2061         r_shadow_shadowmapside = side;
2062         r_shadow_shadowmapsize = size;
2063
2064         r_shadow_shadowmap_parameters[0] = 0.5f * (size - r_shadow_shadowmapborder);
2065         r_shadow_shadowmap_parameters[2] = r_shadow_shadowmapvsdct ? 2.5f*size : size;
2066         R_Viewport_InitRectSideView(&viewport, &rsurface.rtlight->matrix_lighttoworld, side, size, r_shadow_shadowmapborder, nearclip, farclip, NULL);
2067         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_SHADOWMAP2D) goto init_done;
2068
2069         // complex unrolled cube approach (more flexible)
2070         if (r_shadow_shadowmapvsdct && !r_shadow_shadowmapvsdcttexture)
2071                 R_Shadow_MakeVSDCT();
2072         if (!r_shadow_shadowmap2dtexture)
2073                 R_Shadow_MakeShadowMap(side, r_shadow_shadowmapmaxsize);
2074         if (r_shadow_shadowmap2dtexture) fbo = r_shadow_fbo2d;
2075         r_shadow_shadowmap_texturescale[0] = 1.0f / R_TextureWidth(r_shadow_shadowmap2dtexture);
2076         r_shadow_shadowmap_texturescale[1] = 1.0f / R_TextureHeight(r_shadow_shadowmap2dtexture);
2077         r_shadow_rendermode = R_SHADOW_RENDERMODE_SHADOWMAP2D;
2078
2079         R_Mesh_ResetTextureState();
2080         R_Mesh_ResetRenderTargets();
2081         R_Shadow_RenderMode_Reset();
2082         if (fbo)
2083         {
2084                 R_Mesh_SetRenderTargets(fbo, r_shadow_shadowmap2dtexture, r_shadow_shadowmap2dcolortexture, NULL, NULL, NULL);
2085                 R_SetupShader_DepthOrShadow();
2086         }
2087         else
2088                 R_SetupShader_ShowDepth();
2089         GL_PolygonOffset(r_shadow_shadowmapping_polygonfactor.value, r_shadow_shadowmapping_polygonoffset.value);
2090         GL_DepthMask(true);
2091         GL_DepthTest(true);
2092
2093 init_done:
2094         R_SetViewport(&viewport);
2095         flipped = (side & 1) ^ (side >> 2);
2096         r_refdef.view.cullface_front = flipped ? r_shadow_cullface_back : r_shadow_cullface_front;
2097         r_refdef.view.cullface_back = flipped ? r_shadow_cullface_front : r_shadow_cullface_back;
2098         switch(vid.renderpath)
2099         {
2100         case RENDERPATH_GL11:
2101         case RENDERPATH_GL13:
2102         case RENDERPATH_GL20:
2103         case RENDERPATH_CGGL:
2104                 GL_CullFace(r_refdef.view.cullface_back);
2105                 // OpenGL lets us scissor larger than the viewport, so go ahead and clear all views at once
2106                 if ((clear & ((2 << side) - 1)) == (1 << side)) // only clear if the side is the first in the mask
2107                 {
2108                         // get tightest scissor rectangle that encloses all viewports in the clear mask
2109                         int x1 = clear & 0x15 ? 0 : size;
2110                         int x2 = clear & 0x2A ? 2 * size : size;
2111                         int y1 = clear & 0x03 ? 0 : (clear & 0xC ? size : 2 * size);
2112                         int y2 = clear & 0x30 ? 3 * size : (clear & 0xC ? 2 * size : size);
2113                         GL_Scissor(x1, y1, x2 - x1, y2 - y1);
2114                         GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
2115                 }
2116                 GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
2117                 break;
2118         case RENDERPATH_D3D9:
2119                 Vector4Set(clearcolor, 1,1,1,1);
2120                 // completely different meaning than in OpenGL path
2121                 r_shadow_shadowmap_parameters[1] = 0;
2122                 r_shadow_shadowmap_parameters[3] = -bias;
2123                 // we invert the cull mode because we flip the projection matrix
2124                 // NOTE: this actually does nothing because the DrawShadowMap code sets it to doublesided...
