03fa453dd9b7690c0709bd2b2961ff209aab9d7b
[divverent/darkplaces.git] / r_shadow.c
1
2 /*
3 Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
4 An extrusion of the lit faces, beginning at the original geometry and ending
5 further from the light source than the original geometry (presumably at least
6 as far as the light's radius, if the light has a radius at all), capped at
7 both front and back to avoid any problems (extrusion from dark faces also
8 works but has a different set of problems)
9
10 This is normally rendered using Carmack's Reverse technique, in which
11 backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
12 zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
13 where shadows did not intersect the visible geometry, suitable as a stencil
14 mask for rendering lighting everywhere but shadow.
15
16 In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
17 as decrement and the frontfaces as increment, and we redefine the DepthFunc to
18 GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
19 and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
20 additionally we clear stencil to 128 to avoid the need for the unclamped
21 incr/decr extension (not related to patent).
22
23 Patent warning:
24 This algorithm may be covered by Creative's patent (US Patent #6384822),
25 however that patent is quite specific about increment on backfaces and
26 decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
27 opposite this implementation and partially opposite Carmack's Reverse paper
28 (which uses GL_LESS, but increments on backfaces and decrements on frontfaces).
29
30
31
32 Terminology: Stencil Light Volume (sometimes called Light Volumes)
33 Similar to a Stencil Shadow Volume, but inverted; rather than containing the
34 areas in shadow it contains the areas in light, this can only be built
35 quickly for certain limited cases (such as portal visibility from a point),
36 but is quite useful for some effects (sunlight coming from sky polygons is
37 one possible example, translucent occluders is another example).
38
39
40
41 Terminology: Optimized Stencil Shadow Volume
42 A Stencil Shadow Volume that has been processed sufficiently to ensure it has
43 no duplicate coverage of areas (no need to shadow an area twice), often this
44 greatly improves performance but is an operation too costly to use on moving
45 lights (however completely optimal Stencil Light Volumes can be constructed
46 in some ideal cases).
47
48
49
50 Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
51 Per pixel evaluation of lighting equations, at a bare minimum this involves
52 DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
53 vector and surface normal, using a texture of the surface bumps, called a
54 NormalMap) if supported by hardware; in our case there is support for cards
55 which are incapable of DOT3, the quality is quite poor however.  Additionally
56 it is desirable to have specular evaluation per pixel, per vertex
57 normalization of specular halfangle vectors causes noticable distortion but
58 is unavoidable on hardware without GL_ARB_fragment_program or
59 GL_ARB_fragment_shader.
60
61
62
63 Terminology: Normalization CubeMap
64 A cubemap containing normalized dot3-encoded (vectors of length 1 or less
65 encoded as RGB colors) for any possible direction, this technique allows per
66 pixel calculation of incidence vector for per pixel lighting purposes, which
67 would not otherwise be possible per pixel without GL_ARB_fragment_program or
68 GL_ARB_fragment_shader.
69
70
71
72 Terminology: 2D+1D Attenuation Texturing
73 A very crude approximation of light attenuation with distance which results
74 in cylindrical light shapes which fade vertically as a streak (some games
75 such as Doom3 allow this to be rotated to be less noticable in specific
76 cases), the technique is simply modulating lighting by two 2D textures (which
77 can be the same) on different axes of projection (XY and Z, typically), this
78 is the second best technique available without 3D Attenuation Texturing,
79 GL_ARB_fragment_program or GL_ARB_fragment_shader technology.
80
81
82
83 Terminology: 2D+1D Inverse Attenuation Texturing
84 A clever method described in papers on the Abducted engine, this has a squared
85 distance texture (bright on the outside, black in the middle), which is used
86 twice using GL_ADD blending, the result of this is used in an inverse modulate
87 (GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
88 lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
89 texturing).
90
91
92
93 Terminology: 3D Attenuation Texturing
94 A slightly crude approximation of light attenuation with distance, its flaws
95 are limited radius and resolution (performance tradeoffs).
96
97
98
99 Terminology: 3D Attenuation-Normalization Texturing
100 A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
101 vectors shorter the lighting becomes darker, a very effective optimization of
102 diffuse lighting if 3D Attenuation Textures are already used.
103
104
105
106 Terminology: Light Cubemap Filtering
107 A technique for modeling non-uniform light distribution according to
108 direction, for example a lantern may use a cubemap to describe the light
109 emission pattern of the cage around the lantern (as well as soot buildup
110 discoloring the light in certain areas), often also used for softened grate
111 shadows and light shining through a stained glass window (done crudely by
112 texturing the lighting with a cubemap), another good example would be a disco
113 light.  This technique is used heavily in many games (Doom3 does not support
114 this however).
115
116
117
118 Terminology: Light Projection Filtering
119 A technique for modeling shadowing of light passing through translucent
120 surfaces, allowing stained glass windows and other effects to be done more
121 elegantly than possible with Light Cubemap Filtering by applying an occluder
122 texture to the lighting combined with a stencil light volume to limit the lit
123 area, this technique is used by Doom3 for spotlights and flashlights, among
124 other things, this can also be used more generally to render light passing
125 through multiple translucent occluders in a scene (using a light volume to
126 describe the area beyond the occluder, and thus mask off rendering of all
127 other areas).
128
129
130
131 Terminology: Doom3 Lighting
132 A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
133 CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
134 demonstrated by the game Doom3.
135 */
136
137 #include "quakedef.h"
138 #include "r_shadow.h"
139 #include "cl_collision.h"
140 #include "portals.h"
141 #include "image.h"
142
143 extern void R_Shadow_EditLights_Init(void);
144
145 typedef enum r_shadow_rendermode_e
146 {
147         R_SHADOW_RENDERMODE_NONE,
148         R_SHADOW_RENDERMODE_STENCIL,
149         R_SHADOW_RENDERMODE_SEPARATESTENCIL,
150         R_SHADOW_RENDERMODE_STENCILTWOSIDE,
151         R_SHADOW_RENDERMODE_LIGHT_VERTEX,
152         R_SHADOW_RENDERMODE_LIGHT_DOT3,
153         R_SHADOW_RENDERMODE_LIGHT_GLSL,
154         R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
155         R_SHADOW_RENDERMODE_VISIBLELIGHTING,
156 }
157 r_shadow_rendermode_t;
158
159 r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
160 r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
161 r_shadow_rendermode_t r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_NONE;
162
163 int maxshadowtriangles;
164 int *shadowelements;
165
166 int maxshadowvertices;
167 float *shadowvertex3f;
168
169 int maxshadowmark;
170 int numshadowmark;
171 int *shadowmark;
172 int *shadowmarklist;
173 int shadowmarkcount;
174
175 int maxvertexupdate;
176 int *vertexupdate;
177 int *vertexremap;
178 int vertexupdatenum;
179
180 int r_shadow_buffer_numleafpvsbytes;
181 unsigned char *r_shadow_buffer_leafpvs;
182 int *r_shadow_buffer_leaflist;
183
184 int r_shadow_buffer_numsurfacepvsbytes;
185 unsigned char *r_shadow_buffer_surfacepvs;
186 int *r_shadow_buffer_surfacelist;
187
188 int r_shadow_buffer_numshadowtrispvsbytes;
189 unsigned char *r_shadow_buffer_shadowtrispvs;
190 int r_shadow_buffer_numlighttrispvsbytes;
191 unsigned char *r_shadow_buffer_lighttrispvs;
192
193 rtexturepool_t *r_shadow_texturepool;
194 rtexture_t *r_shadow_attenuationgradienttexture;
195 rtexture_t *r_shadow_attenuation2dtexture;
196 rtexture_t *r_shadow_attenuation3dtexture;
197
198 // lights are reloaded when this changes
199 char r_shadow_mapname[MAX_QPATH];
200
201 // used only for light filters (cubemaps)
202 rtexturepool_t *r_shadow_filters_texturepool;
203
204 cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
205 cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
206 cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
207 cvar_t r_shadow_usenormalmap = {CVAR_SAVE, "r_shadow_usenormalmap", "1", "enables use of directional shading on lights"};
208 cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
209 cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.125", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
210 cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
211 cvar_t r_shadow_glossexponent = {0, "r_shadow_glossexponent", "32", "how 'sharp' the gloss should appear (specular power)"};
212 cvar_t r_shadow_lightattenuationdividebias = {0, "r_shadow_lightattenuationdividebias", "1", "changes attenuation texture generation"};
213 cvar_t r_shadow_lightattenuationlinearscale = {0, "r_shadow_lightattenuationlinearscale", "2", "changes attenuation texture generation"};
214 cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
215 cvar_t r_shadow_lightradiusscale = {0, "r_shadow_lightradiusscale", "1", "renders all world lights larger or smaller"};
216 cvar_t r_shadow_portallight = {0, "r_shadow_portallight", "1", "use portal culling to exactly determine lit triangles when compiling world lights"};
217 cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "1000000", "how far to cast shadows"};
218 cvar_t r_shadow_frontsidecasting = {0, "r_shadow_frontsidecasting", "1", "whether to cast shadows from illuminated triangles (front side of model) or unlit triangles (back side of model)"};
219 cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
220 cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
221 cvar_t r_shadow_realtime_dlight_svbspculling = {0, "r_shadow_realtime_dlight_svbspculling", "0", "enables svbsp optimization on dynamic lights (very slow!)"};
222 cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal optimization on dynamic lights (slow!)"};
223 cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
224 cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
225 cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
226 cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
227 cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
228 cvar_t r_shadow_realtime_world_compilesvbsp = {0, "r_shadow_realtime_world_compilesvbsp", "1", "enables svbsp optimization during compilation"};
229 cvar_t r_shadow_realtime_world_compileportalculling = {0, "r_shadow_realtime_world_compileportalculling", "1", "enables portal-based culling optimization during compilation"};
230 cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
231 cvar_t r_shadow_culltriangles = {0, "r_shadow_culltriangles", "1", "performs more expensive tests to remove unnecessary triangles of lit surfaces"};
232 cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
233 cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
234 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect r_glsl lighting)"};
235 cvar_t gl_ext_separatestencil = {0, "gl_ext_separatestencil", "1", "make use of OpenGL 2.0 glStencilOpSeparate or GL_ATI_separate_stencil extension"};
236 cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
237 cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
238 cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
239 cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
240 cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
241 cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
242 cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
243
244 // note the table actually includes one more value, just to avoid the need to clamp the distance index due to minor math error
245 #define ATTENTABLESIZE 256
246 // 1D gradient, 2D circle and 3D sphere attenuation textures
247 #define ATTEN1DSIZE 32
248 #define ATTEN2DSIZE 64
249 #define ATTEN3DSIZE 32
250
251 static float r_shadow_attendividebias; // r_shadow_lightattenuationdividebias
252 static float r_shadow_attenlinearscale; // r_shadow_lightattenuationlinearscale
253 static float r_shadow_attentable[ATTENTABLESIZE+1];
254
255 rtlight_t *r_shadow_compilingrtlight;
256 dlight_t *r_shadow_worldlightchain;
257 dlight_t *r_shadow_selectedlight;
258 dlight_t r_shadow_bufferlight;
259 vec3_t r_editlights_cursorlocation;
260
261 extern int con_vislines;
262
263 typedef struct cubemapinfo_s
264 {
265         char basename[64];
266         rtexture_t *texture;
267 }
268 cubemapinfo_t;
269
270 #define MAX_CUBEMAPS 256
271 static int numcubemaps;
272 static cubemapinfo_t cubemaps[MAX_CUBEMAPS];
273
274 void R_Shadow_UncompileWorldLights(void);
275 void R_Shadow_ClearWorldLights(void);
276 void R_Shadow_SaveWorldLights(void);
277 void R_Shadow_LoadWorldLights(void);
278 void R_Shadow_LoadLightsFile(void);
279 void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
280 void R_Shadow_EditLights_Reload_f(void);
281 void R_Shadow_ValidateCvars(void);
282 static void R_Shadow_MakeTextures(void);
283
284 void r_shadow_start(void)
285 {
286         // allocate vertex processing arrays
287         numcubemaps = 0;
288         r_shadow_attenuationgradienttexture = NULL;
289         r_shadow_attenuation2dtexture = NULL;
290         r_shadow_attenuation3dtexture = NULL;
291         r_shadow_texturepool = NULL;
292         r_shadow_filters_texturepool = NULL;
293         R_Shadow_ValidateCvars();
294         R_Shadow_MakeTextures();
295         maxshadowtriangles = 0;
296         shadowelements = NULL;
297         maxshadowvertices = 0;
298         shadowvertex3f = NULL;
299         maxvertexupdate = 0;
300         vertexupdate = NULL;
301         vertexremap = NULL;
302         vertexupdatenum = 0;
303         maxshadowmark = 0;
304         numshadowmark = 0;
305         shadowmark = NULL;
306         shadowmarklist = NULL;
307         shadowmarkcount = 0;
308         r_shadow_buffer_numleafpvsbytes = 0;
309         r_shadow_buffer_leafpvs = NULL;
310         r_shadow_buffer_leaflist = NULL;
311         r_shadow_buffer_numsurfacepvsbytes = 0;
312         r_shadow_buffer_surfacepvs = NULL;
313         r_shadow_buffer_surfacelist = NULL;
314         r_shadow_buffer_numshadowtrispvsbytes = 0;
315         r_shadow_buffer_shadowtrispvs = NULL;
316         r_shadow_buffer_numlighttrispvsbytes = 0;
317         r_shadow_buffer_lighttrispvs = NULL;
318 }
319
320 void r_shadow_shutdown(void)
321 {
322         R_Shadow_UncompileWorldLights();
323         numcubemaps = 0;
324         r_shadow_attenuationgradienttexture = NULL;
325         r_shadow_attenuation2dtexture = NULL;
326         r_shadow_attenuation3dtexture = NULL;
327         R_FreeTexturePool(&r_shadow_texturepool);
328         R_FreeTexturePool(&r_shadow_filters_texturepool);
329         maxshadowtriangles = 0;
330         if (shadowelements)
331                 Mem_Free(shadowelements);
332         shadowelements = NULL;
333         if (shadowvertex3f)
334                 Mem_Free(shadowvertex3f);
335         shadowvertex3f = NULL;
336         maxvertexupdate = 0;
337         if (vertexupdate)
338                 Mem_Free(vertexupdate);
339         vertexupdate = NULL;
340         if (vertexremap)
341                 Mem_Free(vertexremap);
342         vertexremap = NULL;
343         vertexupdatenum = 0;
344         maxshadowmark = 0;
345         numshadowmark = 0;
346         if (shadowmark)
347                 Mem_Free(shadowmark);
348         shadowmark = NULL;
349         if (shadowmarklist)
350                 Mem_Free(shadowmarklist);
351         shadowmarklist = NULL;
352         shadowmarkcount = 0;
353         r_shadow_buffer_numleafpvsbytes = 0;
354         if (r_shadow_buffer_leafpvs)
355                 Mem_Free(r_shadow_buffer_leafpvs);
356         r_shadow_buffer_leafpvs = NULL;
357         if (r_shadow_buffer_leaflist)
358                 Mem_Free(r_shadow_buffer_leaflist);
359         r_shadow_buffer_leaflist = NULL;
360         r_shadow_buffer_numsurfacepvsbytes = 0;
361         if (r_shadow_buffer_surfacepvs)
362                 Mem_Free(r_shadow_buffer_surfacepvs);
363         r_shadow_buffer_surfacepvs = NULL;
364         if (r_shadow_buffer_surfacelist)
365                 Mem_Free(r_shadow_buffer_surfacelist);
366         r_shadow_buffer_surfacelist = NULL;
367         r_shadow_buffer_numshadowtrispvsbytes = 0;
368         if (r_shadow_buffer_shadowtrispvs)
369                 Mem_Free(r_shadow_buffer_shadowtrispvs);
370         r_shadow_buffer_numlighttrispvsbytes = 0;
371         if (r_shadow_buffer_lighttrispvs)
372                 Mem_Free(r_shadow_buffer_lighttrispvs);
373 }
374
375 void r_shadow_newmap(void)
376 {
377 }
378
379 void R_Shadow_Help_f(void)
380 {
381         Con_Printf(
382 "Documentation on r_shadow system:\n"
383 "Settings:\n"
384 "r_shadow_bumpscale_basetexture : base texture as bumpmap with this scale\n"
385 "r_shadow_bumpscale_bumpmap : depth scale for bumpmap conversion\n"
386 "r_shadow_debuglight : render only this light number (-1 = all)\n"
387 "r_shadow_gloss 0/1/2 : no gloss, gloss textures only, force gloss\n"
388 "r_shadow_gloss2intensity : brightness of forced gloss\n"
389 "r_shadow_glossintensity : brightness of textured gloss\n"
390 "r_shadow_lightattenuationlinearscale : used to generate attenuation texture\n"
391 "r_shadow_lightattenuationdividebias : used to generate attenuation texture\n"
392 "r_shadow_lightintensityscale : scale rendering brightness of all lights\n"
393 "r_shadow_lightradiusscale : scale rendering radius of all lights\n"
394 "r_shadow_portallight : use portal visibility for static light precomputation\n"
395 "r_shadow_projectdistance : shadow volume projection distance\n"
396 "r_shadow_realtime_dlight : use high quality dynamic lights in normal mode\n"
397 "r_shadow_realtime_dlight_shadows : cast shadows from dlights\n"
398 "r_shadow_realtime_world : use high quality world lighting mode\n"
399 "r_shadow_realtime_world_lightmaps : use lightmaps in addition to lights\n"
400 "r_shadow_realtime_world_shadows : cast shadows from world lights\n"
401 "r_shadow_realtime_world_compile : compile surface/visibility information\n"
402 "r_shadow_realtime_world_compileshadow : compile shadow geometry\n"
403 "r_shadow_scissor : use scissor optimization\n"
404 "r_shadow_polygonfactor : nudge shadow volumes closer/further\n"
405 "r_shadow_polygonoffset : nudge shadow volumes closer/further\n"
406 "r_shadow_texture3d : use 3d attenuation texture (if hardware supports)\n"
407 "r_showlighting : useful for performance testing; bright = slow!\n"
408 "r_showshadowvolumes : useful for performance testing; bright = slow!\n"
409 "Commands:\n"
410 "r_shadow_help : this help\n"
411         );
412 }
413
414 void R_Shadow_Init(void)
415 {
416         Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
417         Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
418         Cvar_RegisterVariable(&r_shadow_usenormalmap);
419         Cvar_RegisterVariable(&r_shadow_debuglight);
420         Cvar_RegisterVariable(&r_shadow_gloss);
421         Cvar_RegisterVariable(&r_shadow_gloss2intensity);
422         Cvar_RegisterVariable(&r_shadow_glossintensity);
423         Cvar_RegisterVariable(&r_shadow_glossexponent);
424         Cvar_RegisterVariable(&r_shadow_lightattenuationdividebias);
425         Cvar_RegisterVariable(&r_shadow_lightattenuationlinearscale);
426         Cvar_RegisterVariable(&r_shadow_lightintensityscale);
427         Cvar_RegisterVariable(&r_shadow_lightradiusscale);
428         Cvar_RegisterVariable(&r_shadow_portallight);
429         Cvar_RegisterVariable(&r_shadow_projectdistance);
430         Cvar_RegisterVariable(&r_shadow_frontsidecasting);
431         Cvar_RegisterVariable(&r_shadow_realtime_dlight);
432         Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
433         Cvar_RegisterVariable(&r_shadow_realtime_dlight_svbspculling);
434         Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
435         Cvar_RegisterVariable(&r_shadow_realtime_world);
436         Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
437         Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
438         Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
439         Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
440         Cvar_RegisterVariable(&r_shadow_realtime_world_compilesvbsp);
441         Cvar_RegisterVariable(&r_shadow_realtime_world_compileportalculling);
442         Cvar_RegisterVariable(&r_shadow_scissor);
443         Cvar_RegisterVariable(&r_shadow_culltriangles);
444         Cvar_RegisterVariable(&r_shadow_polygonfactor);
445         Cvar_RegisterVariable(&r_shadow_polygonoffset);
446         Cvar_RegisterVariable(&r_shadow_texture3d);
447         Cvar_RegisterVariable(&gl_ext_separatestencil);
448         Cvar_RegisterVariable(&gl_ext_stenciltwoside);
449         if (gamemode == GAME_TENEBRAE)
450         {
451                 Cvar_SetValue("r_shadow_gloss", 2);
452                 Cvar_SetValue("r_shadow_bumpscale_basetexture", 4);
453         }
454         Cmd_AddCommand("r_shadow_help", R_Shadow_Help_f, "prints documentation on console commands and variables used by realtime lighting and shadowing system");
455         R_Shadow_EditLights_Init();
456         r_shadow_worldlightchain = NULL;
457         maxshadowtriangles = 0;
458         shadowelements = NULL;
459         maxshadowvertices = 0;
460         shadowvertex3f = NULL;
461         maxvertexupdate = 0;
462         vertexupdate = NULL;
463         vertexremap = NULL;
464         vertexupdatenum = 0;
465         maxshadowmark = 0;
466         numshadowmark = 0;
467         shadowmark = NULL;
468         shadowmarklist = NULL;
469         shadowmarkcount = 0;
470         r_shadow_buffer_numleafpvsbytes = 0;
471         r_shadow_buffer_leafpvs = NULL;
472         r_shadow_buffer_leaflist = NULL;
473         r_shadow_buffer_numsurfacepvsbytes = 0;
474         r_shadow_buffer_surfacepvs = NULL;
475         r_shadow_buffer_surfacelist = NULL;
476         r_shadow_buffer_shadowtrispvs = NULL;
477         r_shadow_buffer_lighttrispvs = NULL;
478         R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap);
479 }
480
481 matrix4x4_t matrix_attenuationxyz =
482 {
483         {
484                 {0.5, 0.0, 0.0, 0.5},
485                 {0.0, 0.5, 0.0, 0.5},
486                 {0.0, 0.0, 0.5, 0.5},
487                 {0.0, 0.0, 0.0, 1.0}
488         }
489 };
490
491 matrix4x4_t matrix_attenuationz =
492 {
493         {
494                 {0.0, 0.0, 0.5, 0.5},
495                 {0.0, 0.0, 0.0, 0.5},
496                 {0.0, 0.0, 0.0, 0.5},
497                 {0.0, 0.0, 0.0, 1.0}
498         }
499 };
500
501 void R_Shadow_ResizeShadowArrays(int numvertices, int numtriangles)
502 {
503         // make sure shadowelements is big enough for this volume