2125                 GL_CullFace(r_refdef.view.cullface_front);
2126                 // D3D considers it an error to use a scissor larger than the viewport...  clear just this view
2127                 GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
2128                 if (r_shadow_shadowmapsampler)
2129                 {
2130                         GL_ColorMask(0,0,0,0);
2131                         if (clear)
2132                                 GL_Clear(GL_DEPTH_BUFFER_BIT, clearcolor, 1.0f, 0);
2133                 }
2134                 else
2135                 {
2136                         GL_ColorMask(1,1,1,1);
2137                         if (clear)
2138                                 GL_Clear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT, clearcolor, 1.0f, 0);
2139                 }
2140                 break;
2141         case RENDERPATH_D3D10:
2142         case RENDERPATH_D3D11:
2143                 // D3D considers it an error to use a scissor larger than the viewport...  clear just this view
2144                 GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
2145                 GL_ColorMask(0,0,0,0);
2146                 if (clear)
2147                         GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
2148                 break;
2149         }
2150 }
2151
2152 void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent, qboolean shadowmapping)
2153 {
2154         R_Mesh_ResetTextureState();
2155         R_Mesh_ResetRenderTargets();
2156         if (transparent)
2157         {
2158                 r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
2159                 r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
2160                 r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
2161                 r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
2162         }
2163         R_Shadow_RenderMode_Reset();
2164         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2165         if (!transparent)
2166                 GL_DepthFunc(GL_EQUAL);
2167         // do global setup needed for the chosen lighting mode
2168         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2169                 GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 0);
2170         r_shadow_usingshadowmap2d = shadowmapping;
2171         r_shadow_rendermode = r_shadow_lightingrendermode;
2172         // only draw light where this geometry was already rendered AND the
2173         // stencil is 128 (values other than this mean shadow)
2174         if (stenciltest)
2175                 R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2176         else
2177                 R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
2178 }
2179
2180 static const unsigned short bboxelements[36] =
2181 {
2182         5, 1, 3, 5, 3, 7,
2183         6, 2, 0, 6, 0, 4,
2184         7, 3, 2, 7, 2, 6,
2185         4, 0, 1, 4, 1, 5,
2186         4, 5, 7, 4, 7, 6,
2187         1, 0, 2, 1, 2, 3,
2188 };
2189
2190 static const float bboxpoints[8][3] =
2191 {
2192         {-1,-1,-1},
2193         { 1,-1,-1},
2194         {-1, 1,-1},
2195         { 1, 1,-1},
2196         {-1,-1, 1},
2197         { 1,-1, 1},
2198         {-1, 1, 1},
2199         { 1, 1, 1},
2200 };
2201
2202 void R_Shadow_RenderMode_DrawDeferredLight(qboolean stenciltest, qboolean shadowmapping)
2203 {
2204         int i;
2205         float vertex3f[8*3];
2206         const matrix4x4_t *matrix = &rsurface.rtlight->matrix_lighttoworld;
2207 // do global setup needed for the chosen lighting mode
2208         R_Shadow_RenderMode_Reset();
2209         r_shadow_rendermode = r_shadow_lightingrendermode;
2210         R_EntityMatrix(&identitymatrix);
2211         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2212         // only draw light where this geometry was already rendered AND the
2213         // stencil is 128 (values other than this mean shadow)
2214         R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2215         R_Mesh_SetRenderTargets(r_shadow_prepasslightingfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
2216
2217         r_shadow_usingshadowmap2d = shadowmapping;
2218
2219         // render the lighting
2220         R_SetupShader_DeferredLight(rsurface.rtlight);
2221         for (i = 0;i < 8;i++)
2222                 Matrix4x4_Transform(matrix, bboxpoints[i], vertex3f + i*3);
2223         GL_ColorMask(1,1,1,1);
2224         GL_DepthMask(false);
2225         GL_DepthRange(0, 1);
2226         GL_PolygonOffset(0, 0);
2227         GL_DepthTest(true);
2228         GL_DepthFunc(GL_GREATER);
2229         GL_CullFace(r_refdef.view.cullface_back);
2230         R_Mesh_PrepareVertices_Position_Arrays(8, vertex3f);
2231         R_Mesh_Draw(0, 8, 0, 12, NULL, NULL, 0, bboxelements, NULL, 0);
2232 }
2233
2234 void R_Shadow_RenderMode_VisibleShadowVolumes(void)
2235 {
2236         R_Shadow_RenderMode_Reset();
2237         GL_BlendFunc(GL_ONE, GL_ONE);
2238         GL_DepthRange(0, 1);
2239         GL_DepthTest(r_showshadowvolumes.integer < 2);
2240         GL_Color(0.0, 0.0125 * r_refdef.view.colorscale, 0.1 * r_refdef.view.colorscale, 1);
2241         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
2242         GL_CullFace(GL_NONE);
2243         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
2244 }
2245
2246 void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
2247 {
2248         R_Shadow_RenderMode_Reset();
2249         GL_BlendFunc(GL_ONE, GL_ONE);
2250         GL_DepthRange(0, 1);
2251         GL_DepthTest(r_showlighting.integer < 2);
2252         GL_Color(0.1 * r_refdef.view.colorscale, 0.0125 * r_refdef.view.colorscale, 0, 1);
2253         if (!transparent)
2254                 GL_DepthFunc(GL_EQUAL);
2255         R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2256         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
2257 }
2258
2259 void R_Shadow_RenderMode_End(void)
2260 {
2261         R_Shadow_RenderMode_Reset();
2262         R_Shadow_RenderMode_ActiveLight(NULL);
2263         GL_DepthMask(true);
2264         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
2265         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
2266 }
2267
2268 int bboxedges[12][2] =
2269 {
2270         // top
2271         {0, 1}, // +X
2272         {0, 2}, // +Y
2273         {1, 3}, // Y, +X
2274         {2, 3}, // X, +Y
2275         // bottom
2276         {4, 5}, // +X
2277         {4, 6}, // +Y
2278         {5, 7}, // Y, +X
2279         {6, 7}, // X, +Y
2280         // verticals
2281         {0, 4}, // +Z
2282         {1, 5}, // X, +Z
2283         {2, 6}, // Y, +Z
2284         {3, 7}, // XY, +Z
2285 };
2286
2287 qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
2288 {
2289         if (!r_shadow_scissor.integer)
2290         {
2291                 r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
2292                 r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
2293                 r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
2294                 r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
2295                 return false;
2296         }
2297         if(R_ScissorForBBox(mins, maxs, r_shadow_lightscissor))