504         if (maxshadowtriangles < numtriangles)
505         {
506                 maxshadowtriangles = numtriangles;
507                 if (shadowelements)
508                         Mem_Free(shadowelements);
509                 shadowelements = (int *)Mem_Alloc(r_main_mempool, maxshadowtriangles * sizeof(int[24]));
510         }
511         // make sure shadowvertex3f is big enough for this volume
512         if (maxshadowvertices < numvertices)
513         {
514                 maxshadowvertices = numvertices;
515                 if (shadowvertex3f)
516                         Mem_Free(shadowvertex3f);
517                 shadowvertex3f = (float *)Mem_Alloc(r_main_mempool, maxshadowvertices * sizeof(float[6]));
518         }
519 }
520
521 static void R_Shadow_EnlargeLeafSurfaceTrisBuffer(int numleafs, int numsurfaces, int numshadowtriangles, int numlighttriangles)
522 {
523         int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
524         int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
525         int numshadowtrispvsbytes = (((numshadowtriangles + 7) >> 3) + 255) & ~255;
526         int numlighttrispvsbytes = (((numlighttriangles + 7) >> 3) + 255) & ~255;
527         if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
528         {
529                 if (r_shadow_buffer_leafpvs)
530                         Mem_Free(r_shadow_buffer_leafpvs);
531                 if (r_shadow_buffer_leaflist)
532                         Mem_Free(r_shadow_buffer_leaflist);
533                 r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
534                 r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
535                 r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
536         }
537         if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
538         {
539                 if (r_shadow_buffer_surfacepvs)
540                         Mem_Free(r_shadow_buffer_surfacepvs);
541                 if (r_shadow_buffer_surfacelist)
542                         Mem_Free(r_shadow_buffer_surfacelist);
543                 r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
544                 r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes);
545                 r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
546         }
547         if (r_shadow_buffer_numshadowtrispvsbytes < numshadowtrispvsbytes)
548         {
549                 if (r_shadow_buffer_shadowtrispvs)
550                         Mem_Free(r_shadow_buffer_shadowtrispvs);
551                 r_shadow_buffer_numshadowtrispvsbytes = numshadowtrispvsbytes;
552                 r_shadow_buffer_shadowtrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numshadowtrispvsbytes);
553         }
554         if (r_shadow_buffer_numlighttrispvsbytes < numlighttrispvsbytes)
555         {
556                 if (r_shadow_buffer_lighttrispvs)
557                         Mem_Free(r_shadow_buffer_lighttrispvs);
558                 r_shadow_buffer_numlighttrispvsbytes = numlighttrispvsbytes;
559                 r_shadow_buffer_lighttrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numlighttrispvsbytes);
560         }
561 }
562
563 void R_Shadow_PrepareShadowMark(int numtris)
564 {
565         // make sure shadowmark is big enough for this volume
566         if (maxshadowmark < numtris)
567         {
568                 maxshadowmark = numtris;
569                 if (shadowmark)
570                         Mem_Free(shadowmark);
571                 if (shadowmarklist)
572                         Mem_Free(shadowmarklist);
573                 shadowmark = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmark));
574                 shadowmarklist = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmarklist));
575                 shadowmarkcount = 0;
576         }
577         shadowmarkcount++;
578         // if shadowmarkcount wrapped we clear the array and adjust accordingly
579         if (shadowmarkcount == 0)
580         {
581                 shadowmarkcount = 1;
582                 memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
583         }
584         numshadowmark = 0;
585 }
586
587 int R_Shadow_ConstructShadowVolume(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
588 {
589         int i, j;
590         int outtriangles = 0, outvertices = 0;
591         const int *element;
592         const float *vertex;
593         float ratio, direction[3], projectvector[3];
594
595         if (projectdirection)
596                 VectorScale(projectdirection, projectdistance, projectvector);
597         else
598                 VectorClear(projectvector);
599
600         if (maxvertexupdate < innumvertices)
601         {
602                 maxvertexupdate = innumvertices;
603                 if (vertexupdate)
604                         Mem_Free(vertexupdate);
605                 if (vertexremap)
606                         Mem_Free(vertexremap);
607                 vertexupdate = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
608                 vertexremap = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
609                 vertexupdatenum = 0;
610         }
611         vertexupdatenum++;
612         if (vertexupdatenum == 0)
613         {
614                 vertexupdatenum = 1;
615                 memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
616                 memset(vertexremap, 0, maxvertexupdate * sizeof(int));
617         }
618
619         for (i = 0;i < numshadowmarktris;i++)
620                 shadowmark[shadowmarktris[i]] = shadowmarkcount;
621
622         // create the vertices
623         if (projectdirection)
624         {
625                 for (i = 0;i < numshadowmarktris;i++)
626                 {
627                         element = inelement3i + shadowmarktris[i] * 3;
628                         for (j = 0;j < 3;j++)
629                         {
630                                 if (vertexupdate[element[j]] != vertexupdatenum)
631                                 {
632                                         vertexupdate[element[j]] = vertexupdatenum;
633                                         vertexremap[element[j]] = outvertices;
634                                         vertex = invertex3f + element[j] * 3;
635                                         // project one copy of the vertex according to projectvector
636                                         VectorCopy(vertex, outvertex3f);
637                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
638                                         outvertex3f += 6;
639                                         outvertices += 2;
640                                 }
641                         }
642                 }
643         }
644         else
645         {
646                 for (i = 0;i < numshadowmarktris;i++)
647                 {
648                         element = inelement3i + shadowmarktris[i] * 3;
649                         for (j = 0;j < 3;j++)
650                         {
651                                 if (vertexupdate[element[j]] != vertexupdatenum)
652                                 {
653                                         vertexupdate[element[j]] = vertexupdatenum;
654                                         vertexremap[element[j]] = outvertices;
655                                         vertex = invertex3f + element[j] * 3;
656                                         // project one copy of the vertex to the sphere radius of the light
657                                         // (FIXME: would projecting it to the light box be better?)
658                                         VectorSubtract(vertex, projectorigin, direction);
659                                         ratio = projectdistance / VectorLength(direction);
660                                         VectorCopy(vertex, outvertex3f);
661                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
662                                         outvertex3f += 6;
663                                         outvertices += 2;
664                                 }
665                         }
666                 }
667         }
668
669         if (r_shadow_frontsidecasting.integer)
670         {
671                 for (i = 0;i < numshadowmarktris;i++)
672                 {
673                         int remappedelement[3];
674                         int markindex;
675                         const int *neighbortriangle;
676
677                         markindex = shadowmarktris[i] * 3;
678                         element = inelement3i + markindex;
679                         neighbortriangle = inneighbor3i + markindex;
680                         // output the front and back triangles
681                         outelement3i[0] = vertexremap[element[0]];
682                         outelement3i[1] = vertexremap[element[1]];
683                         outelement3i[2] = vertexremap[element[2]];
684                         outelement3i[3] = vertexremap[element[2]] + 1;
685                         outelement3i[4] = vertexremap[element[1]] + 1;
686                         outelement3i[5] = vertexremap[element[0]] + 1;
687
688                         outelement3i += 6;
689                         outtriangles += 2;
690                         // output the sides (facing outward from this triangle)
691                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
692                         {
693                                 remappedelement[0] = vertexremap[element[0]];
694                                 remappedelement[1] = vertexremap[element[1]];
695                                 outelement3i[0] = remappedelement[1];
696                                 outelement3i[1] = remappedelement[0];
697                                 outelement3i[2] = remappedelement[0] + 1;
698                                 outelement3i[3] = remappedelement[1];
699                                 outelement3i[4] = remappedelement[0] + 1;
700                                 outelement3i[5] = remappedelement[1] + 1;
701
702                                 outelement3i += 6;
703                                 outtriangles += 2;
704                         }
705                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
706                         {
707                                 remappedelement[1] = vertexremap[element[1]];
708                                 remappedelement[2] = vertexremap[element[2]];
709                                 outelement3i[0] = remappedelement[2];
710                                 outelement3i[1] = remappedelement[1];
711                                 outelement3i[2] = remappedelement[1] + 1;
712                                 outelement3i[3] = remappedelement[2];
713                                 outelement3i[4] = remappedelement[1] + 1;
714                                 outelement3i[5] = remappedelement[2] + 1;
715
716                                 outelement3i += 6;
717                                 outtriangles += 2;
718                         }
719                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
720                         {
721                                 remappedelement[0] = vertexremap[element[0]];
722                                 remappedelement[2] = vertexremap[element[2]];
723                                 outelement3i[0] = remappedelement[0];
724                                 outelement3i[1] = remappedelement[2];
725                                 outelement3i[2] = remappedelement[2] + 1;
726                                 outelement3i[3] = remappedelement[0];
727                                 outelement3i[4] = remappedelement[2] + 1;
728                                 outelement3i[5] = remappedelement[0] + 1;
729
730                                 outelement3i += 6;
731                                 outtriangles += 2;
732                         }
733                 }
734         }
735         else
736         {
737                 for (i = 0;i < numshadowmarktris;i++)
738                 {
739                         int remappedelement[3];
740                         int markindex;
741                         const int *neighbortriangle;
742
743                         markindex = shadowmarktris[i] * 3;
744                         element = inelement3i + markindex;
745                         neighbortriangle = inneighbor3i + markindex;
746                         // output the front and back triangles
747                         outelement3i[0] = vertexremap[element[2]];
748                         outelement3i[1] = vertexremap[element[1]];
749                         outelement3i[2] = vertexremap[element[0]];
750                         outelement3i[3] = vertexremap[element[0]] + 1;
751                         outelement3i[4] = vertexremap[element[1]] + 1;
752                         outelement3i[5] = vertexremap[element[2]] + 1;
753
754                         outelement3i += 6;
755                         outtriangles += 2;
756                         // output the sides (facing outward from this triangle)
757                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
758                         {
759                                 remappedelement[0] = vertexremap[element[0]];
760                                 remappedelement[1] = vertexremap[element[1]];
761                                 outelement3i[0] = remappedelement[0];
762                                 outelement3i[1] = remappedelement[1];
763                                 outelement3i[2] = remappedelement[1] + 1;
764                                 outelement3i[3] = remappedelement[0];
765                                 outelement3i[4] = remappedelement[1] + 1;
766                                 outelement3i[5] = remappedelement[0] + 1;
767
768                                 outelement3i += 6;
769                                 outtriangles += 2;
770                         }
771                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
772                         {
773                                 remappedelement[1] = vertexremap[element[1]];
774                                 remappedelement[2] = vertexremap[element[2]];
775                                 outelement3i[0] = remappedelement[1];
776                                 outelement3i[1] = remappedelement[2];
777                                 outelement3i[2] = remappedelement[2] + 1;
778                                 outelement3i[3] = remappedelement[1];
779                                 outelement3i[4] = remappedelement[2] + 1;
780                                 outelement3i[5] = remappedelement[1] + 1;
781
782                                 outelement3i += 6;
783                                 outtriangles += 2;
784                         }
785                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
786                         {
787                                 remappedelement[0] = vertexremap[element[0]];
788                                 remappedelement[2] = vertexremap[element[2]];
789                                 outelement3i[0] = remappedelement[2];
790                                 outelement3i[1] = remappedelement[0];
791                                 outelement3i[2] = remappedelement[0] + 1;
792                                 outelement3i[3] = remappedelement[2];
793                                 outelement3i[4] = remappedelement[0] + 1;
794                                 outelement3i[5] = remappedelement[2] + 1;
795
796                                 outelement3i += 6;
797                                 outtriangles += 2;
798                         }
799                 }
800         }
801         if (outnumvertices)
802                 *outnumvertices = outvertices;
803         return outtriangles;
804 }
805
806 void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, const vec3_t projectdirection, float projectdistance, int nummarktris, const int *marktris)
807 {
808         int tris, outverts;
809         if (projectdistance < 0.1)
810         {
811                 Con_Printf("R_Shadow_Volume: projectdistance %f\n", projectdistance);
812                 return;
813         }
814         if (!numverts || !nummarktris)
815                 return;
816         // make sure shadowelements is big enough for this volume
817         if (maxshadowtriangles < nummarktris || maxshadowvertices < numverts)
818                 R_Shadow_ResizeShadowArrays((numverts + 255) & ~255, (nummarktris + 255) & ~255);
819         tris = R_Shadow_ConstructShadowVolume(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
820         r_refdef.stats.lights_dynamicshadowtriangles += tris;
821         R_Shadow_RenderVolume(outverts, tris, shadowvertex3f, shadowelements);
822 }
823
824 void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
825 {
826         int t, tend;
827         const int *e;
828         const float *v[3];
829         float normal[3];
830         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
831                 return;
832         tend = firsttriangle + numtris;
833         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
834         {
835                 // surface box entirely inside light box, no box cull
836                 if (projectdirection)
837                 {
838                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
839                         {
840                                 TriangleNormal(invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3, normal);
841                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
842                                         shadowmarklist[numshadowmark++] = t;
843                         }
844                 }
845                 else
846                 {
847                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
848                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
849                                         shadowmarklist[numshadowmark++] = t;
850                 }
851         }
852         else
853         {
854                 // surface box not entirely inside light box, cull each triangle
855                 if (projectdirection)
856                 {
857                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
858                         {
859                                 v[0] = invertex3f + e[0] * 3;
860                                 v[1] = invertex3f + e[1] * 3;
861                                 v[2] = invertex3f + e[2] * 3;
862                                 TriangleNormal(v[0], v[1], v[2], normal);
863                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
864                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
865                                         shadowmarklist[numshadowmark++] = t;
866                         }
867                 }
868                 else
869                 {
870                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
871                         {
872                                 v[0] = invertex3f + e[0] * 3;
873                                 v[1] = invertex3f + e[1] * 3;
874                                 v[2] = invertex3f + e[2] * 3;
875                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
876                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
877                                         shadowmarklist[numshadowmark++] = t;
878                         }
879                 }
880         }
881 }
882
883 void R_Shadow_RenderVolume(int numvertices, int numtriangles, const float *vertex3f, const int *element3i)
884 {
885         if (r_shadow_compilingrtlight)
886         {
887                 // if we're compiling an rtlight, capture the mesh
888                 Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, numtriangles, element3i);
889                 return;
890         }
891         r_refdef.stats.lights_shadowtriangles += numtriangles;
892         CHECKGLERROR
893         R_Mesh_VertexPointer(vertex3f, 0, 0);
894         GL_LockArrays(0, numvertices);
895         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
896         {
897                 // decrement stencil if backface is behind depthbuffer
898                 GL_CullFace(GL_BACK); // quake is backwards, this culls front faces
899                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
900                 R_Mesh_Draw(0, numvertices, numtriangles, element3i, 0, 0);
901                 // increment stencil if frontface is behind depthbuffer
902                 GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
903                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
904         }
905         R_Mesh_Draw(0, numvertices, numtriangles, element3i, 0, 0);
906         GL_LockArrays(0, 0);
907         CHECKGLERROR
908 }
909
910 static unsigned char R_Shadow_MakeTextures_SamplePoint(float x, float y, float z)
911 {
912         float dist = sqrt(x*x+y*y+z*z);
913         float intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
914         return (unsigned char)bound(0, intensity * 256.0f, 255);
915 }
916
917 static void R_Shadow_MakeTextures(void)
918 {
919         int x, y, z;
920         float intensity, dist;
921         unsigned char *data;
922         unsigned int palette[256];
923         R_FreeTexturePool(&r_shadow_texturepool);
924         r_shadow_texturepool = R_AllocTexturePool();
925         r_shadow_attenlinearscale = r_shadow_lightattenuationlinearscale.value;
926         r_shadow_attendividebias = r_shadow_lightattenuationdividebias.value;
927         // note this code could suffer byte order issues except that it is multiplying by an integer that reads the same both ways
928         for (x = 0;x < 256;x++)
929                 palette[x] = x * 0x01010101;
930         data = (unsigned char *)Mem_Alloc(tempmempool, max(max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE, ATTEN2DSIZE*ATTEN2DSIZE), ATTEN1DSIZE));
931         // the table includes one additional value to avoid the need to clamp indexing due to minor math errors
932         for (x = 0;x <= ATTENTABLESIZE;x++)
933         {
934                 dist = (x + 0.5f) * (1.0f / ATTENTABLESIZE) * (1.0f / 0.9375);
935                 intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
936                 r_shadow_attentable[x] = bound(0, intensity, 1);
937         }
938         // 1D gradient texture
939         for (x = 0;x < ATTEN1DSIZE;x++)
940                 data[x] = R_Shadow_MakeTextures_SamplePoint((x + 0.5f) * (1.0f / ATTEN1DSIZE) * (1.0f / 0.9375), 0, 0);
941         r_shadow_attenuationgradienttexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation1d", ATTEN1DSIZE, 1, data, TEXTYPE_PALETTE, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, palette);
942         // 2D circle texture
943         for (y = 0;y < ATTEN2DSIZE;y++)
944                 for (x = 0;x < ATTEN2DSIZE;x++)
945                         data[y*ATTEN2DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), 0);
946         r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, data, TEXTYPE_PALETTE, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, palette);
947         // 3D sphere texture
948         if (r_shadow_texture3d.integer && gl_texture3d)
949         {
950                 for (z = 0;z < ATTEN3DSIZE;z++)
951                         for (y = 0;y < ATTEN3DSIZE;y++)
952                                 for (x = 0;x < ATTEN3DSIZE;x++)
953                                         data[(z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375));
954                 r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, data, TEXTYPE_PALETTE, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, palette);
955         }
956         else
957                 r_shadow_attenuation3dtexture = NULL;
958         Mem_Free(data);
959 }
960
961 void R_Shadow_ValidateCvars(void)
962 {
963         if (r_shadow_texture3d.integer && !gl_texture3d)
964                 Cvar_SetValueQuick(&r_shadow_texture3d, 0);
965         if (gl_ext_separatestencil.integer && !gl_support_separatestencil)
966                 Cvar_SetValueQuick(&gl_ext_separatestencil, 0);
967         if (gl_ext_stenciltwoside.integer && !gl_support_stenciltwoside)
968                 Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
969 }
970
971 void R_Shadow_RenderMode_Begin(void)
972 {
973         R_Shadow_ValidateCvars();
974
975         if (!r_shadow_attenuation2dtexture
976          || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
977          || r_shadow_lightattenuationdividebias.value != r_shadow_attendividebias
978          || r_shadow_lightattenuationlinearscale.value != r_shadow_attenlinearscale)
979                 R_Shadow_MakeTextures();
980
981         CHECKGLERROR
982         R_Mesh_ColorPointer(NULL, 0, 0);
983         R_Mesh_ResetTextureState();
984         GL_BlendFunc(GL_ONE, GL_ZERO);
985         GL_DepthRange(0, 1);
986         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
987         GL_DepthTest(true);
988         GL_DepthMask(false);
989         GL_Color(0, 0, 0, 1);
990         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
991
992         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
993
994         if (gl_ext_separatestencil.integer)
995                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_SEPARATESTENCIL;
996         else if (gl_ext_stenciltwoside.integer)
997                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCILTWOSIDE;
998         else
999                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCIL;
1000
1001         if (r_glsl.integer && gl_support_fragment_shader)
1002                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
1003         else if (gl_dot3arb && gl_texturecubemap && r_textureunits.integer >= 2 && gl_combine.integer && gl_stencil)
1004                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_DOT3;
1005         else
1006                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
1007 }
1008
1009 void R_Shadow_RenderMode_ActiveLight(rtlight_t *rtlight)
1010 {
1011         rsurface.rtlight = rtlight;
1012 }
1013
1014 void R_Shadow_RenderMode_Reset(void)
1015 {
1016         CHECKGLERROR
1017         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1018         {
1019                 qglUseProgramObjectARB(0);CHECKGLERROR
1020         }
1021         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1022         {
1023                 qglDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
1024         }
1025         R_Mesh_ColorPointer(NULL, 0, 0);
1026         R_Mesh_ResetTextureState();
1027         GL_DepthRange(0, 1);
1028         GL_DepthTest(true);
1029         GL_DepthMask(false);
1030         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
1031         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);CHECKGLERROR
1032         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
1033         qglStencilMask(~0);CHECKGLERROR
1034         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
1035         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
1036         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
1037         GL_Color(1, 1, 1, 1);
1038         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
1039         GL_BlendFunc(GL_ONE, GL_ZERO);
1040 }
1041
1042 void R_Shadow_RenderMode_StencilShadowVolumes(qboolean clearstencil)
1043 {
1044         CHECKGLERROR
1045         R_Shadow_RenderMode_Reset();
1046         GL_ColorMask(0, 0, 0, 0);
1047         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
1048         qglDepthFunc(GL_LESS);CHECKGLERROR
1049         qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1050         r_shadow_rendermode = r_shadow_shadowingrendermode;
1051         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_SEPARATESTENCIL)
1052         {
1053                 GL_CullFace(GL_NONE);
1054                 qglStencilOpSeparate(GL_BACK, GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR // quake is backwards, this is front faces
1055                 qglStencilOpSeparate(GL_FRONT, GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR // quake is backwards, this is back faces
1056         }
1057         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1058         {
1059                 GL_CullFace(GL_NONE);
1060                 qglEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
1061                 qglActiveStencilFaceEXT(GL_BACK);CHECKGLERROR // quake is backwards, this is front faces
1062                 qglStencilMask(~0);CHECKGLERROR
1063                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
1064                 qglActiveStencilFaceEXT(GL_FRONT);CHECKGLERROR // quake is backwards, this is back faces
1065                 qglStencilMask(~0);CHECKGLERROR
1066                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
1067         }
1068         if (clearstencil)
1069                 GL_Clear(GL_STENCIL_BUFFER_BIT);
1070         r_refdef.stats.lights_clears++;
1071 }
1072
1073 void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent)
1074 {
1075         CHECKGLERROR
1076         R_Shadow_RenderMode_Reset();
1077         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1078         if (!transparent)
1079         {
1080                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1081         }
1082         if (stenciltest)
1083         {
1084                 qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1085                 // only draw light where this geometry was already rendered AND the
1086                 // stencil is 128 (values other than this mean shadow)
1087                 qglStencilFunc(GL_EQUAL, 128, ~0);CHECKGLERROR
1088         }
1089         r_shadow_rendermode = r_shadow_lightingrendermode;
1090         // do global setup needed for the chosen lighting mode
1091         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1092         {
1093                 R_Mesh_TexBind(0, R_GetTexture(r_texture_blanknormalmap)); // normal
1094                 R_Mesh_TexBind(1, R_GetTexture(r_texture_white)); // diffuse
1095                 R_Mesh_TexBind(2, R_GetTexture(r_texture_white)); // gloss
1096                 R_Mesh_TexBindCubeMap(3, R_GetTexture(rsurface.rtlight->currentcubemap)); // light filter
1097                 R_Mesh_TexBind(4, R_GetTexture(r_texture_fogattenuation)); // fog
1098                 R_Mesh_TexBind(5, R_GetTexture(r_texture_white)); // pants
1099                 R_Mesh_TexBind(6, R_GetTexture(r_texture_white)); // shirt
1100                 R_Mesh_TexBind(7, R_GetTexture(r_texture_white)); // lightmap
1101                 R_Mesh_TexBind(8, R_GetTexture(r_texture_blanknormalmap)); // deluxemap
1102                 R_Mesh_TexBind(9, R_GetTexture(r_texture_black)); // glow
1103                 //R_Mesh_TexMatrix(3, rsurface.entitytolight); // light filter matrix
1104                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1105                 GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 0);
1106                 CHECKGLERROR
1107         }
1108 }
1109
1110 void R_Shadow_RenderMode_VisibleShadowVolumes(void)
1111 {
1112         CHECKGLERROR
1113         R_Shadow_RenderMode_Reset();
1114         GL_BlendFunc(GL_ONE, GL_ONE);
1115         GL_DepthRange(0, 1);
1116         GL_DepthTest(r_showshadowvolumes.integer < 2);
1117         GL_Color(0.0, 0.0125 * r_view.colorscale, 0.1 * r_view.colorscale, 1);
1118         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
1119         GL_CullFace(GL_NONE);
1120         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
1121 }
1122
1123 void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
1124 {
1125         CHECKGLERROR
1126         R_Shadow_RenderMode_Reset();
1127         GL_BlendFunc(GL_ONE, GL_ONE);
1128         GL_DepthRange(0, 1);
1129         GL_DepthTest(r_showlighting.integer < 2);
1130         GL_Color(0.1 * r_view.colorscale, 0.0125 * r_view.colorscale, 0, 1);
1131         if (!transparent)
1132         {
1133                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1134         }
1135         if (stenciltest)
1136         {
1137                 qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1138                 qglStencilFunc(GL_EQUAL, 128, ~0);CHECKGLERROR
1139         }
1140         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
1141 }
1142
1143 void R_Shadow_RenderMode_End(void)
1144 {
1145         CHECKGLERROR
1146         R_Shadow_RenderMode_Reset();
1147         R_Shadow_RenderMode_ActiveLight(NULL);
1148         GL_DepthMask(true);
1149         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
1150         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1151 }
1152
1153 qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
1154 {
1155         int i, ix1, iy1, ix2, iy2;
1156         float x1, y1, x2, y2;
1157         vec4_t v, v2;
1158         rmesh_t mesh;
1159         mplane_t planes[11];
1160         float vertex3f[256*3];
1161
1162         // if view is inside the light box, just say yes it's visible
1163         if (BoxesOverlap(r_view.origin, r_view.origin, mins, maxs))
1164         {
1165                 GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
1166                 return false;
1167         }
1168
1169         // create a temporary brush describing the area the light can affect in worldspace
1170         VectorNegate(r_view.frustum[0].normal, planes[ 0].normal);planes[ 0].dist = -r_view.frustum[0].dist;
1171         VectorNegate(r_view.frustum[1].normal, planes[ 1].normal);planes[ 1].dist = -r_view.frustum[1].dist;
1172         VectorNegate(r_view.frustum[2].normal, planes[ 2].normal);planes[ 2].dist = -r_view.frustum[2].dist;
1173         VectorNegate(r_view.frustum[3].normal, planes[ 3].normal);planes[ 3].dist = -r_view.frustum[3].dist;
1174         VectorNegate(r_view.frustum[4].normal, planes[ 4].normal);planes[ 4].dist = -r_view.frustum[4].dist;
1175         VectorSet   (planes[ 5].normal,  1, 0, 0);         planes[ 5].dist =  maxs[0];
1176         VectorSet   (planes[ 6].normal, -1, 0, 0);         planes[ 6].dist = -mins[0];
1177         VectorSet   (planes[ 7].normal, 0,  1, 0);         planes[ 7].dist =  maxs[1];
1178         VectorSet   (planes[ 8].normal, 0, -1, 0);         planes[ 8].dist = -mins[1];
1179         VectorSet   (planes[ 9].normal, 0, 0,  1);         planes[ 9].dist =  maxs[2];
1180         VectorSet   (planes[10].normal, 0, 0, -1);         planes[10].dist = -mins[2];
1181
1182         // turn the brush into a mesh
1183         memset(&mesh, 0, sizeof(rmesh_t));
1184         mesh.maxvertices = 256;
1185         mesh.vertex3f = vertex3f;
1186         mesh.epsilon2 = (1.0f / (32.0f * 32.0f));
1187         R_Mesh_AddBrushMeshFromPlanes(&mesh, 11, planes);
1188
1189         // if that mesh is empty, the light is not visible at all
1190         if (!mesh.numvertices)
1191                 return true;
1192
1193         if (!r_shadow_scissor.integer)
1194                 return false;
1195
1196         // if that mesh is not empty, check what area of the screen it covers
1197         x1 = y1 = x2 = y2 = 0;
1198         v[3] = 1.0f;
1199         //Con_Printf("%i vertices to transform...\n", mesh.numvertices);
1200         for (i = 0;i < mesh.numvertices;i++)
1201         {
1202                 VectorCopy(mesh.vertex3f + i * 3, v);
1203                 GL_TransformToScreen(v, v2);
1204                 //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
1205                 if (i)
1206                 {
1207                         if (x1 > v2[0]) x1 = v2[0];
1208                         if (x2 < v2[0]) x2 = v2[0];
1209                         if (y1 > v2[1]) y1 = v2[1];
1210                         if (y2 < v2[1]) y2 = v2[1];
1211                 }
1212                 else
1213                 {
1214                         x1 = x2 = v2[0];
1215                         y1 = y2 = v2[1];
1216                 }
1217         }
1218
1219         // now convert the scissor rectangle to integer screen coordinates
1220         ix1 = (int)(x1 - 1.0f);
1221         iy1 = (int)(y1 - 1.0f);
1222         ix2 = (int)(x2 + 1.0f);
1223         iy2 = (int)(y2 + 1.0f);
1224         //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2);
1225
1226         // clamp it to the screen
1227         if (ix1 < r_view.x) ix1 = r_view.x;
1228         if (iy1 < r_view.y) iy1 = r_view.y;
1229         if (ix2 > r_view.x + r_view.width) ix2 = r_view.x + r_view.width;
1230         if (iy2 > r_view.y + r_view.height) iy2 = r_view.y + r_view.height;
1231
1232         // if it is inside out, it's not visible
1233         if (ix2 <= ix1 || iy2 <= iy1)
1234                 return true;
1235
1236         // the light area is visible, set up the scissor rectangle
1237         GL_Scissor(ix1, iy1, ix2 - ix1, iy2 - iy1);
1238         //qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1);CHECKGLERROR
1239         //qglEnable(GL_SCISSOR_TEST);CHECKGLERROR
1240         r_refdef.stats.lights_scissored++;
1241         return false;
1242 }
1243
1244 static void R_Shadow_RenderLighting_Light_Vertex_Shading(int firstvertex, int numverts, int numtriangles, const int *element3i, const float *diffusecolor, const float *ambientcolor)
1245 {
1246         float *vertex3f = rsurface.vertex3f + 3 * firstvertex;
1247         float *normal3f = rsurface.normal3f + 3 * firstvertex;
1248         float *color4f = rsurface.array_color4f + 4 * firstvertex;
1249         float dist, dot, distintensity, shadeintensity, v[3], n[3];
1250         if (r_textureunits.integer >= 3)
1251         {
1252                 if (VectorLength2(diffusecolor) > 0)
1253                 {
1254                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1255                         {
1256                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1257                                 Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1258                                 if ((dot = DotProduct(n, v)) < 0)
1259                                 {
1260                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1261                                         VectorMA(ambientcolor, shadeintensity, diffusecolor, color4f);
1262                                 }
1263                                 else
1264                                         VectorCopy(ambientcolor, color4f);
1265                                 if (r_refdef.fogenabled)
1266                                 {
1267                                         float f;
1268                                         f = FogPoint_Model(vertex3f);
1269                                         VectorScale(color4f, f, color4f);
1270                                 }
1271                                 color4f[3] = 1;
1272                         }
1273                 }
1274                 else
1275                 {
1276                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1277                         {
1278                                 VectorCopy(ambientcolor, color4f);
1279                                 if (r_refdef.fogenabled)
1280                                 {
1281                                         float f;
1282                                         Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1283                                         f = FogPoint_Model(vertex3f);
1284                                         VectorScale(color4f, f, color4f);
1285                                 }
1286                                 color4f[3] = 1;
1287                         }
1288                 }
1289         }
1290         else if (r_textureunits.integer >= 2)
1291         {
1292                 if (VectorLength2(diffusecolor) > 0)
1293                 {
1294                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1295                         {
1296                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1297                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1298                                 {
1299                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1300                                         if ((dot = DotProduct(n, v)) < 0)
1301                                         {
1302                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1303                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1304                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1305                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1306                                         }
1307                                         else
1308                                         {
1309                                                 color4f[0] = ambientcolor[0] * distintensity;
1310                                                 color4f[1] = ambientcolor[1] * distintensity;
1311                                                 color4f[2] = ambientcolor[2] * distintensity;
1312                                         }
1313                                         if (r_refdef.fogenabled)
1314                                         {
1315                                                 float f;
1316                                                 f = FogPoint_Model(vertex3f);
1317                                                 VectorScale(color4f, f, color4f);
1318                                         }
1319                                 }
1320                                 else
1321                                         VectorClear(color4f);
1322                                 color4f[3] = 1;
1323                         }
1324                 }
1325                 else
1326                 {
1327                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1328                         {
1329                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1330                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1331                                 {
1332                                         color4f[0] = ambientcolor[0] * distintensity;
1333                                         color4f[1] = ambientcolor[1] * distintensity;
1334                                         color4f[2] = ambientcolor[2] * distintensity;
1335                                         if (r_refdef.fogenabled)
1336                                         {
1337                                                 float f;
1338                                                 f = FogPoint_Model(vertex3f);
1339                                                 VectorScale(color4f, f, color4f);
1340                                         }
1341                                 }
1342                                 else
1343                                         VectorClear(color4f);
1344                                 color4f[3] = 1;
1345                         }
1346                 }
1347         }
1348         else
1349         {
1350                 if (VectorLength2(diffusecolor) > 0)
1351                 {
1352                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1353                         {
1354                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1355                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1356                                 {
1357                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
1358                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1359                                         if ((dot = DotProduct(n, v)) < 0)
1360                                         {
1361                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1362                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1363                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1364                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1365                                         }
1366                                         else
1367                                         {
1368                                                 color4f[0] = ambientcolor[0] * distintensity;
1369                                                 color4f[1] = ambientcolor[1] * distintensity;
1370                                                 color4f[2] = ambientcolor[2] * distintensity;
1371                                         }
1372                                         if (r_refdef.fogenabled)
1373                                         {
1374                                                 float f;
1375                                                 f = FogPoint_Model(vertex3f);
1376                                                 VectorScale(color4f, f, color4f);
1377                                         }
1378                                 }
1379                                 else
1380                                         VectorClear(color4f);
1381                                 color4f[3] = 1;
1382                         }
1383                 }
1384                 else
1385                 {
1386                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1387                         {
1388                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1389                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1390                                 {
1391                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
1392                                         color4f[0] = ambientcolor[0] * distintensity;
1393                                         color4f[1] = ambientcolor[1] * distintensity;
1394                                         color4f[2] = ambientcolor[2] * distintensity;
1395                                         if (r_refdef.fogenabled)
1396                                         {
1397                                                 float f;
1398                                                 f = FogPoint_Model(vertex3f);
1399                                                 VectorScale(color4f, f, color4f);
1400                                         }
1401                                 }
1402                                 else
1403                                         VectorClear(color4f);
1404                                 color4f[3] = 1;
1405                         }
1406                 }
1407         }
1408 }
1409
1410 // TODO: use glTexGen instead of feeding vertices to texcoordpointer?