2298                 return true; // invisible
2299         if(r_shadow_lightscissor[0] != r_refdef.view.viewport.x
2300         || r_shadow_lightscissor[1] != r_refdef.view.viewport.y
2301         || r_shadow_lightscissor[2] != r_refdef.view.viewport.width
2302         || r_shadow_lightscissor[3] != r_refdef.view.viewport.height)
2303                 r_refdef.stats.lights_scissored++;
2304         return false;
2305 }
2306
2307 static void R_Shadow_RenderLighting_Light_Vertex_Shading(int firstvertex, int numverts, const float *diffusecolor, const float *ambientcolor)
2308 {
2309         int i;
2310         const float *vertex3f;
2311         const float *normal3f;
2312         float *color4f;
2313         float dist, dot, distintensity, shadeintensity, v[3], n[3];
2314         switch (r_shadow_rendermode)
2315         {
2316         case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
2317         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
2318                 if (VectorLength2(diffusecolor) > 0)
2319                 {
2320                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.array_passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
2321                         {
2322                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
2323                                 Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
2324                                 if ((dot = DotProduct(n, v)) < 0)
2325                                 {
2326                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
2327                                         VectorMA(ambientcolor, shadeintensity, diffusecolor, color4f);
2328                                 }
2329                                 else
2330                                         VectorCopy(ambientcolor, color4f);
2331                                 if (r_refdef.fogenabled)
2332                                 {
2333                                         float f;
2334                                         f = RSurf_FogVertex(vertex3f);
2335                                         VectorScale(color4f, f, color4f);
2336                                 }
2337                                 color4f[3] = 1;
2338                         }
2339                 }
2340                 else
2341                 {
2342                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.array_passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
2343                         {
2344                                 VectorCopy(ambientcolor, color4f);
2345                                 if (r_refdef.fogenabled)
2346                                 {
2347                                         float f;
2348                                         Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
2349                                         f = RSurf_FogVertex(vertex3f);
2350                                         VectorScale(color4f + 4*i, f, color4f);
2351                                 }
2352                                 color4f[3] = 1;
2353                         }
2354                 }
2355                 break;
2356         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
2357                 if (VectorLength2(diffusecolor) > 0)
2358                 {
2359                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.array_passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
2360                         {
2361                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
2362                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
2363                                 {
2364                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
2365                                         if ((dot = DotProduct(n, v)) < 0)
2366                                         {
2367                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
2368                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
2369                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
2370                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
2371                                         }
2372                                         else
2373                                         {
2374                                                 color4f[0] = ambientcolor[0] * distintensity;
2375                                                 color4f[1] = ambientcolor[1] * distintensity;
2376                                                 color4f[2] = ambientcolor[2] * distintensity;
2377                                         }
2378                                         if (r_refdef.fogenabled)
2379                                         {
2380                                                 float f;
2381                                                 f = RSurf_FogVertex(vertex3f);
2382                                                 VectorScale(color4f, f, color4f);
2383                                         }
2384                                 }
2385                                 else
2386                                         VectorClear(color4f);
2387                                 color4f[3] = 1;
2388                         }
2389                 }
2390                 else
2391                 {
2392                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.array_passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
2393                         {
2394                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
2395                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
2396                                 {
2397                                         color4f[0] = ambientcolor[0] * distintensity;
2398                                         color4f[1] = ambientcolor[1] * distintensity;
2399                                         color4f[2] = ambientcolor[2] * distintensity;
2400                                         if (r_refdef.fogenabled)
2401                                         {
2402                                                 float f;
2403                                                 f = RSurf_FogVertex(vertex3f);
2404                                                 VectorScale(color4f, f, color4f);
2405                                         }
2406                                 }
2407                                 else
2408                                         VectorClear(color4f);
2409                                 color4f[3] = 1;
2410                         }
2411                 }
2412                 break;
2413         case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2414                 if (VectorLength2(diffusecolor) > 0)
2415                 {
2416                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.array_passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
2417                         {
2418                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
2419                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
2420                                 {
2421                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