1411
1412 static void R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(int firstvertex, int numvertices, int numtriangles, const int *element3i)
1413 {
1414         int i;
1415         float       *out3f     = rsurface.array_texcoord3f + 3 * firstvertex;
1416         const float *vertex3f  = rsurface.vertex3f         + 3 * firstvertex;
1417         const float *svector3f = rsurface.svector3f        + 3 * firstvertex;
1418         const float *tvector3f = rsurface.tvector3f        + 3 * firstvertex;
1419         const float *normal3f  = rsurface.normal3f         + 3 * firstvertex;
1420         float lightdir[3];
1421         for (i = 0;i < numvertices;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1422         {
1423                 VectorSubtract(rsurface.entitylightorigin, vertex3f, lightdir);
1424                 // the cubemap normalizes this for us
1425                 out3f[0] = DotProduct(svector3f, lightdir);
1426                 out3f[1] = DotProduct(tvector3f, lightdir);
1427                 out3f[2] = DotProduct(normal3f, lightdir);
1428         }
1429 }
1430
1431 static void R_Shadow_GenTexCoords_Specular_NormalCubeMap(int firstvertex, int numvertices, int numtriangles, const int *element3i)
1432 {
1433         int i;
1434         float       *out3f     = rsurface.array_texcoord3f + 3 * firstvertex;
1435         const float *vertex3f  = rsurface.vertex3f         + 3 * firstvertex;
1436         const float *svector3f = rsurface.svector3f        + 3 * firstvertex;
1437         const float *tvector3f = rsurface.tvector3f        + 3 * firstvertex;
1438         const float *normal3f  = rsurface.normal3f         + 3 * firstvertex;
1439         float lightdir[3], eyedir[3], halfdir[3];
1440         for (i = 0;i < numvertices;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1441         {
1442                 VectorSubtract(rsurface.entitylightorigin, vertex3f, lightdir);
1443                 VectorNormalize(lightdir);
1444                 VectorSubtract(rsurface.modelorg, vertex3f, eyedir);
1445                 VectorNormalize(eyedir);
1446                 VectorAdd(lightdir, eyedir, halfdir);
1447                 // the cubemap normalizes this for us
1448                 out3f[0] = DotProduct(svector3f, halfdir);
1449                 out3f[1] = DotProduct(tvector3f, halfdir);
1450                 out3f[2] = DotProduct(normal3f, halfdir);
1451         }
1452 }
1453
1454 static void R_Shadow_RenderLighting_VisibleLighting(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
1455 {
1456         // used to display how many times a surface is lit for level design purposes
1457         GL_Color(0.1 * r_view.colorscale, 0.025 * r_view.colorscale, 0, 1);
1458         R_Mesh_ColorPointer(NULL, 0, 0);
1459         R_Mesh_ResetTextureState();
1460         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1461 }
1462
1463 static void R_Shadow_RenderLighting_Light_GLSL(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
1464 {
1465         // ARB2 GLSL shader path (GFFX5200, Radeon 9500)
1466         R_SetupSurfaceShader(lightcolorbase, false, ambientscale, diffusescale, specularscale);
1467         R_Mesh_TexCoordPointer(0, 2, rsurface.texcoordtexture2f, rsurface.texcoordtexture2f_bufferobject, rsurface.texcoordtexture2f_bufferoffset);
1468         R_Mesh_TexCoordPointer(1, 3, rsurface.svector3f, rsurface.svector3f_bufferobject, rsurface.svector3f_bufferoffset);
1469         R_Mesh_TexCoordPointer(2, 3, rsurface.tvector3f, rsurface.tvector3f_bufferobject, rsurface.tvector3f_bufferoffset);
1470         R_Mesh_TexCoordPointer(3, 3, rsurface.normal3f, rsurface.normal3f_bufferobject, rsurface.normal3f_bufferoffset);
1471         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1472         {
1473                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1474         }
1475         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1476         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1477         {
1478                 qglDepthFunc(GL_LEQUAL);CHECKGLERROR
1479         }
1480 }
1481
1482 static void R_Shadow_RenderLighting_Light_Dot3_Finalize(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, float r, float g, float b)
1483 {
1484         // shared final code for all the dot3 layers
1485         int renders;
1486         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 0);
1487         for (renders = 0;renders < 64 && (r > 0 || g > 0 || b > 0);renders++, r--, g--, b--)
1488         {
1489                 GL_Color(bound(0, r, 1), bound(0, g, 1), bound(0, b, 1), 1);
1490                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1491         }
1492 }
1493
1494 static void R_Shadow_RenderLighting_Light_Dot3_AmbientPass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *basetexture, float colorscale)
1495 {
1496         rmeshstate_t m;
1497         // colorscale accounts for how much we multiply the brightness
1498         // during combine.
1499         //
1500         // mult is how many times the final pass of the lighting will be
1501         // performed to get more brightness than otherwise possible.
1502         //
1503         // Limit mult to 64 for sanity sake.
1504         GL_Color(1,1,1,1);
1505         if (r_shadow_texture3d.integer && rsurface.rtlight->currentcubemap != r_texture_whitecube && r_textureunits.integer >= 4)
1506         {
1507                 // 3 3D combine path (Geforce3, Radeon 8500)
1508                 memset(&m, 0, sizeof(m));
1509                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1510                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1511                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1512                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1513                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1514                 m.tex[1] = R_GetTexture(basetexture);
1515                 m.pointer_texcoord[1] = rsurface.texcoordtexture2f;
1516                 m.pointer_texcoord_bufferobject[1] = rsurface.texcoordtexture2f_bufferobject;
1517                 m.pointer_texcoord_bufferoffset[1] = rsurface.texcoordtexture2f_bufferoffset;
1518                 m.texmatrix[1] = rsurface.texture->currenttexmatrix;
1519                 m.texcubemap[2] = R_GetTexture(rsurface.rtlight->currentcubemap);
1520                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1521                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1522                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1523                 m.texmatrix[2] = rsurface.entitytolight;
1524                 GL_BlendFunc(GL_ONE, GL_ONE);
1525         }
1526         else if (r_shadow_texture3d.integer && rsurface.rtlight->currentcubemap == r_texture_whitecube && r_textureunits.integer >= 2)
1527         {
1528                 // 2 3D combine path (Geforce3, original Radeon)
1529                 memset(&m, 0, sizeof(m));
1530                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1531                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1532                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1533                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1534                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1535                 m.tex[1] = R_GetTexture(basetexture);
1536                 m.pointer_texcoord[1] = rsurface.texcoordtexture2f;
1537                 m.pointer_texcoord_bufferobject[1] = rsurface.texcoordtexture2f_bufferobject;
1538                 m.pointer_texcoord_bufferoffset[1] = rsurface.texcoordtexture2f_bufferoffset;
1539                 m.texmatrix[1] = rsurface.texture->currenttexmatrix;
1540                 GL_BlendFunc(GL_ONE, GL_ONE);
1541         }
1542         else if (r_textureunits.integer >= 4 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1543         {
1544                 // 4 2D combine path (Geforce3, Radeon 8500)
1545                 memset(&m, 0, sizeof(m));
1546                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1547                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1548                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1549                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1550                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1551                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1552                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1553                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1554                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1555                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1556                 m.tex[2] = R_GetTexture(basetexture);
1557                 m.pointer_texcoord[2] = rsurface.texcoordtexture2f;
1558                 m.pointer_texcoord_bufferobject[2] = rsurface.texcoordtexture2f_bufferobject;
1559                 m.pointer_texcoord_bufferoffset[2] = rsurface.texcoordtexture2f_bufferoffset;
1560                 m.texmatrix[2] = rsurface.texture->currenttexmatrix;
1561                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1562                 {
1563                         m.texcubemap[3] = R_GetTexture(rsurface.rtlight->currentcubemap);
1564                         m.pointer_texcoord3f[3] = rsurface.vertex3f;
1565                         m.pointer_texcoord_bufferobject[3] = rsurface.vertex3f_bufferobject;
1566                         m.pointer_texcoord_bufferoffset[3] = rsurface.vertex3f_bufferoffset;
1567                         m.texmatrix[3] = rsurface.entitytolight;
1568                 }
1569                 GL_BlendFunc(GL_ONE, GL_ONE);
1570         }
1571         else if (r_textureunits.integer >= 3 && rsurface.rtlight->currentcubemap == r_texture_whitecube)
1572         {
1573                 // 3 2D combine path (Geforce3, original Radeon)
1574                 memset(&m, 0, sizeof(m));
1575                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1576                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1577                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1578                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1579                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1580                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1581                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1582                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1583                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1584                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1585                 m.tex[2] = R_GetTexture(basetexture);
1586                 m.pointer_texcoord[2] = rsurface.texcoordtexture2f;
1587                 m.pointer_texcoord_bufferobject[2] = rsurface.texcoordtexture2f_bufferobject;
1588                 m.pointer_texcoord_bufferoffset[2] = rsurface.texcoordtexture2f_bufferoffset;
1589                 m.texmatrix[2] = rsurface.texture->currenttexmatrix;
1590                 GL_BlendFunc(GL_ONE, GL_ONE);
1591         }
1592         else
1593         {
1594                 // 2/2/2 2D combine path (any dot3 card)
1595                 memset(&m, 0, sizeof(m));
1596                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1597                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1598                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1599                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1600                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1601                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1602                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1603                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1604                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1605                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1606                 R_Mesh_TextureState(&m);
1607                 GL_ColorMask(0,0,0,1);
1608                 GL_BlendFunc(GL_ONE, GL_ZERO);
1609                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1610
1611                 // second pass
1612                 memset(&m, 0, sizeof(m));
1613                 m.tex[0] = R_GetTexture(basetexture);
1614                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1615                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1616                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1617                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1618                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1619                 {
1620                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1621                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1622                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1623                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1624                         m.texmatrix[1] = rsurface.entitytolight;
1625                 }
1626                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1627         }
1628         // this final code is shared
1629         R_Mesh_TextureState(&m);
1630         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
1631 }
1632
1633 static void R_Shadow_RenderLighting_Light_Dot3_DiffusePass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *basetexture, rtexture_t *normalmaptexture, float colorscale)
1634 {
1635         rmeshstate_t m;
1636         // colorscale accounts for how much we multiply the brightness
1637         // during combine.
1638         //
1639         // mult is how many times the final pass of the lighting will be
1640         // performed to get more brightness than otherwise possible.
1641         //
1642         // Limit mult to 64 for sanity sake.
1643         GL_Color(1,1,1,1);
1644         // generate normalization cubemap texcoords
1645         R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(firstvertex, numvertices, numtriangles, element3i);
1646         if (r_shadow_texture3d.integer && r_textureunits.integer >= 4)
1647         {
1648                 // 3/2 3D combine path (Geforce3, Radeon 8500)
1649                 memset(&m, 0, sizeof(m));
1650                 m.tex[0] = R_GetTexture(normalmaptexture);
1651                 m.texcombinergb[0] = GL_REPLACE;
1652                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1653                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1654                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1655                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1656                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1657                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1658                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1659                 m.pointer_texcoord_bufferobject[1] = 0;
1660                 m.pointer_texcoord_bufferoffset[1] = 0;
1661                 m.tex3d[2] = R_GetTexture(r_shadow_attenuation3dtexture);
1662                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1663                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1664                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1665                 m.texmatrix[2] = rsurface.entitytoattenuationxyz;
1666                 R_Mesh_TextureState(&m);
1667                 GL_ColorMask(0,0,0,1);
1668                 GL_BlendFunc(GL_ONE, GL_ZERO);
1669                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1670
1671                 // second pass
1672                 memset(&m, 0, sizeof(m));
1673                 m.tex[0] = R_GetTexture(basetexture);
1674                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1675                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1676                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1677                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1678                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1679                 {
1680                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1681                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1682                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1683                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1684                         m.texmatrix[1] = rsurface.entitytolight;
1685                 }
1686                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1687         }
1688         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1689         {
1690                 // 1/2/2 3D combine path (original Radeon)
1691                 memset(&m, 0, sizeof(m));
1692                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1693                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1694                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1695                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1696                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1697                 R_Mesh_TextureState(&m);
1698                 GL_ColorMask(0,0,0,1);
1699                 GL_BlendFunc(GL_ONE, GL_ZERO);
1700                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1701
1702                 // second pass
1703                 memset(&m, 0, sizeof(m));
1704                 m.tex[0] = R_GetTexture(normalmaptexture);
1705                 m.texcombinergb[0] = GL_REPLACE;
1706                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1707                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1708                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1709                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1710                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1711                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1712                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1713                 m.pointer_texcoord_bufferobject[1] = 0;
1714                 m.pointer_texcoord_bufferoffset[1] = 0;
1715                 R_Mesh_TextureState(&m);
1716                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1717                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1718
1719                 // second pass
1720                 memset(&m, 0, sizeof(m));
1721                 m.tex[0] = R_GetTexture(basetexture);
1722                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1723                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1724                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1725                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1726                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1727                 {
1728                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1729                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1730                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1731                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1732                         m.texmatrix[1] = rsurface.entitytolight;
1733                 }
1734                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1735         }
1736         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap == r_texture_whitecube)
1737         {
1738                 // 2/2 3D combine path (original Radeon)
1739                 memset(&m, 0, sizeof(m));
1740                 m.tex[0] = R_GetTexture(normalmaptexture);
1741                 m.texcombinergb[0] = GL_REPLACE;
1742                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1743                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1744                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1745                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1746                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1747                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1748                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1749                 m.pointer_texcoord_bufferobject[1] = 0;
1750                 m.pointer_texcoord_bufferoffset[1] = 0;
1751                 R_Mesh_TextureState(&m);
1752                 GL_ColorMask(0,0,0,1);
1753                 GL_BlendFunc(GL_ONE, GL_ZERO);
1754                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1755
1756                 // second pass
1757                 memset(&m, 0, sizeof(m));
1758                 m.tex[0] = R_GetTexture(basetexture);
1759                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1760                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1761                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1762                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1763                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
1764                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1765                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1766                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1767                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
1768                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1769         }
1770         else if (r_textureunits.integer >= 4)
1771         {
1772                 // 4/2 2D combine path (Geforce3, Radeon 8500)
1773                 memset(&m, 0, sizeof(m));
1774                 m.tex[0] = R_GetTexture(normalmaptexture);
1775                 m.texcombinergb[0] = GL_REPLACE;
1776                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1777                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1778                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1779                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1780                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1781                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1782                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1783                 m.pointer_texcoord_bufferobject[1] = 0;
1784                 m.pointer_texcoord_bufferoffset[1] = 0;
1785                 m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
1786                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1787                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1788                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1789                 m.texmatrix[2] = rsurface.entitytoattenuationxyz;
1790                 m.tex[3] = R_GetTexture(r_shadow_attenuation2dtexture);
1791                 m.pointer_texcoord3f[3] = rsurface.vertex3f;
1792                 m.pointer_texcoord_bufferobject[3] = rsurface.vertex3f_bufferobject;
1793                 m.pointer_texcoord_bufferoffset[3] = rsurface.vertex3f_bufferoffset;
1794                 m.texmatrix[3] = rsurface.entitytoattenuationz;
1795                 R_Mesh_TextureState(&m);
1796                 GL_ColorMask(0,0,0,1);
1797                 GL_BlendFunc(GL_ONE, GL_ZERO);
1798                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1799
1800                 // second pass
1801                 memset(&m, 0, sizeof(m));
1802                 m.tex[0] = R_GetTexture(basetexture);
1803                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1804                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1805                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1806                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1807                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1808                 {
1809                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1810                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1811                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1812                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1813                         m.texmatrix[1] = rsurface.entitytolight;
1814                 }
1815                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1816         }
1817         else
1818         {
1819                 // 2/2/2 2D combine path (any dot3 card)
1820                 memset(&m, 0, sizeof(m));
1821                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1822                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1823                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1824                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1825                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1826                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1827                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1828                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1829                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1830                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1831                 R_Mesh_TextureState(&m);
1832                 GL_ColorMask(0,0,0,1);
1833                 GL_BlendFunc(GL_ONE, GL_ZERO);
1834                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1835
1836                 // second pass
1837                 memset(&m, 0, sizeof(m));
1838                 m.tex[0] = R_GetTexture(normalmaptexture);
1839                 m.texcombinergb[0] = GL_REPLACE;
1840                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1841                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1842                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1843                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1844                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1845                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1846                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1847                 m.pointer_texcoord_bufferobject[1] = 0;
1848                 m.pointer_texcoord_bufferoffset[1] = 0;
1849                 R_Mesh_TextureState(&m);
1850                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1851                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1852
1853                 // second pass
1854                 memset(&m, 0, sizeof(m));
1855                 m.tex[0] = R_GetTexture(basetexture);
1856                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1857                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1858                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1859                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1860                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1861                 {
1862                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1863                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1864                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1865                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1866                         m.texmatrix[1] = rsurface.entitytolight;
1867                 }
1868                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1869         }
1870         // this final code is shared
1871         R_Mesh_TextureState(&m);
1872         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
1873 }
1874
1875 static void R_Shadow_RenderLighting_Light_Dot3_SpecularPass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *glosstexture, rtexture_t *normalmaptexture, float colorscale)
1876 {
1877         float glossexponent;
1878         rmeshstate_t m;
1879         // FIXME: detect blendsquare!
1880         //if (!gl_support_blendsquare)
1881         //      return;
1882         GL_Color(1,1,1,1);
1883         // generate normalization cubemap texcoords
1884         R_Shadow_GenTexCoords_Specular_NormalCubeMap(firstvertex, numvertices, numtriangles, element3i);
1885         if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1886         {
1887                 // 2/0/0/1/2 3D combine blendsquare path
1888                 memset(&m, 0, sizeof(m));
1889                 m.tex[0] = R_GetTexture(normalmaptexture);
1890                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1891                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1892                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1893                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1894                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1895                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1896                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1897                 m.pointer_texcoord_bufferobject[1] = 0;
1898                 m.pointer_texcoord_bufferoffset[1] = 0;
1899                 R_Mesh_TextureState(&m);
1900                 GL_ColorMask(0,0,0,1);
1901                 // this squares the result
1902                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
1903                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1904
1905                 // second and third pass
1906                 R_Mesh_ResetTextureState();
1907                 // square alpha in framebuffer a few times to make it shiny
1908                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
1909                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
1910                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1911
1912                 // fourth pass
1913                 memset(&m, 0, sizeof(m));
1914                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1915                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1916                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1917                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1918                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1919                 R_Mesh_TextureState(&m);
1920                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1921                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1922
1923                 // fifth pass
1924                 memset(&m, 0, sizeof(m));
1925                 m.tex[0] = R_GetTexture(glosstexture);
1926                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1927                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1928                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1929                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1930                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1931                 {
1932                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1933                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1934                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1935                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1936                         m.texmatrix[1] = rsurface.entitytolight;
1937                 }
1938                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1939         }
1940         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap == r_texture_whitecube /* && gl_support_blendsquare*/) // FIXME: detect blendsquare!
1941         {
1942                 // 2/0/0/2 3D combine blendsquare path
1943                 memset(&m, 0, sizeof(m));
1944                 m.tex[0] = R_GetTexture(normalmaptexture);
1945                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1946                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1947                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1948                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1949                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1950                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1951                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1952                 m.pointer_texcoord_bufferobject[1] = 0;
1953                 m.pointer_texcoord_bufferoffset[1] = 0;
1954                 R_Mesh_TextureState(&m);
1955                 GL_ColorMask(0,0,0,1);
1956                 // this squares the result
1957                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
1958                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1959
1960                 // second and third pass
1961                 R_Mesh_ResetTextureState();
1962                 // square alpha in framebuffer a few times to make it shiny
1963                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
1964                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
1965                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1966
1967                 // fourth pass
1968                 memset(&m, 0, sizeof(m));
1969                 m.tex[0] = R_GetTexture(glosstexture);
1970                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1971                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1972                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1973                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1974                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
1975                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1976                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1977                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1978                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
1979                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1980         }
1981         else
1982         {
1983                 // 2/0/0/2/2 2D combine blendsquare path
1984                 memset(&m, 0, sizeof(m));
1985                 m.tex[0] = R_GetTexture(normalmaptexture);
1986                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1987                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1988                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1989                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1990                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1991                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1992                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1993                 m.pointer_texcoord_bufferobject[1] = 0;
1994                 m.pointer_texcoord_bufferoffset[1] = 0;
1995                 R_Mesh_TextureState(&m);
1996                 GL_ColorMask(0,0,0,1);
1997                 // this squares the result
1998                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
1999                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2000
2001                 // second and third pass
2002                 R_Mesh_ResetTextureState();
2003                 // square alpha in framebuffer a few times to make it shiny
2004                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2005                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
2006                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2007
2008                 // fourth pass
2009                 memset(&m, 0, sizeof(m));
2010                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
2011                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
2012                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
2013                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
2014                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
2015                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2016                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
2017                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2018                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2019                 m.texmatrix[1] = rsurface.entitytoattenuationz;
2020                 R_Mesh_TextureState(&m);
2021                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
2022                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2023
2024                 // fifth pass
2025                 memset(&m, 0, sizeof(m));
2026                 m.tex[0] = R_GetTexture(glosstexture);
2027                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2028                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2029                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2030                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2031                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
2032                 {
2033                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
2034                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
2035                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2036                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2037                         m.texmatrix[1] = rsurface.entitytolight;
2038                 }
2039                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2040         }
2041         // this final code is shared
2042         R_Mesh_TextureState(&m);
2043         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
2044 }
2045
2046 static void R_Shadow_RenderLighting_Light_Dot3(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
2047 {
2048         // ARB path (any Geforce, any Radeon)
2049         qboolean doambient = ambientscale > 0;
2050         qboolean dodiffuse = diffusescale > 0;
2051         qboolean dospecular = specularscale > 0;
2052         if (!doambient && !dodiffuse && !dospecular)
2053                 return;
2054         R_Mesh_ColorPointer(NULL, 0, 0);
2055         if (doambient)
2056                 R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, basetexture, ambientscale * r_view.colorscale);
2057         if (dodiffuse)
2058                 R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, basetexture, normalmaptexture, diffusescale * r_view.colorscale);
2059         if (dopants)
2060         {
2061                 if (doambient)
2062                         R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorpants, pantstexture, ambientscale * r_view.colorscale);
2063                 if (dodiffuse)
2064                         R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorpants, pantstexture, normalmaptexture, diffusescale * r_view.colorscale);
2065         }
2066         if (doshirt)
2067         {
2068                 if (doambient)
2069                         R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorshirt, shirttexture, ambientscale * r_view.colorscale);
2070                 if (dodiffuse)
2071                         R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorshirt, shirttexture, normalmaptexture, diffusescale * r_view.colorscale);
2072         }
2073         if (dospecular)
2074                 R_Shadow_RenderLighting_Light_Dot3_SpecularPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, glosstexture, normalmaptexture, specularscale * r_view.colorscale);
2075 }
2076
2077 void R_Shadow_RenderLighting_Light_Vertex_Pass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, vec3_t diffusecolor2, vec3_t ambientcolor2)
2078 {
2079         int renders;
2080         int i;
2081         int stop;
2082         int newfirstvertex;
2083         int newlastvertex;
2084         int newnumtriangles;
2085         int *newe;
2086         const int *e;
2087         float *c;
2088         int newelements[4096*3];
2089         R_Shadow_RenderLighting_Light_Vertex_Shading(firstvertex, numvertices, numtriangles, element3i, diffusecolor2, ambientcolor2);
2090         for (renders = 0;renders < 64;renders++)
2091         {
2092                 stop = true;
2093                 newfirstvertex = 0;
2094                 newlastvertex = 0;
2095                 newnumtriangles = 0;
2096                 newe = newelements;
2097                 // due to low fillrate on the cards this vertex lighting path is
2098                 // designed for, we manually cull all triangles that do not
2099                 // contain a lit vertex
2100                 // this builds batches of triangles from multiple surfaces and
2101                 // renders them at once
2102                 for (i = 0, e = element3i;i < numtriangles;i++, e += 3)
2103                 {
2104                         if (VectorLength2(rsurface.array_color4f + e[0] * 4) + VectorLength2(rsurface.array_color4f + e[1] * 4) + VectorLength2(rsurface.array_color4f + e[2] * 4) >= 0.01)
2105                         {
2106                                 if (newnumtriangles)
2107                                 {
2108                                         newfirstvertex = min(newfirstvertex, e[0]);
2109                                         newlastvertex  = max(newlastvertex, e[0]);
2110                                 }
2111                                 else
2112                                 {
2113                                         newfirstvertex = e[0];
2114                                         newlastvertex = e[0];
2115                                 }
2116                                 newfirstvertex = min(newfirstvertex, e[1]);
2117                                 newlastvertex  = max(newlastvertex, e[1]);
2118                                 newfirstvertex = min(newfirstvertex, e[2]);
2119                                 newlastvertex  = max(newlastvertex, e[2]);
2120                                 newe[0] = e[0];
2121                                 newe[1] = e[1];
2122                                 newe[2] = e[2];
2123                                 newnumtriangles++;
2124                                 newe += 3;
2125                                 if (newnumtriangles >= (int)(sizeof(newelements)/sizeof(float[3])))
2126                                 {
2127                                         R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, newnumtriangles, newelements, 0, 0);
2128                                         newnumtriangles = 0;
2129                                         newe = newelements;
2130                                         stop = false;
2131                                 }
2132                         }
2133                 }
2134                 if (newnumtriangles >= 1)
2135                 {
2136                         // if all triangles are included, use the original array to take advantage of the bufferobject if possible
2137                         if (newnumtriangles == numtriangles)
2138                                 R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2139                         else
2140                                 R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, newnumtriangles, newelements, 0, 0);
2141                         stop = false;
2142                 }
2143                 // if we couldn't find any lit triangles, exit early
2144                 if (stop)
2145                         break;
2146                 // now reduce the intensity for the next overbright pass
2147                 // we have to clamp to 0 here incase the drivers have improper
2148                 // handling of negative colors
2149                 // (some old drivers even have improper handling of >1 color)
2150                 stop = true;
2151                 for (i = 0, c = rsurface.array_color4f + 4 * firstvertex;i < numvertices;i++, c += 4)
2152                 {
2153                         if (c[0] > 1 || c[1] > 1 || c[2] > 1)
2154                         {
2155                                 c[0] = max(0, c[0] - 1);
2156                                 c[1] = max(0, c[1] - 1);
2157                                 c[2] = max(0, c[2] - 1);
2158                                 stop = false;
2159                         }
2160                         else
2161                                 VectorClear(c);
2162                 }
2163                 // another check...
2164                 if (stop)
2165                         break;
2166         }
2167 }
2168
2169 static void R_Shadow_RenderLighting_Light_Vertex(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
2170 {
2171         // OpenGL 1.1 path (anything)
2172         float ambientcolorbase[3], diffusecolorbase[3];
2173         float ambientcolorpants[3], diffusecolorpants[3];
2174         float ambientcolorshirt[3], diffusecolorshirt[3];
2175         rmeshstate_t m;
2176         VectorScale(lightcolorbase, ambientscale * 2 * r_view.colorscale, ambientcolorbase);
2177         VectorScale(lightcolorbase, diffusescale * 2 * r_view.colorscale, diffusecolorbase);
2178         VectorScale(lightcolorpants, ambientscale * 2 * r_view.colorscale, ambientcolorpants);
2179         VectorScale(lightcolorpants, diffusescale * 2 * r_view.colorscale, diffusecolorpants);
2180         VectorScale(lightcolorshirt, ambientscale * 2 * r_view.colorscale, ambientcolorshirt);
2181         VectorScale(lightcolorshirt, diffusescale * 2 * r_view.colorscale, diffusecolorshirt);
2182         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2183         R_Mesh_ColorPointer(rsurface.array_color4f, 0, 0);
2184         memset(&m, 0, sizeof(m));
2185         m.tex[0] = R_GetTexture(basetexture);
2186         m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2187         m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2188         m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2189         m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2190         if (r_textureunits.integer >= 2)
2191         {
2192                 // voodoo2 or TNT
2193                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2194                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
2195                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
2196                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2197                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2198                 if (r_textureunits.integer >= 3)
2199                 {
2200                         // Voodoo4 or Kyro (or Geforce3/Radeon with gl_combine off)
2201                         m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
2202                         m.texmatrix[2] = rsurface.entitytoattenuationz;
2203                         m.pointer_texcoord3f[2] = rsurface.vertex3f;
2204                         m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
2205                         m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
2206                 }
2207         }
2208         R_Mesh_TextureState(&m);
2209         //R_Mesh_TexBind(0, R_GetTexture(basetexture));
2210         R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorbase, ambientcolorbase);
2211         if (dopants)
2212         {
2213                 R_Mesh_TexBind(0, R_GetTexture(pantstexture));
2214                 R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorpants, ambientcolorpants);
2215         }
2216         if (doshirt)
2217         {
2218                 R_Mesh_TexBind(0, R_GetTexture(shirttexture));
2219                 R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorshirt, ambientcolorshirt);
2220         }
2221 }
2222
2223 extern cvar_t gl_lightmaps;
2224 void R_Shadow_RenderLighting(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset)
2225 {
2226         float ambientscale, diffusescale, specularscale;
2227         vec3_t lightcolorbase, lightcolorpants, lightcolorshirt;
2228         rtexture_t *nmap;
2229         // calculate colors to render this texture with