2422                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
2423                                         if ((dot = DotProduct(n, v)) < 0)
2424                                         {
2425                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
2426                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
2427                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
2428                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
2429                                         }
2430                                         else
2431                                         {
2432                                                 color4f[0] = ambientcolor[0] * distintensity;
2433                                                 color4f[1] = ambientcolor[1] * distintensity;
2434                                                 color4f[2] = ambientcolor[2] * distintensity;
2435                                         }
2436                                         if (r_refdef.fogenabled)
2437                                         {
2438                                                 float f;
2439                                                 f = RSurf_FogVertex(vertex3f);
2440                                                 VectorScale(color4f, f, color4f);
2441                                         }
2442                                 }
2443                                 else
2444                                         VectorClear(color4f);
2445                                 color4f[3] = 1;
2446                         }
2447                 }
2448                 else
2449                 {
2450                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.array_passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
2451                         {
2452                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
2453                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
2454                                 {
2455                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
2456                                         color4f[0] = ambientcolor[0] * distintensity;
2457                                         color4f[1] = ambientcolor[1] * distintensity;
2458                                         color4f[2] = ambientcolor[2] * distintensity;
2459                                         if (r_refdef.fogenabled)
2460                                         {
2461                                                 float f;
2462                                                 f = RSurf_FogVertex(vertex3f);
2463                                                 VectorScale(color4f, f, color4f);
2464                                         }
2465                                 }
2466                                 else
2467                                         VectorClear(color4f);
2468                                 color4f[3] = 1;
2469                         }
2470                 }
2471                 break;
2472         default:
2473                 break;
2474         }
2475 }
2476
2477 static void R_Shadow_RenderLighting_VisibleLighting(int texturenumsurfaces, const msurface_t **texturesurfacelist)
2478 {
2479         // used to display how many times a surface is lit for level design purposes
2480         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
2481         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
2482         RSurf_DrawBatch();
2483 }
2484
2485 static void R_Shadow_RenderLighting_Light_GLSL(int texturenumsurfaces, const msurface_t **texturesurfacelist, const vec3_t lightcolor, float ambientscale, float diffusescale, float specularscale)
2486 {
2487         // ARB2 GLSL shader path (GFFX5200, Radeon 9500)
2488         R_SetupShader_Surface(lightcolor, false, ambientscale, diffusescale, specularscale, RSURFPASS_RTLIGHT, texturenumsurfaces, texturesurfacelist, NULL);
2489         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
2490                 GL_DepthFunc(GL_EQUAL);
2491         RSurf_DrawBatch();
2492         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
2493                 GL_DepthFunc(GL_LEQUAL);
2494 }
2495
2496 static void R_Shadow_RenderLighting_Light_Vertex_Pass(int firstvertex, int numvertices, int numtriangles, const int *element3i, vec3_t diffusecolor2, vec3_t ambientcolor2)
2497 {
2498         int renders;
2499         int i;
2500         int stop;
2501         int newfirstvertex;
2502         int newlastvertex;
2503         int newnumtriangles;
2504         int *newe;
2505         const int *e;
2506         float *c;
2507         int maxtriangles = 4096;
2508         static int newelements[4096*3];
2509         R_Shadow_RenderLighting_Light_Vertex_Shading(firstvertex, numvertices, diffusecolor2, ambientcolor2);
2510         for (renders = 0;renders < 4;renders++)
2511         {
2512                 stop = true;
2513                 newfirstvertex = 0;
2514                 newlastvertex = 0;
2515                 newnumtriangles = 0;
2516                 newe = newelements;
2517                 // due to low fillrate on the cards this vertex lighting path is
2518                 // designed for, we manually cull all triangles that do not
2519                 // contain a lit vertex
2520                 // this builds batches of triangles from multiple surfaces and
2521                 // renders them at once
2522                 for (i = 0, e = element3i;i < numtriangles;i++, e += 3)
2523                 {
2524                         if (VectorLength2(rsurface.array_passcolor4f + e[0] * 4) + VectorLength2(rsurface.array_passcolor4f + e[1] * 4) + VectorLength2(rsurface.array_passcolor4f + e[2] * 4) >= 0.01)
2525                         {
2526                                 if (newnumtriangles)
2527                                 {
2528                                         newfirstvertex = min(newfirstvertex, e[0]);
2529                                         newlastvertex  = max(newlastvertex, e[0]);
2530                                 }
2531                                 else
2532                                 {
2533                                         newfirstvertex = e[0];
2534                                         newlastvertex = e[0];
2535                                 }
2536                                 newfirstvertex = min(newfirstvertex, e[1]);
2537                                 newlastvertex  = max(newlastvertex, e[1]);
2538                                 newfirstvertex = min(newfirstvertex, e[2]);
2539                                 newlastvertex  = max(newlastvertex, e[2]);
2540                                 newe[0] = e[0];
2541                                 newe[1] = e[1];
2542                                 newe[2] = e[2];
2543                                 newnumtriangles++;
2544                                 newe += 3;
2545                                 if (newnumtriangles >= maxtriangles)
2546                                 {
2547                                         R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, 0, newnumtriangles, newelements, NULL, 0, NULL, NULL, 0);