2230         lightcolorbase[0] = rsurface.rtlight->currentcolor[0] * rsurface.texture->dlightcolor[0];
2231         lightcolorbase[1] = rsurface.rtlight->currentcolor[1] * rsurface.texture->dlightcolor[1];
2232         lightcolorbase[2] = rsurface.rtlight->currentcolor[2] * rsurface.texture->dlightcolor[2];
2233         ambientscale = rsurface.rtlight->ambientscale;
2234         diffusescale = rsurface.rtlight->diffusescale;
2235         specularscale = rsurface.rtlight->specularscale * rsurface.texture->specularscale;
2236         if (!r_shadow_usenormalmap.integer)
2237         {
2238                 ambientscale += 1.0f * diffusescale;
2239                 diffusescale = 0;
2240                 specularscale = 0;
2241         }
2242         if ((ambientscale + diffusescale) * VectorLength2(lightcolorbase) + specularscale * VectorLength2(lightcolorbase) < (1.0f / 1048576.0f))
2243                 return;
2244         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
2245         GL_PolygonOffset(rsurface.texture->currentpolygonfactor, rsurface.texture->currentpolygonoffset);
2246         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
2247         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : GL_FRONT); // quake is backwards, this culls back faces
2248         nmap = rsurface.texture->currentskinframe->nmap;
2249         if (gl_lightmaps.integer)
2250                 nmap = r_texture_blanknormalmap;
2251         if (rsurface.texture->colormapping && !gl_lightmaps.integer)
2252         {
2253                 qboolean dopants = rsurface.texture->currentskinframe->pants != NULL && VectorLength2(rsurface.colormap_pantscolor) >= (1.0f / 1048576.0f);
2254                 qboolean doshirt = rsurface.texture->currentskinframe->shirt != NULL && VectorLength2(rsurface.colormap_shirtcolor) >= (1.0f / 1048576.0f);
2255                 if (dopants)
2256                 {
2257                         lightcolorpants[0] = lightcolorbase[0] * rsurface.colormap_pantscolor[0];
2258                         lightcolorpants[1] = lightcolorbase[1] * rsurface.colormap_pantscolor[1];
2259                         lightcolorpants[2] = lightcolorbase[2] * rsurface.colormap_pantscolor[2];
2260                 }
2261                 else
2262                         VectorClear(lightcolorpants);
2263                 if (doshirt)
2264                 {
2265                         lightcolorshirt[0] = lightcolorbase[0] * rsurface.colormap_shirtcolor[0];
2266                         lightcolorshirt[1] = lightcolorbase[1] * rsurface.colormap_shirtcolor[1];
2267                         lightcolorshirt[2] = lightcolorbase[2] * rsurface.colormap_shirtcolor[2];
2268                 }
2269                 else
2270                         VectorClear(lightcolorshirt);
2271                 switch (r_shadow_rendermode)
2272                 {
2273                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2274                         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
2275                         R_Shadow_RenderLighting_VisibleLighting(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2276                         break;
2277                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2278                         R_Shadow_RenderLighting_Light_GLSL(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2279                         break;
2280                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2281                         R_Shadow_RenderLighting_Light_Dot3(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2282                         break;
2283                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2284                         R_Shadow_RenderLighting_Light_Vertex(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2285                         break;
2286                 default:
2287                         Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2288                         break;
2289                 }
2290         }
2291         else
2292         {
2293                 switch (r_shadow_rendermode)
2294                 {
2295                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2296                         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
2297                         R_Shadow_RenderLighting_VisibleLighting(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2298                         break;
2299                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2300                         R_Shadow_RenderLighting_Light_GLSL(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2301                         break;
2302                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2303                         R_Shadow_RenderLighting_Light_Dot3(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2304                         break;
2305                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2306                         R_Shadow_RenderLighting_Light_Vertex(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2307                         break;
2308                 default:
2309                         Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2310                         break;
2311                 }
2312         }
2313 }
2314
2315 void R_RTLight_Update(rtlight_t *rtlight, int isstatic, matrix4x4_t *matrix, vec3_t color, int style, const char *cubemapname, qboolean shadow, vec_t corona, vec_t coronasizescale, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int flags)
2316 {
2317         matrix4x4_t tempmatrix = *matrix;
2318         Matrix4x4_Scale(&tempmatrix, r_shadow_lightradiusscale.value, 1);
2319
2320         // if this light has been compiled before, free the associated data
2321         R_RTLight_Uncompile(rtlight);
2322
2323         // clear it completely to avoid any lingering data
2324         memset(rtlight, 0, sizeof(*rtlight));
2325
2326         // copy the properties
2327         rtlight->matrix_lighttoworld = tempmatrix;
2328         Matrix4x4_Invert_Simple(&rtlight->matrix_worldtolight, &tempmatrix);
2329         Matrix4x4_OriginFromMatrix(&tempmatrix, rtlight->shadoworigin);
2330         rtlight->radius = Matrix4x4_ScaleFromMatrix(&tempmatrix);
2331         VectorCopy(color, rtlight->color);
2332         rtlight->cubemapname[0] = 0;
2333         if (cubemapname && cubemapname[0])
2334                 strlcpy(rtlight->cubemapname, cubemapname, sizeof(rtlight->cubemapname));
2335         rtlight->shadow = shadow;
2336         rtlight->corona = corona;
2337         rtlight->style = style;
2338         rtlight->isstatic = isstatic;
2339         rtlight->coronasizescale = coronasizescale;
2340         rtlight->ambientscale = ambientscale;
2341         rtlight->diffusescale = diffusescale;
2342         rtlight->specularscale = specularscale;
2343         rtlight->flags = flags;
2344
2345         // compute derived data
2346         //rtlight->cullradius = rtlight->radius;
2347         //rtlight->cullradius2 = rtlight->radius * rtlight->radius;
2348         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2349         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2350         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2351         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2352         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2353         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2354 }
2355
2356 // compiles rtlight geometry
2357 // (undone by R_FreeCompiledRTLight, which R_UpdateLight calls)
2358 void R_RTLight_Compile(rtlight_t *rtlight)
2359 {
2360         int i;
2361         int numsurfaces, numleafs, numleafpvsbytes, numshadowtrispvsbytes, numlighttrispvsbytes;
2362         int lighttris, shadowtris, shadowmeshes, shadowmeshtris;
2363         entity_render_t *ent = r_refdef.worldentity;
2364         model_t *model = r_refdef.worldmodel;
2365         unsigned char *data;
2366
2367         // compile the light
2368         rtlight->compiled = true;
2369         rtlight->static_numleafs = 0;
2370         rtlight->static_numleafpvsbytes = 0;
2371         rtlight->static_leaflist = NULL;
2372         rtlight->static_leafpvs = NULL;
2373         rtlight->static_numsurfaces = 0;
2374         rtlight->static_surfacelist = NULL;
2375         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2376         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2377         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2378         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2379         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2380         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2381
2382         if (model && model->GetLightInfo)
2383         {
2384                 // this variable must be set for the CompileShadowVolume code
2385                 r_shadow_compilingrtlight = rtlight;
2386                 R_Shadow_EnlargeLeafSurfaceTrisBuffer(model->brush.num_leafs, model->num_surfaces, model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles, model->surfmesh.num_triangles);
2387                 model->GetLightInfo(ent, rtlight->shadoworigin, rtlight->radius, rtlight->cullmins, rtlight->cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs);
2388                 numleafpvsbytes = (model->brush.num_leafs + 7) >> 3;
2389                 numshadowtrispvsbytes = ((model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles) + 7) >> 3;
2390                 numlighttrispvsbytes = (model->surfmesh.num_triangles + 7) >> 3;
2391                 data = (unsigned char *)Mem_Alloc(r_main_mempool, sizeof(int) * numsurfaces + sizeof(int) * numleafs + numleafpvsbytes + numshadowtrispvsbytes + numlighttrispvsbytes);
2392                 rtlight->static_numsurfaces = numsurfaces;
2393                 rtlight->static_surfacelist = (int *)data;data += sizeof(int) * numsurfaces;
2394                 rtlight->static_numleafs = numleafs;
2395                 rtlight->static_leaflist = (int *)data;data += sizeof(int) * numleafs;
2396                 rtlight->static_numleafpvsbytes = numleafpvsbytes;
2397                 rtlight->static_leafpvs = (unsigned char *)data;data += numleafpvsbytes;
2398                 rtlight->static_numshadowtrispvsbytes = numshadowtrispvsbytes;
2399                 rtlight->static_shadowtrispvs = (unsigned char *)data;data += numshadowtrispvsbytes;
2400                 rtlight->static_numlighttrispvsbytes = numlighttrispvsbytes;
2401                 rtlight->static_lighttrispvs = (unsigned char *)data;data += numlighttrispvsbytes;
2402                 if (rtlight->static_numsurfaces)
2403                         memcpy(rtlight->static_surfacelist, r_shadow_buffer_surfacelist, rtlight->static_numsurfaces * sizeof(*rtlight->static_surfacelist));
2404                 if (rtlight->static_numleafs)
2405                         memcpy(rtlight->static_leaflist, r_shadow_buffer_leaflist, rtlight->static_numleafs * sizeof(*rtlight->static_leaflist));
2406                 if (rtlight->static_numleafpvsbytes)
2407                         memcpy(rtlight->static_leafpvs, r_shadow_buffer_leafpvs, rtlight->static_numleafpvsbytes);
2408                 if (rtlight->static_numshadowtrispvsbytes)
2409                         memcpy(rtlight->static_shadowtrispvs, r_shadow_buffer_shadowtrispvs, rtlight->static_numshadowtrispvsbytes);
2410                 if (rtlight->static_numlighttrispvsbytes)
2411                         memcpy(rtlight->static_lighttrispvs, r_shadow_buffer_lighttrispvs, rtlight->static_numlighttrispvsbytes);
2412                 if (model->CompileShadowVolume && rtlight->shadow)
2413                         model->CompileShadowVolume(ent, rtlight->shadoworigin, NULL, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
2414                 // now we're done compiling the rtlight
2415                 r_shadow_compilingrtlight = NULL;
2416         }
2417
2418
2419         // use smallest available cullradius - box radius or light radius
2420         //rtlight->cullradius = RadiusFromBoundsAndOrigin(rtlight->cullmins, rtlight->cullmaxs, rtlight->shadoworigin);
2421         //rtlight->cullradius = min(rtlight->cullradius, rtlight->radius);
2422
2423         shadowmeshes = 0;
2424         shadowmeshtris = 0;
2425         if (rtlight->static_meshchain_shadow)
2426         {
2427                 shadowmesh_t *mesh;
2428                 for (mesh = rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2429                 {
2430                         shadowmeshes++;
2431                         shadowmeshtris += mesh->numtriangles;
2432                 }
2433         }
2434
2435         lighttris = 0;
2436         if (rtlight->static_numlighttrispvsbytes)
2437                 for (i = 0;i < rtlight->static_numlighttrispvsbytes*8;i++)
2438                         if (CHECKPVSBIT(rtlight->static_lighttrispvs, i))
2439                                 lighttris++;
2440
2441         shadowtris = 0;
2442         if (rtlight->static_numlighttrispvsbytes)
2443                 for (i = 0;i < rtlight->static_numshadowtrispvsbytes*8;i++)
2444                         if (CHECKPVSBIT(rtlight->static_shadowtrispvs, i))
2445                                 shadowtris++;
2446
2447         if (developer.integer >= 10)
2448                 Con_Printf("static light built: %f %f %f : %f %f %f box, %i light triangles, %i shadow triangles, %i compiled shadow volume triangles (in %i meshes)\n", rtlight->cullmins[0], rtlight->cullmins[1], rtlight->cullmins[2], rtlight->cullmaxs[0], rtlight->cullmaxs[1], rtlight->cullmaxs[2], lighttris, shadowtris, shadowmeshtris, shadowmeshes);
2449 }
2450
2451 void R_RTLight_Uncompile(rtlight_t *rtlight)
2452 {
2453         if (rtlight->compiled)
2454         {
2455                 if (rtlight->static_meshchain_shadow)
2456                         Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow);
2457                 rtlight->static_meshchain_shadow = NULL;
2458                 // these allocations are grouped
2459                 if (rtlight->static_surfacelist)
2460                         Mem_Free(rtlight->static_surfacelist);
2461                 rtlight->static_numleafs = 0;
2462                 rtlight->static_numleafpvsbytes = 0;
2463                 rtlight->static_leaflist = NULL;
2464                 rtlight->static_leafpvs = NULL;
2465                 rtlight->static_numsurfaces = 0;
2466                 rtlight->static_surfacelist = NULL;
2467                 rtlight->static_numshadowtrispvsbytes = 0;
2468                 rtlight->static_shadowtrispvs = NULL;
2469                 rtlight->static_numlighttrispvsbytes = 0;
2470                 rtlight->static_lighttrispvs = NULL;
2471                 rtlight->compiled = false;
2472         }
2473 }
2474
2475 void R_Shadow_UncompileWorldLights(void)
2476 {
2477         dlight_t *light;
2478         for (light = r_shadow_worldlightchain;light;light = light->next)
2479                 R_RTLight_Uncompile(&light->rtlight);
2480 }
2481
2482 void R_Shadow_ComputeShadowCasterCullingPlanes(rtlight_t *rtlight)
2483 {
2484         int i, j;
2485         mplane_t plane;
2486         // reset the count of frustum planes
2487         // see rsurface.rtlight_frustumplanes definition for how much this array
2488         // can hold
2489         rsurface.rtlight_numfrustumplanes = 0;
2490
2491         // haven't implemented a culling path for ortho rendering
2492         if (!r_view.useperspective)
2493         {
2494                 // check if the light is on screen and copy the 4 planes if it is
2495                 for (i = 0;i < 4;i++)
2496                         if (PlaneDiff(rtlight->shadoworigin, &r_view.frustum[i]) < -0.03125)
2497                                 break;
2498                 if (i == 4)
2499                         for (i = 0;i < 4;i++)
2500                                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = r_view.frustum[i];
2501                 return;
2502         }
2503
2504 #if 1
2505         // generate a deformed frustum that includes the light origin, this is
2506         // used to cull shadow casting surfaces that can not possibly cast a
2507         // shadow onto the visible light-receiving surfaces, which can be a
2508         // performance gain
2509         //
2510         // if the light origin is onscreen the result will be 4 planes exactly
2511         // if the light origin is offscreen on only one axis the result will
2512         // be exactly 5 planes (split-side case)
2513         // if the light origin is offscreen on two axes the result will be
2514         // exactly 4 planes (stretched corner case)
2515         for (i = 0;i < 4;i++)
2516         {
2517                 // quickly reject standard frustum planes that put the light
2518                 // origin outside the frustum
2519                 if (PlaneDiff(rtlight->shadoworigin, &r_view.frustum[i]) < -0.03125)
2520                         continue;
2521                 // copy the plane
2522                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = r_view.frustum[i];
2523         }
2524         // if all the standard frustum planes were accepted, the light is onscreen
2525         // otherwise we need to generate some more planes below...
2526         if (rsurface.rtlight_numfrustumplanes < 4)
2527         {
2528                 // at least one of the stock frustum planes failed, so we need to
2529                 // create one or two custom planes to enclose the light origin
2530                 for (i = 0;i < 4;i++)
2531                 {
2532                         // create a plane using the view origin and light origin, and a
2533                         // single point from the frustum corner set
2534                         TriangleNormal(r_view.origin, r_view.frustumcorner[i], rtlight->shadoworigin, plane.normal);
2535                         VectorNormalize(plane.normal);
2536                         plane.dist = DotProduct(r_view.origin, plane.normal);
2537                         // see if this plane is backwards and flip it if so
2538                         for (j = 0;j < 4;j++)
2539                                 if (j != i && DotProduct(r_view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2540                                         break;
2541                         if (j < 4)
2542                         {
2543                                 VectorNegate(plane.normal, plane.normal);
2544                                 plane.dist *= -1;
2545                                 // flipped plane, test again to see if it is now valid
2546                                 for (j = 0;j < 4;j++)
2547                                         if (j != i && DotProduct(r_view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2548                                                 break;
2549                                 // if the plane is still not valid, then it is dividing the
2550                                 // frustum and has to be rejected
2551                                 if (j < 4)
2552                                         continue;
2553                         }
2554                         // we have created a valid plane, compute extra info
2555                         PlaneClassify(&plane);
2556                         // copy the plane
2557                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2558 #if 1
2559                         // if we've found 5 frustum planes then we have constructed a
2560                         // proper split-side case and do not need to keep searching for
2561                         // planes to enclose the light origin
2562                         if (rsurface.rtlight_numfrustumplanes == 5)
2563                                 break;
2564 #endif
2565                 }
2566         }
2567 #endif
2568
2569 #if 0
2570         for (i = 0;i < rsurface.rtlight_numfrustumplanes;i++)
2571         {
2572                 plane = rsurface.rtlight_frustumplanes[i];