2548                                         newnumtriangles = 0;
2549                                         newe = newelements;
2550                                         stop = false;
2551                                 }
2552                         }
2553                 }
2554                 if (newnumtriangles >= 1)
2555                 {
2556                         R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, 0, newnumtriangles, newelements, NULL, 0, NULL, NULL, 0);
2557                         stop = false;
2558                 }
2559                 // if we couldn't find any lit triangles, exit early
2560                 if (stop)
2561                         break;
2562                 // now reduce the intensity for the next overbright pass
2563                 // we have to clamp to 0 here incase the drivers have improper
2564                 // handling of negative colors
2565                 // (some old drivers even have improper handling of >1 color)
2566                 stop = true;
2567                 for (i = 0, c = rsurface.array_passcolor4f + 4 * firstvertex;i < numvertices;i++, c += 4)
2568                 {
2569                         if (c[0] > 1 || c[1] > 1 || c[2] > 1)
2570                         {
2571                                 c[0] = max(0, c[0] - 1);
2572                                 c[1] = max(0, c[1] - 1);
2573                                 c[2] = max(0, c[2] - 1);
2574                                 stop = false;
2575                         }
2576                         else
2577                                 VectorClear(c);
2578                 }
2579                 // another check...
2580                 if (stop)
2581                         break;
2582         }
2583 }
2584
2585 static void R_Shadow_RenderLighting_Light_Vertex(int texturenumsurfaces, const msurface_t **texturesurfacelist, const vec3_t lightcolor, float ambientscale, float diffusescale)
2586 {
2587         // OpenGL 1.1 path (anything)
2588         float ambientcolorbase[3], diffusecolorbase[3];
2589         float ambientcolorpants[3], diffusecolorpants[3];
2590         float ambientcolorshirt[3], diffusecolorshirt[3];
2591         const float *surfacecolor = rsurface.texture->dlightcolor;
2592         const float *surfacepants = rsurface.colormap_pantscolor;
2593         const float *surfaceshirt = rsurface.colormap_shirtcolor;
2594         rtexture_t *basetexture = rsurface.texture->basetexture;
2595         rtexture_t *pantstexture = rsurface.texture->pantstexture;
2596         rtexture_t *shirttexture = rsurface.texture->shirttexture;
2597         qboolean dopants = pantstexture && VectorLength2(surfacepants) >= (1.0f / 1048576.0f);
2598         qboolean doshirt = shirttexture && VectorLength2(surfaceshirt) >= (1.0f / 1048576.0f);
2599         ambientscale *= 2 * r_refdef.view.colorscale;
2600         diffusescale *= 2 * r_refdef.view.colorscale;
2601         ambientcolorbase[0] = lightcolor[0] * ambientscale * surfacecolor[0];ambientcolorbase[1] = lightcolor[1] * ambientscale * surfacecolor[1];ambientcolorbase[2] = lightcolor[2] * ambientscale * surfacecolor[2];
2602         diffusecolorbase[0] = lightcolor[0] * diffusescale * surfacecolor[0];diffusecolorbase[1] = lightcolor[1] * diffusescale * surfacecolor[1];diffusecolorbase[2] = lightcolor[2] * diffusescale * surfacecolor[2];
2603         ambientcolorpants[0] = ambientcolorbase[0] * surfacepants[0];ambientcolorpants[1] = ambientcolorbase[1] * surfacepants[1];ambientcolorpants[2] = ambientcolorbase[2] * surfacepants[2];
2604         diffusecolorpants[0] = diffusecolorbase[0] * surfacepants[0];diffusecolorpants[1] = diffusecolorbase[1] * surfacepants[1];diffusecolorpants[2] = diffusecolorbase[2] * surfacepants[2];
2605         ambientcolorshirt[0] = ambientcolorbase[0] * surfaceshirt[0];ambientcolorshirt[1] = ambientcolorbase[1] * surfaceshirt[1];ambientcolorshirt[2] = ambientcolorbase[2] * surfaceshirt[2];
2606         diffusecolorshirt[0] = diffusecolorbase[0] * surfaceshirt[0];diffusecolorshirt[1] = diffusecolorbase[1] * surfaceshirt[1];diffusecolorshirt[2] = diffusecolorbase[2] * surfaceshirt[2];
2607         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | (diffusescale > 0 ? BATCHNEED_ARRAY_NORMAL : 0) | BATCHNEED_ARRAY_TEXCOORD, texturenumsurfaces, texturesurfacelist);
2608         R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
2609         R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.array_passcolor4f, 0, 0);
2610         R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
2611         R_Mesh_TexBind(0, basetexture);
2612         R_Mesh_TexMatrix(0, &rsurface.texture->currenttexmatrix);
2613         R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1);
2614         switch(r_shadow_rendermode)
2615         {
2616         case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
2617                 R_Mesh_TexBind(1, r_shadow_attenuation3dtexture);
2618                 R_Mesh_TexMatrix(1, &rsurface.entitytoattenuationxyz);
2619                 R_Mesh_TexCombine(1, GL_MODULATE, GL_MODULATE, 1, 1);
2620                 R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
2621                 break;
2622         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
2623                 R_Mesh_TexBind(2, r_shadow_attenuation2dtexture);
2624                 R_Mesh_TexMatrix(2, &rsurface.entitytoattenuationz);
2625                 R_Mesh_TexCombine(2, GL_MODULATE, GL_MODULATE, 1, 1);
2626                 R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
2627                 // fall through
2628         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
2629                 R_Mesh_TexBind(1, r_shadow_attenuation2dtexture);
2630                 R_Mesh_TexMatrix(1, &rsurface.entitytoattenuationxyz);
2631                 R_Mesh_TexCombine(1, GL_MODULATE, GL_MODULATE, 1, 1);
2632                 R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
2633                 break;
2634         case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2635                 break;
2636         default:
2637                 break;
2638         }
2639         //R_Mesh_TexBind(0, basetexture);
2640         R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorbase, ambientcolorbase);
2641         if (dopants)
2642         {
2643                 R_Mesh_TexBind(0, pantstexture);
2644                 R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorpants, ambientcolorpants);
2645         }
2646         if (doshirt)
2647         {
2648                 R_Mesh_TexBind(0, shirttexture);
2649                 R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorshirt, ambientcolorshirt);
2650         }
2651 }
2652
2653 extern cvar_t gl_lightmaps;
2654 void R_Shadow_RenderLighting(int texturenumsurfaces, const msurface_t **texturesurfacelist)
2655 {
2656         float ambientscale, diffusescale, specularscale;
2657         qboolean negated;
2658         float lightcolor[3];
2659         VectorCopy(rsurface.rtlight->currentcolor, lightcolor);
2660         ambientscale = rsurface.rtlight->ambientscale;
2661         diffusescale = rsurface.rtlight->diffusescale;
2662         specularscale = rsurface.rtlight->specularscale * rsurface.texture->specularscale;
2663         if (!r_shadow_usenormalmap.integer)
2664         {
2665                 ambientscale += 1.0f * diffusescale;
2666                 diffusescale = 0;
2667                 specularscale = 0;
2668         }
2669         if ((ambientscale + diffusescale) * VectorLength2(lightcolor) + specularscale * VectorLength2(lightcolor) < (1.0f / 1048576.0f))
2670                 return;
2671         negated = (lightcolor[0] + lightcolor[1] + lightcolor[2] < 0) && vid.support.ext_blend_subtract;
2672         if(negated)
2673         {
2674                 VectorNegate(lightcolor, lightcolor);
2675                 switch(vid.renderpath)
2676                 {
2677                 case RENDERPATH_GL11:
2678                 case RENDERPATH_GL13:
2679                 case RENDERPATH_GL20:
2680                 case RENDERPATH_CGGL:
2681                         qglBlendEquationEXT(GL_FUNC_REVERSE_SUBTRACT_EXT);
2682                         break;
2683                 case RENDERPATH_D3D9:
2684 #ifdef SUPPORTD3D
2685                         IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_BLENDOP, D3DBLENDOP_SUBTRACT);
2686 #endif
2687                         break;
2688                 case RENDERPATH_D3D10:
2689                         Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
2690                         break;
2691                 case RENDERPATH_D3D11:
2692                         Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
2693                         break;
2694                 }
2695         }
2696         RSurf_SetupDepthAndCulling();
2697         switch (r_shadow_rendermode)
2698         {
2699         case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2700                 GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
2701                 R_Shadow_RenderLighting_VisibleLighting(texturenumsurfaces, texturesurfacelist);
2702                 break;
2703         case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2704                 R_Shadow_RenderLighting_Light_GLSL(texturenumsurfaces, texturesurfacelist, lightcolor, ambientscale, diffusescale, specularscale);
2705                 break;
2706         case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
2707         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
2708         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
2709         case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2710                 R_Shadow_RenderLighting_Light_Vertex(texturenumsurfaces, texturesurfacelist, lightcolor, ambientscale, diffusescale);
2711                 break;
2712         default:
2713                 Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2714                 break;
2715         }
2716         if(negated)
2717         {
2718                 switch(vid.renderpath)
2719                 {
2720                 case RENDERPATH_GL11:
2721                 case RENDERPATH_GL13:
2722                 case RENDERPATH_GL20:
2723                 case RENDERPATH_CGGL:
2724                         qglBlendEquationEXT(GL_FUNC_ADD_EXT);
2725                         break;
2726                 case RENDERPATH_D3D9:
2727 #ifdef SUPPORTD3D
2728                         IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_BLENDOP, D3DBLENDOP_ADD);
2729 #endif
2730                         break;
2731                 case RENDERPATH_D3D10:
2732                         Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
2733                         break;
2734                 case RENDERPATH_D3D11:
2735                         Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
2736                         break;
2737                 }
2738         }
2739 }
2740
2741 void R_RTLight_Update(rtlight_t *rtlight, int isstatic, matrix4x4_t *matrix, vec3_t color, int style, const char *cubemapname, int shadow, vec_t corona, vec_t coronasizescale, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int flags)
2742 {
2743         matrix4x4_t tempmatrix = *matrix;
2744         Matrix4x4_Scale(&tempmatrix, r_shadow_lightradiusscale.value, 1);
2745
2746         // if this light has been compiled before, free the associated data
2747         R_RTLight_Uncompile(rtlight);
2748
2749         // clear it completely to avoid any lingering data
2750         memset(rtlight, 0, sizeof(*rtlight));
2751
2752         // copy the properties
2753         rtlight->matrix_lighttoworld = tempmatrix;
2754         Matrix4x4_Invert_Simple(&rtlight->matrix_worldtolight, &tempmatrix);
2755         Matrix4x4_OriginFromMatrix(&tempmatrix, rtlight->shadoworigin);
2756         rtlight->radius = Matrix4x4_ScaleFromMatrix(&tempmatrix);
2757         VectorCopy(color, rtlight->color);
2758         rtlight->cubemapname[0] = 0;
2759         if (cubemapname && cubemapname[0])
2760                 strlcpy(rtlight->cubemapname, cubemapname, sizeof(rtlight->cubemapname));
2761         rtlight->shadow = shadow;
2762         rtlight->corona = corona;
2763         rtlight->style = style;
2764         rtlight->isstatic = isstatic;
2765         rtlight->coronasizescale = coronasizescale;
2766         rtlight->ambientscale = ambientscale;
2767         rtlight->diffusescale = diffusescale;
2768         rtlight->specularscale = specularscale;
2769         rtlight->flags = flags;
2770
2771         // compute derived data
2772         //rtlight->cullradius = rtlight->radius;
2773         //rtlight->cullradius2 = rtlight->radius * rtlight->radius;
2774         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2775         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2776         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2777         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2778         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2779         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2780 }
2781
2782 // compiles rtlight geometry
2783 // (undone by R_FreeCompiledRTLight, which R_UpdateLight calls)
2784 void R_RTLight_Compile(rtlight_t *rtlight)
2785 {
2786         int i;
2787         int numsurfaces, numleafs, numleafpvsbytes, numshadowtrispvsbytes, numlighttrispvsbytes;
2788         int lighttris, shadowtris, shadowzpasstris, shadowzfailtris;
2789         entity_render_t *ent = r_refdef.scene.worldentity;
2790         dp_model_t *model = r_refdef.scene.worldmodel;
2791         unsigned char *data;
2792         shadowmesh_t *mesh;
2793
2794         // compile the light
2795         rtlight->compiled = true;
2796         rtlight->shadowmode = rtlight->shadow ? (int)r_shadow_shadowmode : -1;
2797         rtlight->static_numleafs = 0;
2798         rtlight->static_numleafpvsbytes = 0;
2799         rtlight->static_leaflist = NULL;
2800         rtlight->static_leafpvs = NULL;
2801         rtlight->static_numsurfaces = 0;
2802         rtlight->static_surfacelist = NULL;
2803         rtlight->static_shadowmap_receivers = 0x3F;
2804         rtlight->static_shadowmap_casters = 0x3F;