2573                 Con_Printf("light %p plane #%i %f %f %f : %f (%f %f %f %f %f)\n", rtlight, i, plane.normal[0], plane.normal[1], plane.normal[2], plane.dist, PlaneDiff(r_view.frustumcorner[0], &plane), PlaneDiff(r_view.frustumcorner[1], &plane), PlaneDiff(r_view.frustumcorner[2], &plane), PlaneDiff(r_view.frustumcorner[3], &plane), PlaneDiff(rtlight->shadoworigin, &plane));
2574         }
2575 #endif
2576
2577 #if 0
2578         // now add the light-space box planes if the light box is rotated, as any
2579         // caster outside the oriented light box is irrelevant (even if it passed
2580         // the worldspace light box, which is axial)
2581         if (rtlight->matrix_lighttoworld.m[0][0] != 1 || rtlight->matrix_lighttoworld.m[1][1] != 1 || rtlight->matrix_lighttoworld.m[2][2] != 1)
2582         {
2583                 for (i = 0;i < 6;i++)
2584                 {
2585                         vec3_t v;
2586                         VectorClear(v);
2587                         v[i >> 1] = (i & 1) ? -1 : 1;
2588                         Matrix4x4_Transform(&rtlight->matrix_lighttoworld, v, plane.normal);
2589                         VectorSubtract(plane.normal, rtlight->shadoworigin, plane.normal);
2590                         plane.dist = VectorNormalizeLength(plane.normal);
2591                         plane.dist += DotProduct(plane.normal, rtlight->shadoworigin);
2592                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2593                 }
2594         }
2595 #endif
2596
2597 #if 0
2598         // add the world-space reduced box planes
2599         for (i = 0;i < 6;i++)
2600         {
2601                 VectorClear(plane.normal);
2602                 plane.normal[i >> 1] = (i & 1) ? -1 : 1;
2603                 plane.dist = (i & 1) ? -rsurface.rtlight_cullmaxs[i >> 1] : rsurface.rtlight_cullmins[i >> 1];
2604                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2605         }
2606 #endif
2607
2608 #if 0
2609         {
2610         int j, oldnum;
2611         vec3_t points[8];
2612         vec_t bestdist;
2613         // reduce all plane distances to tightly fit the rtlight cull box, which
2614         // is in worldspace
2615         VectorSet(points[0], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmins[2]);
2616         VectorSet(points[1], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmins[2]);
2617         VectorSet(points[2], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmins[2]);
2618         VectorSet(points[3], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmins[2]);
2619         VectorSet(points[4], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmaxs[2]);
2620         VectorSet(points[5], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmaxs[2]);
2621         VectorSet(points[6], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmaxs[2]);
2622         VectorSet(points[7], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmaxs[2]);
2623         oldnum = rsurface.rtlight_numfrustumplanes;
2624         rsurface.rtlight_numfrustumplanes = 0;
2625         for (j = 0;j < oldnum;j++)
2626         {
2627                 // find the nearest point on the box to this plane
2628                 bestdist = DotProduct(rsurface.rtlight_frustumplanes[j].normal, points[0]);
2629                 for (i = 1;i < 8;i++)
2630                 {
2631                         dist = DotProduct(rsurface.rtlight_frustumplanes[j].normal, points[i]);
2632                         if (bestdist > dist)
2633                                 bestdist = dist;
2634                 }
2635                 Con_Printf("light %p %splane #%i %f %f %f : %f < %f\n", rtlight, rsurface.rtlight_frustumplanes[j].dist < bestdist + 0.03125 ? "^2" : "^1", j, rsurface.rtlight_frustumplanes[j].normal[0], rsurface.rtlight_frustumplanes[j].normal[1], rsurface.rtlight_frustumplanes[j].normal[2], rsurface.rtlight_frustumplanes[j].dist, bestdist);
2636                 // if the nearest point is near or behind the plane, we want this
2637                 // plane, otherwise the plane is useless as it won't cull anything
2638                 if (rsurface.rtlight_frustumplanes[j].dist < bestdist + 0.03125)
2639                 {
2640                         PlaneClassify(&rsurface.rtlight_frustumplanes[j]);
2641                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = rsurface.rtlight_frustumplanes[j];
2642                 }
2643         }
2644         }
2645 #endif
2646 }
2647
2648 void R_Shadow_DrawWorldShadow(int numsurfaces, int *surfacelist, const unsigned char *trispvs)
2649 {
2650         RSurf_ActiveWorldEntity();
2651         if (rsurface.rtlight->compiled && r_shadow_realtime_world_compile.integer && r_shadow_realtime_world_compileshadow.integer)
2652         {
2653                 shadowmesh_t *mesh;
2654                 CHECKGLERROR
2655                 for (mesh = rsurface.rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2656                 {
2657                         r_refdef.stats.lights_shadowtriangles += mesh->numtriangles;
2658                         R_Mesh_VertexPointer(mesh->vertex3f, mesh->vbo, mesh->vbooffset_vertex3f);
2659                         GL_LockArrays(0, mesh->numverts);
2660                         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
2661                         {
2662                                 // decrement stencil if backface is behind depthbuffer
2663                                 GL_CullFace(GL_BACK); // quake is backwards, this culls front faces
2664                                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
2665                                 R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i, mesh->ebo, 0);
2666                                 // increment stencil if frontface is behind depthbuffer
2667                                 GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2668                                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
2669                         }
2670                         R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i, mesh->ebo, 0);
2671                         GL_LockArrays(0, 0);
2672                 }
2673                 CHECKGLERROR
2674         }
2675         else if (numsurfaces && r_refdef.worldmodel->brush.shadowmesh && r_shadow_culltriangles.integer)
2676         {
2677                 int t, tend;
2678                 int surfacelistindex;
2679                 msurface_t *surface;
2680                 R_Shadow_PrepareShadowMark(r_refdef.worldmodel->brush.shadowmesh->numtriangles);
2681                 for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
2682                 {
2683                         surface = r_refdef.worldmodel->data_surfaces + surfacelist[surfacelistindex];
2684                         for (t = surface->num_firstshadowmeshtriangle, tend = t + surface->num_triangles;t < tend;t++)
2685                                 if (CHECKPVSBIT(trispvs, t))
2686                                         shadowmarklist[numshadowmark++] = t;
2687                 }
2688                 R_Shadow_VolumeFromList(r_refdef.worldmodel->brush.shadowmesh->numverts, r_refdef.worldmodel->brush.shadowmesh->numtriangles, r_refdef.worldmodel->brush.shadowmesh->vertex3f, r_refdef.worldmodel->brush.shadowmesh->element3i, r_refdef.worldmodel->brush.shadowmesh->neighbor3i, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius + r_refdef.worldmodel->radius*2 + r_shadow_projectdistance.value, numshadowmark, shadowmarklist);
2689         }
2690         else if (numsurfaces)
2691                 r_refdef.worldmodel->DrawShadowVolume(r_refdef.worldentity, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius, numsurfaces, surfacelist, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs);
2692 }
2693
2694 void R_Shadow_DrawEntityShadow(entity_render_t *ent)
2695 {
2696         vec3_t relativeshadoworigin, relativeshadowmins, relativeshadowmaxs;
2697         vec_t relativeshadowradius;
2698         RSurf_ActiveModelEntity(ent, false, false);
2699         Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, relativeshadoworigin);
2700         relativeshadowradius = rsurface.rtlight->radius / ent->scale;
2701         relativeshadowmins[0] = relativeshadoworigin[0] - relativeshadowradius;
2702         relativeshadowmins[1] = relativeshadoworigin[1] - relativeshadowradius;
2703         relativeshadowmins[2] = relativeshadoworigin[2] - relativeshadowradius;
2704         relativeshadowmaxs[0] = relativeshadoworigin[0] + relativeshadowradius;
2705         relativeshadowmaxs[1] = relativeshadoworigin[1] + relativeshadowradius;
2706         relativeshadowmaxs[2] = relativeshadoworigin[2] + relativeshadowradius;
2707         ent->model->DrawShadowVolume(ent, relativeshadoworigin, NULL, relativeshadowradius, ent->model->nummodelsurfaces, ent->model->surfacelist, relativeshadowmins, relativeshadowmaxs);
2708 }
2709
2710 void R_Shadow_SetupEntityLight(const entity_render_t *ent)
2711 {
2712         // set up properties for rendering light onto this entity
2713         RSurf_ActiveModelEntity(ent, true, true);
2714         Matrix4x4_Concat(&rsurface.entitytolight, &rsurface.rtlight->matrix_worldtolight, &ent->matrix);
2715         Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
2716         Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
2717         Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);
2718         if (r_shadow_lightingrendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2719                 R_Mesh_TexMatrix(3, &rsurface.entitytolight);
2720 }
2721
2722 void R_Shadow_DrawWorldLight(int numsurfaces, int *surfacelist, const unsigned char *trispvs)
2723 {
2724         if (!r_refdef.worldmodel->DrawLight)
2725                 return;
2726
2727         // set up properties for rendering light onto this entity
2728         RSurf_ActiveWorldEntity();
2729         rsurface.entitytolight = rsurface.rtlight->matrix_worldtolight;
2730         Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
2731         Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
2732         VectorCopy(rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);
2733         if (r_shadow_lightingrendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2734                 R_Mesh_TexMatrix(3, &rsurface.entitytolight);
2735
2736         r_refdef.worldmodel->DrawLight(r_refdef.worldentity, numsurfaces, surfacelist, trispvs);
2737 }
2738
2739 void R_Shadow_DrawEntityLight(entity_render_t *ent, int numsurfaces, int *surfacelist)
2740 {
2741         model_t *model = ent->model;
2742         if (!model->DrawLight)
2743                 return;
2744
2745         R_Shadow_SetupEntityLight(ent);
2746
2747         model->DrawLight(ent, model->nummodelsurfaces, model->surfacelist, NULL);
2748 }
2749
2750 void R_DrawRTLight(rtlight_t *rtlight, qboolean visible)
2751 {
2752         int i;
2753         float f;
2754         int numleafs, numsurfaces;
2755         int *leaflist, *surfacelist;
2756         unsigned char *leafpvs, *shadowtrispvs, *lighttrispvs;
2757         int numlightentities;
2758         int numlightentities_noselfshadow;
2759         int numshadowentities;
2760         int numshadowentities_noselfshadow;
2761         entity_render_t *lightentities[MAX_EDICTS];
2762         entity_render_t *lightentities_noselfshadow[MAX_EDICTS];
2763         entity_render_t *shadowentities[MAX_EDICTS];
2764         entity_render_t *shadowentities_noselfshadow[MAX_EDICTS];
2765
2766         // skip lights that don't light because of ambientscale+diffusescale+specularscale being 0 (corona only lights)
2767         // skip lights that are basically invisible (color 0 0 0)
2768         if (VectorLength2(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale) < (1.0f / 1048576.0f))
2769                 return;
2770
2771         // loading is done before visibility checks because loading should happen
2772         // all at once at the start of a level, not when it stalls gameplay.
2773         // (especially important to benchmarks)
2774         // compile light
2775         if (rtlight->isstatic && !rtlight->compiled && r_shadow_realtime_world_compile.integer)
2776                 R_RTLight_Compile(rtlight);
2777         // load cubemap
2778         rtlight->currentcubemap = rtlight->cubemapname[0] ? R_Shadow_Cubemap(rtlight->cubemapname) : r_texture_whitecube;
2779
2780         // look up the light style value at this time
2781         f = (rtlight->style >= 0 ? r_refdef.lightstylevalue[rtlight->style] : 128) * (1.0f / 256.0f) * r_shadow_lightintensityscale.value;
2782         VectorScale(rtlight->color, f, rtlight->currentcolor);
2783         /*
2784         if (rtlight->selected)
2785         {
2786                 f = 2 + sin(realtime * M_PI * 4.0);
2787                 VectorScale(rtlight->currentcolor, f, rtlight->currentcolor);
2788         }
2789         */
2790
2791         // if lightstyle is currently off, don't draw the light
2792         if (VectorLength2(rtlight->currentcolor) < (1.0f / 1048576.0f))
2793                 return;
2794
2795         // if the light box is offscreen, skip it
2796         if (R_CullBox(rtlight->cullmins, rtlight->cullmaxs))
2797                 return;
2798
2799         VectorCopy(rtlight->cullmins, rsurface.rtlight_cullmins);
2800         VectorCopy(rtlight->cullmaxs, rsurface.rtlight_cullmaxs);
2801
2802         if (rtlight->compiled && r_shadow_realtime_world_compile.integer)
2803         {
2804                 // compiled light, world available and can receive realtime lighting
2805                 // retrieve leaf information
2806                 numleafs = rtlight->static_numleafs;
2807                 leaflist = rtlight->static_leaflist;
2808                 leafpvs = rtlight->static_leafpvs;
2809                 numsurfaces = rtlight->static_numsurfaces;
2810                 surfacelist = rtlight->static_surfacelist;
2811                 shadowtrispvs = rtlight->static_shadowtrispvs;
2812                 lighttrispvs = rtlight->static_lighttrispvs;
2813         }
2814         else if (r_refdef.worldmodel && r_refdef.worldmodel->GetLightInfo)
2815         {
2816                 // dynamic light, world available and can receive realtime lighting
2817                 // calculate lit surfaces and leafs
2818                 R_Shadow_EnlargeLeafSurfaceTrisBuffer(r_refdef.worldmodel->brush.num_leafs, r_refdef.worldmodel->num_surfaces, r_refdef.worldmodel->brush.shadowmesh ? r_refdef.worldmodel->brush.shadowmesh->numtriangles : r_refdef.worldmodel->surfmesh.num_triangles, r_refdef.worldmodel->surfmesh.num_triangles);
2819                 r_refdef.worldmodel->GetLightInfo(r_refdef.worldentity, rtlight->shadoworigin, rtlight->radius, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs);
2820                 leaflist = r_shadow_buffer_leaflist;
2821                 leafpvs = r_shadow_buffer_leafpvs;
2822                 surfacelist = r_shadow_buffer_surfacelist;
2823                 shadowtrispvs = r_shadow_buffer_shadowtrispvs;
2824                 lighttrispvs = r_shadow_buffer_lighttrispvs;
2825                 // if the reduced leaf bounds are offscreen, skip it
2826                 if (R_CullBox(rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2827                         return;
2828         }
2829         else
2830         {
2831                 // no world
2832                 numleafs = 0;
2833                 leaflist = NULL;
2834                 leafpvs = NULL;
2835                 numsurfaces = 0;
2836                 surfacelist = NULL;
2837                 shadowtrispvs = NULL;
2838                 lighttrispvs = NULL;
2839         }
2840         // check if light is illuminating any visible leafs
2841         if (numleafs)
2842         {
2843                 for (i = 0;i < numleafs;i++)
2844                         if (r_viewcache.world_leafvisible[leaflist[i]])
2845                                 break;
2846                 if (i == numleafs)
2847                         return;
2848         }
2849         // set up a scissor rectangle for this light
2850         if (R_Shadow_ScissorForBBox(rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2851                 return;
2852
2853         R_Shadow_ComputeShadowCasterCullingPlanes(rtlight);
2854
2855         // make a list of lit entities and shadow casting entities
2856         numlightentities = 0;
2857         numlightentities_noselfshadow = 0;
2858         numshadowentities = 0;
2859         numshadowentities_noselfshadow = 0;
2860         // add dynamic entities that are lit by the light
2861         if (r_drawentities.integer)
2862         {
2863                 for (i = 0;i < r_refdef.numentities;i++)
2864                 {
2865                         model_t *model;
2866                         entity_render_t *ent = r_refdef.entities[i];
2867                         vec3_t org;
2868                         if (!BoxesOverlap(ent->mins, ent->maxs, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2869                                 continue;
2870                         // skip the object entirely if it is not within the valid
2871                         // shadow-casting region (which includes the lit region)
2872                         if (R_CullBoxCustomPlanes(ent->mins, ent->maxs, rsurface.rtlight_numfrustumplanes, rsurface.rtlight_frustumplanes))
2873                                 continue;
2874                         if (!(model = ent->model))
2875                                 continue;
2876                         if (r_viewcache.entityvisible[i] && model->DrawLight && (ent->flags & RENDER_LIGHT))
2877                         {
2878                                 // this entity wants to receive light, is visible, and is
2879                                 // inside the light box
2880                                 // TODO: check if the surfaces in the model can receive light
2881                                 // so now check if it's in a leaf seen by the light
2882                                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.worldmodel, leafpvs, ent->mins, ent->maxs))
2883                                         continue;
2884                                 if (ent->flags & RENDER_NOSELFSHADOW)
2885                                         lightentities_noselfshadow[numlightentities_noselfshadow++] = ent;
2886                                 else
2887                                         lightentities[numlightentities++] = ent;
2888                                 // since it is lit, it probably also casts a shadow...
2889                                 // about the VectorDistance2 - light emitting entities should not cast their own shadow
2890                                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
2891                                 if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
2892                                 {
2893                                         // note: exterior models without the RENDER_NOSELFSHADOW
2894                                         // flag still create a RENDER_NOSELFSHADOW shadow but
2895                                         // are lit normally, this means that they are
2896                                         // self-shadowing but do not shadow other
2897                                         // RENDER_NOSELFSHADOW entities such as the gun
2898                                         // (very weird, but keeps the player shadow off the gun)
2899                                         if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
2900                                                 shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
2901                                         else
2902                                                 shadowentities[numshadowentities++] = ent;
2903                                 }
2904                         }
2905                         else if (ent->flags & RENDER_SHADOW)
2906                         {
2907                                 // this entity is not receiving light, but may still need to
2908                                 // cast a shadow...
2909                                 // TODO: check if the surfaces in the model can cast shadow
2910                                 // now check if it is in a leaf seen by the light
2911                                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.worldmodel, leafpvs, ent->mins, ent->maxs))
2912                                         continue;
2913                                 // about the VectorDistance2 - light emitting entities should not cast their own shadow
2914                                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
2915                                 if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
2916                                 {
2917                                         if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
2918                                                 shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
2919                                         else
2920                                                 shadowentities[numshadowentities++] = ent;
2921                                 }
2922                         }
2923                 }
2924         }
2925
2926         // return if there's nothing at all to light
2927         if (!numlightentities && !numsurfaces)
2928                 return;
2929
2930         // don't let sound skip if going slow
2931         if (r_refdef.extraupdate)
2932                 S_ExtraUpdate ();
2933
2934         // make this the active rtlight for rendering purposes
2935         R_Shadow_RenderMode_ActiveLight(rtlight);
2936         // count this light in the r_speeds
2937         r_refdef.stats.lights++;
2938
2939         if (r_showshadowvolumes.integer && numsurfaces + numshadowentities + numshadowentities_noselfshadow && rtlight->shadow && (rtlight->isstatic ? r_refdef.rtworldshadows : r_refdef.rtdlightshadows))
2940         {
2941                 // optionally draw visible shape of the shadow volumes
2942                 // for performance analysis by level designers
2943                 R_Shadow_RenderMode_VisibleShadowVolumes();
2944                 if (numsurfaces)
2945                         R_Shadow_DrawWorldShadow(numsurfaces, surfacelist, shadowtrispvs);
2946                 for (i = 0;i < numshadowentities;i++)
2947                         R_Shadow_DrawEntityShadow(shadowentities[i]);
2948                 for (i = 0;i < numshadowentities_noselfshadow;i++)
2949                         R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
2950         }
2951
2952         if (gl_stencil && numsurfaces + numshadowentities + numshadowentities_noselfshadow && rtlight->shadow && (rtlight->isstatic ? r_refdef.rtworldshadows : r_refdef.rtdlightshadows))
2953         {
2954                 // draw stencil shadow volumes to mask off pixels that are in shadow
2955                 // so that they won't receive lighting
2956                 R_Shadow_RenderMode_StencilShadowVolumes(true);
2957                 if (numsurfaces)
2958                         R_Shadow_DrawWorldShadow(numsurfaces, surfacelist, shadowtrispvs);
2959                 for (i = 0;i < numshadowentities;i++)
2960                         R_Shadow_DrawEntityShadow(shadowentities[i]);
2961                 if (numlightentities_noselfshadow)
2962                 {
2963                         // draw lighting in the unmasked areas
2964                         R_Shadow_RenderMode_Lighting(true, false);
2965                         for (i = 0;i < numlightentities_noselfshadow;i++)
2966                                 R_Shadow_DrawEntityLight(lightentities_noselfshadow[i], numsurfaces, surfacelist);
2967
2968                         // optionally draw the illuminated areas
2969                         // for performance analysis by level designers
2970                         if (r_showlighting.integer)
2971                         {
2972                                 R_Shadow_RenderMode_VisibleLighting(!r_showdisabledepthtest.integer, false);
2973                                 for (i = 0;i < numlightentities_noselfshadow;i++)
2974                                         R_Shadow_DrawEntityLight(lightentities_noselfshadow[i], numsurfaces, surfacelist);
2975                         }
2976
2977                         R_Shadow_RenderMode_StencilShadowVolumes(false);
2978                 }
2979                 for (i = 0;i < numshadowentities_noselfshadow;i++)
2980                         R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
2981
2982                 if (numsurfaces + numlightentities)
2983                 {
2984                         // draw lighting in the unmasked areas
2985                         R_Shadow_RenderMode_Lighting(true, false);
2986                         if (numsurfaces)
2987                                 R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
2988                         for (i = 0;i < numlightentities;i++)
2989                                 R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
2990
2991                         // optionally draw the illuminated areas
2992                         // for performance analysis by level designers
2993                         if (r_showlighting.integer)
2994                         {
2995                                 R_Shadow_RenderMode_VisibleLighting(!r_showdisabledepthtest.integer, false);
2996                                 if (numsurfaces)
2997                                         R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
2998                                 for (i = 0;i < numlightentities;i++)
2999                                         R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
3000                         }
3001                 }
3002         }
3003         else
3004         {
3005                 if (numsurfaces + numlightentities)
3006                 {
3007                         // draw lighting in the unmasked areas
3008                         R_Shadow_RenderMode_Lighting(false, false);
3009                         if (numsurfaces)
3010                                 R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
3011                         for (i = 0;i < numlightentities;i++)
3012                                 R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
3013                         for (i = 0;i < numlightentities_noselfshadow;i++)
3014                                 R_Shadow_DrawEntityLight(lightentities_noselfshadow[i], numsurfaces, surfacelist);
3015
3016                         // optionally draw the illuminated areas
3017                         // for performance analysis by level designers
3018                         if (r_showlighting.integer)
3019                         {
3020                                 R_Shadow_RenderMode_VisibleLighting(false, false);
3021                                 if (numsurfaces)
3022                                         R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
3023                                 for (i = 0;i < numlightentities;i++)
3024                                         R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
3025                                 for (i = 0;i < numlightentities_noselfshadow;i++)
3026                                         R_Shadow_DrawEntityLight(lightentities_noselfshadow[i], numsurfaces, surfacelist);
3027                         }
3028                 }
3029         }
3030 }
3031
3032 void R_Shadow_DrawLightSprites(void);
3033 void R_ShadowVolumeLighting(qboolean visible)
3034 {
3035         int lnum, flag;
3036         dlight_t *light;
3037
3038         if (r_refdef.worldmodel && strncmp(r_refdef.worldmodel->name, r_shadow_mapname, sizeof(r_shadow_mapname)))
3039                 R_Shadow_EditLights_Reload_f();
3040
3041         if (r_editlights.integer)
3042                 R_Shadow_DrawLightSprites();
3043
3044         R_Shadow_RenderMode_Begin();
3045
3046         flag = r_refdef.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
3047         if (r_shadow_debuglight.integer >= 0)
3048         {
3049                 for (lnum = 0, light = r_shadow_worldlightchain;light;lnum++, light = light->next)
3050                         if (lnum == r_shadow_debuglight.integer && (light->flags & flag))
3051                                 R_DrawRTLight(&light->rtlight, visible);
3052         }
3053         else
3054                 for (lnum = 0, light = r_shadow_worldlightchain;light;lnum++, light = light->next)
3055                         if (light->flags & flag)
3056                                 R_DrawRTLight(&light->rtlight, visible);
3057         if (r_refdef.rtdlight)
3058                 for (lnum = 0;lnum < r_refdef.numlights;lnum++)
3059                         R_DrawRTLight(&r_refdef.lights[lnum], visible);
3060
3061         R_Shadow_RenderMode_End();
3062 }
3063
3064 extern void R_SetupView(const matrix4x4_t *matrix);
3065 extern cvar_t r_shadows_throwdistance;
3066 void R_DrawModelShadows(void)
3067 {
3068         int i;
3069         float relativethrowdistance;
3070         entity_render_t *ent;
3071         vec3_t relativelightorigin;
3072         vec3_t relativelightdirection;
3073         vec3_t relativeshadowmins, relativeshadowmaxs;
3074         float vertex3f[12];
3075
3076         if (!r_drawentities.integer || !gl_stencil)
3077                 return;
3078
3079         CHECKGLERROR
3080         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
3081
3082         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
3083
3084         if (gl_ext_separatestencil.integer)
3085                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_SEPARATESTENCIL;
3086         else if (gl_ext_stenciltwoside.integer)
3087                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCILTWOSIDE;
3088         else
3089                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCIL;
3090
3091         R_Shadow_RenderMode_StencilShadowVolumes(true);
3092
3093         for (i = 0;i < r_refdef.numentities;i++)
3094         {
3095                 ent = r_refdef.entities[i];
3096                 // cast shadows from anything that is not a submodel of the map
3097                 if (ent->model && ent->model->DrawShadowVolume != NULL && !ent->model->brush.submodel && (ent->flags & RENDER_SHADOW))
3098                 {
3099                         relativethrowdistance = r_shadows_throwdistance.value * Matrix4x4_ScaleFromMatrix(&ent->inversematrix);
3100                         VectorSet(relativeshadowmins, -relativethrowdistance, -relativethrowdistance, -relativethrowdistance);
3101                         VectorSet(relativeshadowmaxs, relativethrowdistance, relativethrowdistance, relativethrowdistance);
3102                         VectorNegate(ent->modellight_lightdir, relativelightdirection);
3103                         VectorScale(relativelightdirection, -relativethrowdistance, relativelightorigin);
3104                         RSurf_ActiveModelEntity(ent, false, false);
3105                         ent->model->DrawShadowVolume(ent, relativelightorigin, relativelightdirection, relativethrowdistance, ent->model->nummodelsurfaces, ent->model->surfacelist, relativeshadowmins, relativeshadowmaxs);
3106                 }
3107         }
3108
3109         // not really the right mode, but this will disable any silly stencil features
3110         R_Shadow_RenderMode_VisibleLighting(true, true);
3111
3112         // vertex coordinates for a quad that covers the screen exactly
3113         vertex3f[0] = 0;vertex3f[1] = 0;vertex3f[2] = 0;
3114         vertex3f[3] = 1;vertex3f[4] = 0;vertex3f[5] = 0;
3115         vertex3f[6] = 1;vertex3f[7] = 1;vertex3f[8] = 0;
3116         vertex3f[9] = 0;vertex3f[10] = 1;vertex3f[11] = 0;
3117
3118         // set up ortho view for rendering this pass
3119         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
3120         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
3121         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
3122         GL_ScissorTest(true);
3123         R_Mesh_Matrix(&identitymatrix);
3124         R_Mesh_ResetTextureState();
3125         R_Mesh_VertexPointer(vertex3f, 0, 0);
3126         R_Mesh_ColorPointer(NULL, 0, 0);
3127
3128         // set up a 50% darkening blend on shadowed areas
3129         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3130         GL_DepthRange(0, 1);
3131         GL_DepthTest(false);
3132         GL_DepthMask(false);
3133         GL_PolygonOffset(0, 0);CHECKGLERROR
3134         GL_Color(0, 0, 0, 0.5);
3135         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
3136         qglDepthFunc(GL_ALWAYS);CHECKGLERROR
3137         qglEnable(GL_STENCIL_TEST);CHECKGLERROR
3138         qglStencilMask(~0);CHECKGLERROR
3139         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
3140         qglStencilFunc(GL_NOTEQUAL, 128, ~0);CHECKGLERROR
3141
3142         // apply the blend to the shadowed areas
3143         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3144
3145         // restoring the perspective view is done by R_RenderScene
3146         //R_SetupView(&r_view.matrix);
3147
3148         // restore other state to normal
3149         R_Shadow_RenderMode_End();
3150 }
3151
3152
3153 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
3154 typedef struct suffixinfo_s
3155 {
3156         char *suffix;
3157         qboolean flipx, flipy, flipdiagonal;
3158 }
3159 suffixinfo_t;
3160 static suffixinfo_t suffix[3][6] =
3161 {
3162         {
3163                 {"px",   false, false, false},
3164                 {"nx",   false, false, false},
3165                 {"py",   false, false, false},
3166                 {"ny",   false, false, false},
3167                 {"pz",   false, false, false},
3168                 {"nz",   false, false, false}
3169         },
3170         {
3171                 {"posx", false, false, false},
3172                 {"negx", false, false, false},
3173                 {"posy", false, false, false},
3174                 {"negy", false, false, false},
3175                 {"posz", false, false, false},
3176                 {"negz", false, false, false}
3177         },
3178         {
3179                 {"rt",    true, false,  true},
3180                 {"lf",   false,  true,  true},
3181                 {"ft",    true,  true, false},
3182                 {"bk",   false, false, false},
3183                 {"up",    true, false,  true},
3184                 {"dn",    true, false,  true}
3185         }
3186 };
3187
3188 static int componentorder[4] = {0, 1, 2, 3};
3189
3190 rtexture_t *R_Shadow_LoadCubemap(const char *basename)
3191 {
3192         int i, j, cubemapsize;
3193         unsigned char *cubemappixels, *image_rgba;
3194         rtexture_t *cubemaptexture;
3195         char name[256];
3196         // must start 0 so the first loadimagepixels has no requested width/height
3197         cubemapsize = 0;
3198         cubemappixels = NULL;
3199         cubemaptexture = NULL;
3200         // keep trying different suffix groups (posx, px, rt) until one loads
3201         for (j = 0;j < 3 && !cubemappixels;j++)
3202         {
3203                 // load the 6 images in the suffix group
3204                 for (i = 0;i < 6;i++)
3205                 {
3206                         // generate an image name based on the base and and suffix
3207                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
3208                         // load it
3209                         if ((image_rgba = loadimagepixels(name, false, cubemapsize, cubemapsize)))
3210                         {
3211                                 // an image loaded, make sure width and height are equal
3212                                 if (image_width == image_height)
3213                                 {
3214                                         // if this is the first image to load successfully, allocate the cubemap memory
3215                                         if (!cubemappixels && image_width >= 1)
3216                                         {
3217                                                 cubemapsize = image_width;
3218                                                 // note this clears to black, so unavailable sides are black
3219                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
3220                                         }
3221                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
3222                                         if (cubemappixels)
3223                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_rgba, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
3224                                 }
3225                                 else
3226                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
3227                                 // free the image
3228                                 Mem_Free(image_rgba);
3229                         }
3230                 }
3231         }
3232         // if a cubemap loaded, upload it
3233         if (cubemappixels)
3234         {
3235                 if (!r_shadow_filters_texturepool)
3236                         r_shadow_filters_texturepool = R_AllocTexturePool();
3237                 cubemaptexture = R_LoadTextureCubeMap(r_shadow_filters_texturepool, basename, cubemapsize, cubemappixels, TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
3238                 Mem_Free(cubemappixels);
3239         }
3240         else
3241         {
3242                 Con_Printf("Failed to load Cubemap \"%s\", tried ", basename);
3243                 for (j = 0;j < 3;j++)
3244                         for (i = 0;i < 6;i++)
3245                                 Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
3246                 Con_Print(" and was unable to find any of them.\n");
3247         }
3248         return cubemaptexture;
3249 }
3250
3251 rtexture_t *R_Shadow_Cubemap(const char *basename)
3252 {
3253         int i;
3254         for (i = 0;i < numcubemaps;i++)
3255                 if (!strcasecmp(cubemaps[i].basename, basename))
3256                         return cubemaps[i].texture;
3257         if (i >= MAX_CUBEMAPS)
3258                 return r_texture_whitecube;
3259         numcubemaps++;
3260         strlcpy(cubemaps[i].basename, basename, sizeof(cubemaps[i].basename));
3261         cubemaps[i].texture = R_Shadow_LoadCubemap(cubemaps[i].basename);
3262         if (!cubemaps[i].texture)
3263                 cubemaps[i].texture = r_texture_whitecube;
3264         return cubemaps[i].texture;
3265 }
3266
3267 void R_Shadow_FreeCubemaps(void)
3268 {
3269         numcubemaps = 0;
3270         R_FreeTexturePool(&r_shadow_filters_texturepool);
3271 }
3272
3273 dlight_t *R_Shadow_NewWorldLight(void)
3274 {
3275         dlight_t *light;
3276         light = (dlight_t *)Mem_Alloc(r_main_mempool, sizeof(dlight_t));
3277         light->next = r_shadow_worldlightchain;
3278         r_shadow_worldlightchain = light;
3279         return light;
3280 }
3281
3282 void R_Shadow_UpdateWorldLight(dlight_t *light, vec3_t origin, vec3_t angles, vec3_t color, vec_t radius, vec_t corona, int style, int shadowenable, const char *cubemapname, vec_t coronasizescale, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int flags)
3283 {
3284         matrix4x4_t matrix;
3285         // validate parameters
3286         if (style < 0 || style >= MAX_LIGHTSTYLES)
3287         {
3288                 Con_Printf("R_Shadow_NewWorldLight: invalid light style number %i, must be >= 0 and < %i\n", light->style, MAX_LIGHTSTYLES);
3289                 style = 0;
3290         }
3291         if (!cubemapname)
3292                 cubemapname = "";
3293
3294         // copy to light properties
3295         VectorCopy(origin, light->origin);
3296         light->angles[0] = angles[0] - 360 * floor(angles[0] / 360);
3297         light->angles[1] = angles[1] - 360 * floor(angles[1] / 360);
3298         light->angles[2] = angles[2] - 360 * floor(angles[2] / 360);
3299         light->color[0] = max(color[0], 0);
3300         light->color[1] = max(color[1], 0);
3301         light->color[2] = max(color[2], 0);
3302         light->radius = max(radius, 0);
3303         light->style = style;
3304         light->shadow = shadowenable;
3305         light->corona = corona;
3306         strlcpy(light->cubemapname, cubemapname, sizeof(light->cubemapname));
3307         light->coronasizescale = coronasizescale;
3308         light->ambientscale = ambientscale;
3309         light->diffusescale = diffusescale;
3310         light->specularscale = specularscale;
3311         light->flags = flags;
3312
3313         // update renderable light data
3314         Matrix4x4_CreateFromQuakeEntity(&matrix, light->origin[0], light->origin[1], light->origin[2], light->angles[0], light->angles[1], light->angles[2], light->radius);
3315         R_RTLight_Update(&light->rtlight, true, &matrix, light->color, light->style, light->cubemapname[0] ? light->cubemapname : NULL, light->shadow, light->corona, light->coronasizescale, light->ambientscale, light->diffusescale, light->specularscale, light->flags);
3316 }
3317
3318 void R_Shadow_FreeWorldLight(dlight_t *light)
3319 {
3320         dlight_t **lightpointer;
3321         R_RTLight_Uncompile(&light->rtlight);
3322         for (lightpointer = &r_shadow_worldlightchain;*lightpointer && *lightpointer != light;lightpointer = &(*lightpointer)->next);
3323         if (*lightpointer != light)
3324                 Sys_Error("R_Shadow_FreeWorldLight: light not linked into chain");
3325         *lightpointer = light->next;
3326         Mem_Free(light);
3327 }
3328
3329 void R_Shadow_ClearWorldLights(void)
3330 {
3331         while (r_shadow_worldlightchain)
3332                 R_Shadow_FreeWorldLight(r_shadow_worldlightchain);
3333         r_shadow_selectedlight = NULL;
3334         R_Shadow_FreeCubemaps();
3335 }
3336
3337 void R_Shadow_SelectLight(dlight_t *light)
3338 {
3339         if (r_shadow_selectedlight)
3340                 r_shadow_selectedlight->selected = false;
3341         r_shadow_selectedlight = light;
3342         if (r_shadow_selectedlight)
3343                 r_shadow_selectedlight->selected = true;
3344 }
3345
3346 void R_Shadow_DrawCursor_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3347 {
3348         // this is never batched (there can be only one)
3349         float scale = r_editlights_cursorgrid.value * 0.5f;
3350         R_DrawSprite(GL_SRC_ALPHA, GL_ONE, r_crosshairs[1]->tex, NULL, false, false, r_editlights_cursorlocation, r_view.right, r_view.up, scale, -scale, -scale, scale, 1, 1, 1, 0.5f);
3351 }
3352
3353 void R_Shadow_DrawLightSprite_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3354 {
3355         // this is never batched (due to the ent parameter changing every time)
3356         // so numsurfaces == 1 and surfacelist[0] == lightnumber
3357         float intensity;
3358         const dlight_t *light = (dlight_t *)ent;
3359         intensity = 0.5;
3360         if (light->selected)
3361                 intensity = 0.75 + 0.25 * sin(realtime * M_PI * 4.0);
3362         if (!light->shadow)
3363                 intensity *= 0.5f;
3364         R_DrawSprite(GL_SRC_ALPHA, GL_ONE, r_crosshairs[surfacelist[0]]->tex, NULL, false, false, light->origin, r_view.right, r_view.up, 8, -8, -8, 8, intensity, intensity, intensity, 0.5f);
3365 }
3366
3367 void R_Shadow_DrawLightSprites(void)
3368 {
3369         int i;
3370         dlight_t *light;
3371
3372         for (i = 0, light = r_shadow_worldlightchain;light;i++, light = light->next)
3373                 R_MeshQueue_AddTransparent(light->origin, R_Shadow_DrawLightSprite_TransparentCallback, (entity_render_t *)light, 1+(i % 5), &light->rtlight);
3374         R_MeshQueue_AddTransparent(r_editlights_cursorlocation, R_Shadow_DrawCursor_TransparentCallback, NULL, 0, NULL);
3375 }
3376
3377 void R_Shadow_SelectLightInView(void)
3378 {
3379         float bestrating, rating, temp[3];
3380         dlight_t *best, *light;
3381         best = NULL;
3382         bestrating = 0;
3383         for (light = r_shadow_worldlightchain;light;light = light->next)
3384         {
3385                 VectorSubtract(light->origin, r_view.origin, temp);
3386                 rating = (DotProduct(temp, r_view.forward) / sqrt(DotProduct(temp, temp)));
3387                 if (rating >= 0.95)
3388                 {
3389                         rating /= (1 + 0.0625f * sqrt(DotProduct(temp, temp)));
3390                         if (bestrating < rating && CL_Move(light->origin, vec3_origin, vec3_origin, r_view.origin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, true, false, NULL, false).fraction == 1.0f)
3391                         {
3392                                 bestrating = rating;
3393                                 best = light;
3394                         }
3395                 }
3396         }
3397         R_Shadow_SelectLight(best);
3398 }
3399
3400 void R_Shadow_LoadWorldLights(void)
3401 {
3402         int n, a, style, shadow, flags;
3403         char tempchar, *lightsstring, *s, *t, name[MAX_QPATH], cubemapname[MAX_QPATH];
3404         float origin[3], radius, color[3], angles[3], corona, coronasizescale, ambientscale, diffusescale, specularscale;
3405         if (r_refdef.worldmodel == NULL)
3406         {
3407                 Con_Print("No map loaded.\n");
3408                 return;
3409         }
3410         FS_StripExtension (r_refdef.worldmodel->name, name, sizeof (name));
3411         strlcat (name, ".rtlights", sizeof (name));
3412         lightsstring = (char *)FS_LoadFile(name, tempmempool, false, NULL);
3413         if (lightsstring)
3414         {
3415                 s = lightsstring;
3416                 n = 0;
3417                 while (*s)
3418                 {
3419                         t = s;
3420                         /*
3421                         shadow = true;
3422                         for (;COM_Parse(t, true) && strcmp(
3423                         if (COM_Parse(t, true))
3424                         {
3425                                 if (com_token[0] == '!')
3426                                 {
3427                                         shadow = false;
3428                                         origin[0] = atof(com_token+1);
3429                                 }
3430                                 else
3431                                         origin[0] = atof(com_token);
3432                                 if (Com_Parse(t
3433                         }
3434                         */
3435                         t = s;
3436                         while (*s && *s != '\n' && *s != '\r')
3437                                 s++;
3438                         if (!*s)
3439                                 break;
3440                         tempchar = *s;
3441                         shadow = true;
3442                         // check for modifier flags
3443                         if (*t == '!')
3444                         {
3445                                 shadow = false;
3446                                 t++;
3447                         }
3448               &