2805         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2806         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2807         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2808         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2809         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2810         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2811
2812         if (model && model->GetLightInfo)
2813         {
2814                 // this variable must be set for the CompileShadowVolume/CompileShadowMap code
2815                 r_shadow_compilingrtlight = rtlight;
2816                 model->GetLightInfo(ent, rtlight->shadoworigin, rtlight->radius, rtlight->cullmins, rtlight->cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs, r_shadow_buffer_visitingleafpvs, 0, NULL);
2817                 numleafpvsbytes = (model->brush.num_leafs + 7) >> 3;
2818                 numshadowtrispvsbytes = ((model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles) + 7) >> 3;
2819                 numlighttrispvsbytes = (model->surfmesh.num_triangles + 7) >> 3;
2820                 data = (unsigned char *)Mem_Alloc(r_main_mempool, sizeof(int) * numsurfaces + sizeof(int) * numleafs + numleafpvsbytes + numshadowtrispvsbytes + numlighttrispvsbytes);
2821                 rtlight->static_numsurfaces = numsurfaces;
2822                 rtlight->static_surfacelist = (int *)data;data += sizeof(int) * numsurfaces;
2823                 rtlight->static_numleafs = numleafs;
2824                 rtlight->static_leaflist = (int *)data;data += sizeof(int) * numleafs;
2825                 rtlight->static_numleafpvsbytes = numleafpvsbytes;
2826                 rtlight->static_leafpvs = (unsigned char *)data;data += numleafpvsbytes;
2827                 rtlight->static_numshadowtrispvsbytes = numshadowtrispvsbytes;
2828                 rtlight->static_shadowtrispvs = (unsigned char *)data;data += numshadowtrispvsbytes;
2829                 rtlight->static_numlighttrispvsbytes = numlighttrispvsbytes;
2830                 rtlight->static_lighttrispvs = (unsigned char *)data;data += numlighttrispvsbytes;
2831                 if (rtlight->static_numsurfaces)
2832                         memcpy(rtlight->static_surfacelist, r_shadow_buffer_surfacelist, rtlight->static_numsurfaces * sizeof(*rtlight->static_surfacelist));
2833                 if (rtlight->static_numleafs)
2834                         memcpy(rtlight->static_leaflist, r_shadow_buffer_leaflist, rtlight->static_numleafs * sizeof(*rtlight->static_leaflist));
2835                 if (rtlight->static_numleafpvsbytes)
2836                         memcpy(rtlight->static_leafpvs, r_shadow_buffer_leafpvs, rtlight->static_numleafpvsbytes);
2837                 if (rtlight->static_numshadowtrispvsbytes)
2838                         memcpy(rtlight->static_shadowtrispvs, r_shadow_buffer_shadowtrispvs, rtlight->static_numshadowtrispvsbytes);
2839                 if (rtlight->static_numlighttrispvsbytes)
2840                         memcpy(rtlight->static_lighttrispvs, r_shadow_buffer_lighttrispvs, rtlight->static_numlighttrispvsbytes);
2841                 switch (rtlight->shadowmode)
2842                 {
2843                 case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
2844                         if (model->CompileShadowMap && rtlight->shadow)
2845                                 model->CompileShadowMap(ent, rtlight->shadoworigin, NULL, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
2846                         break;
2847                 default:
2848                         if (model->CompileShadowVolume && rtlight->shadow)
2849                                 model->CompileShadowVolume(ent, rtlight->shadoworigin, NULL, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
2850                         break;
2851                 }
2852                 // now we're done compiling the rtlight
2853                 r_shadow_compilingrtlight = NULL;
2854         }
2855
2856
2857         // use smallest available cullradius - box radius or light radius
2858         //rtlight->cullradius = RadiusFromBoundsAndOrigin(rtlight->cullmins, rtlight->cullmaxs, rtlight->shadoworigin);
2859         //rtlight->cullradius = min(rtlight->cullradius, rtlight->radius);
2860
2861         shadowzpasstris = 0;
2862         if (rtlight->static_meshchain_shadow_zpass)
2863                 for (mesh = rtlight->static_meshchain_shadow_zpass;mesh;mesh = mesh->next)
2864                         shadowzpasstris += mesh->numtriangles;
2865
2866         shadowzfailtris = 0;
2867         if (rtlight->static_meshchain_shadow_zfail)
2868                 for (mesh = rtlight->static_meshchain_shadow_zfail;mesh;mesh = mesh->next)
2869                         shadowzfailtris += mesh->numtriangles;
2870
2871         lighttris = 0;
2872         if (rtlight->static_numlighttrispvsbytes)
2873                 for (i = 0;i < rtlight->static_numlighttrispvsbytes*8;i++)
2874                         if (CHECKPVSBIT(rtlight->static_lighttrispvs, i))
2875                                 lighttris++;
2876
2877         shadowtris = 0;
2878         if (rtlight->static_numlighttrispvsbytes)
2879                 for (i = 0;i < rtlight->static_numshadowtrispvsbytes*8;i++)
2880                         if (CHECKPVSBIT(rtlight->static_shadowtrispvs, i))
2881                                 shadowtris++;
2882
2883         if (developer_extra.integer)
2884                 Con_DPrintf("static light built: %f %f %f : %f %f %f box, %i light triangles, %i shadow triangles, %i zpass/%i zfail compiled shadow volume triangles\n", rtlight->cullmins[0], rtlight->cullmins[1], rtlight->cullmins[2], rtlight->cullmaxs[0], rtlight->cullmaxs[1], rtlight->cullmaxs[2], lighttris, shadowtris, shadowzpasstris, shadowzfailtris);
2885 }
2886
2887 void R_RTLight_Uncompile(rtlight_t *rtlight)
2888 {
2889         if (rtlight->compiled)
2890         {
2891                 if (rtlight->static_meshchain_shadow_zpass)
2892                         Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow_zpass);
2893                 rtlight->static_meshchain_shadow_zpass = NULL;
2894                 if (rtlight->static_meshchain_shadow_zfail)
2895                         Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow_zfail);
2896                 rtlight->static_meshchain_shadow_zfail = NULL;
2897                 if (rtlight->static_meshchain_shadow_shadowmap)
2898                         Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow_shadowmap);
2899                 rtlight->static_meshchain_shadow_shadowmap = NULL;
2900                 // these allocations are grouped
2901                 if (rtlight->static_surfacelist)
2902                         Mem_Free(rtlight->static_surfacelist);
2903                 rtlight->static_numleafs = 0;
2904                 rtlight->static_numleafpvsbytes = 0;
2905                 rtlight->static_leaflist = NULL;
2906                 rtlight->static_leafpvs = NULL;
2907                 rtlight->static_numsurfaces = 0;
2908                 rtlight->static_surfacelist = NULL;
2909                 rtlight->static_numshadowtrispvsbytes = 0;
2910                 rtlight->static_shadowtrispvs = NULL;
2911                 rtlight->static_numlighttrispvsbytes = 0;
2912                 rtlight->static_lighttrispvs = NULL;
2913                 rtlight->compiled = false;
2914         }
2915 }
2916
2917 void R_Shadow_UncompileWorldLights(void)
2918 {
2919         size_t lightindex;
2920         dlight_t *light;
2921         size_t range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
2922         for (lightindex = 0;lightindex < range;lightindex++)
2923         {
2924                 light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2925                 if (!light)
2926                         continue;
2927                 R_RTLight_Uncompile(&light->rtlight);
2928         }
2929 }
2930
2931 void R_Shadow_ComputeShadowCasterCullingPlanes(rtlight_t *rtlight)
2932 {
2933         int i, j;
2934         mplane_t plane;
2935         // reset the count of frustum planes
2936         // see rtlight->cached_frustumplanes definition for how much this array
2937         // can hold
2938         rtlight->cached_numfrustumplanes = 0;
2939
2940         // haven't implemented a culling path for ortho rendering
2941         if (!r_refdef.view.useperspective)
2942         {
2943                 // check if the light is on screen and copy the 4 planes if it is
2944                 for (i = 0;i < 4;i++)
2945                         if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[i]) < -0.03125)
2946                                 break;
2947                 if (i == 4)
2948                         for (i = 0;i < 4;i++)
2949                                 rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = r_refdef.view.frustum[i];
2950                 return;
2951         }
2952
2953 #if 1
2954         // generate a deformed frustum that includes the light origin, this is
2955         // used to cull shadow casting surfaces that can not possibly cast a
2956         // shadow onto the visible light-receiving surfaces, which can be a
2957         // performance gain
2958         //
2959         // if the light origin is onscreen the result will be 4 planes exactly
2960         // if the light origin is offscreen on only one axis the result will
2961         // be exactly 5 planes (split-side case)
2962         // if the light origin is offscreen on two axes the result will be
2963         // exactly 4 planes (stretched corner case)
2964         for (i = 0;i < 4;i++)
2965         {
2966                 // quickly reject standard frustum planes that put the light
2967                 // origin outside the frustum
2968                 if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[i]) < -0.03125)
2969                         continue;
2970                 // copy the plane
2971                 rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = r_refdef.view.frustum[i];
2972         }
2973         // if all the standard frustum planes were accepted, the light is onscreen
2974         // otherwise we need to generate some more planes below...
2975         if (rtlight->cached_numfrustumplanes < 4)
2976         {
2977                 // at least one of the stock frustum planes failed, so we need to
2978                 // create one or two custom planes to enclose the light origin
2979                 for (i = 0;i < 4;i++)
2980                 {
2981                         // create a plane using the view origin and light origin, and a
2982                         // single point from the frustum corner set
2983                         TriangleNormal(r_refdef.view.origin, r_refdef.view.frustumcorner[i], rtlight->shadoworigin, plane.normal);
2984                         VectorNormalize(plane.normal);
2985                         plane.dist = DotProduct(r_refdef.view.origin, plane.normal);
2986                         // see if this plane is backwards and flip it if so
2987                         for (j = 0;j < 4;j++)
2988                                 if (j != i && DotProduct(r_refdef.view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2989                                         break;
2990                         if (j < 4)
2991                         {
2992                                 VectorNegate(plane.normal, plane.normal);
2993                                 plane.dist *= -1;
2994                                 // flipped plane, test again to see if it is now valid
2995                                 for (j = 0;j < 4;j++)
2996                                         if (j != i && DotProduct(r_refdef.view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2997                                                 break;
2998                                 // if the plane is still not valid, then it is dividing the
2999                                 // frustum and has to be rejected
3000                                 if (j < 4)
3001                                         continue;
3002                         }
3003                         // we have created a valid plane, compute extra info
3004                         PlaneClassify(&plane);
3005                         // copy the plane
3006                         rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = plane;
3007 #if 1
3008                         // if we've found 5 frustum planes then we have constructed a
3009                         // proper split-side case and do not need to keep searching for
3010                         // planes to enclose the light origin
3011                         if (rtlight->cached_numfrustumplanes == 5)
3012                                 break;
3013 #endif
3014                 }
3015         }
3016 #endif
3017
3018 #if 0
3019         for (i = 0;i < rtlight->cached_numfrustumplanes;i++)
3020         {
3021                 plane = rtlight->cached_frustumplanes[i];
3022                 Con_Printf("light %p plane #%i %f %f %f : %f (%f %f %f %f %f)\n", rtlight, i, plane.normal[0], plane.normal[1], plane.normal[2], plane.dist, PlaneDiff(r_refdef.view.frustumcorner[0], &plane), PlaneDiff(r_refdef.view.frustumcorner[1], &plane), PlaneDiff(r_refdef.view.frustumcorner[2], &plane), PlaneDiff(r_refdef.view.frustumcorner[3], &plane), PlaneDiff(rtlight->shadoworigin, &plane));
3023         }
3024 #endif
3025
3026 #if 0
3027         // now add the light-space box planes if the light box is rotated, as any
3028         // caster outside the oriented light box is irrelevant (even if it passed
3029         // the worldspace light box, which is axial)
3030         if (rtlight->matrix_lighttoworld.m[0][0] != 1 || rtlight->matrix_lighttoworld.m[1][1] != 1 || rtlight->matrix_lighttoworld.m[2][2] != 1)
3031         {
3032                 for (i = 0;i < 6;i++)
3033                 {
3034                         vec3_t v;
3035                         VectorClear(v);
3036                         v[i >> 1] = (i & 1) ? -1 : 1;
3037                         Matrix4x4_Transform(&rtlight->matrix_lighttoworld, v, plane.normal);
3038                         VectorSubtract(plane.normal, rtlight->shadoworigin, plane.normal);
3039                         plane.dist = VectorNormalizeLength(plane.normal);
3040                         plane.dist += DotProduct(plane.normal, rtlight->shadoworigin);
3041                         rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = plane;
3042                 }
3043         }
3044 #endif