]> icculus.org git repositories - divverent/darkplaces.git/blob - r_light.c
some optimizations to q3bsp surface rendering
[divverent/darkplaces.git] / r_light.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_light.c
21
22 #include "quakedef.h"
23 #include "cl_collision.h"
24 #include "r_shadow.h"
25
26 dlight_t r_dlight[MAX_DLIGHTS];
27 int r_numdlights = 0;
28
29 cvar_t r_modellights = {CVAR_SAVE, "r_modellights", "4"};
30 cvar_t r_vismarklights = {0, "r_vismarklights", "1"};
31 cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1"};
32 cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0"};
33
34 static rtexture_t *lightcorona;
35 static rtexturepool_t *lighttexturepool;
36
37 void r_light_start(void)
38 {
39         float dx, dy;
40         int x, y, a;
41         qbyte pixels[32][32][4];
42         lighttexturepool = R_AllocTexturePool();
43         for (y = 0;y < 32;y++)
44         {
45                 dy = (y - 15.5f) * (1.0f / 16.0f);
46                 for (x = 0;x < 32;x++)
47                 {
48                         dx = (x - 15.5f) * (1.0f / 16.0f);
49                         a = ((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2));
50                         a = bound(0, a, 255);
51                         pixels[y][x][0] = a;
52                         pixels[y][x][1] = a;
53                         pixels[y][x][2] = a;
54                         pixels[y][x][3] = 255;
55                 }
56         }
57         lightcorona = R_LoadTexture2D(lighttexturepool, "lightcorona", 32, 32, &pixels[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
58 }
59
60 void r_light_shutdown(void)
61 {
62         lighttexturepool = NULL;
63         lightcorona = NULL;
64 }
65
66 void r_light_newmap(void)
67 {
68         int i;
69         for (i = 0;i < 256;i++)
70                 d_lightstylevalue[i] = 264;             // normal light value
71 }
72
73 void R_Light_Init(void)
74 {
75         Cvar_RegisterVariable(&r_modellights);
76         Cvar_RegisterVariable(&r_vismarklights);
77         Cvar_RegisterVariable(&r_coronas);
78         Cvar_RegisterVariable(&gl_flashblend);
79         R_RegisterModule("R_Light", r_light_start, r_light_shutdown, r_light_newmap);
80 }
81
82 /*
83 ==================
84 R_UpdateLights
85 ==================
86 */
87 void R_UpdateLights(void)
88 {
89         float frac;
90         int i, j, k, l;
91
92 // light animations
93 // 'm' is normal light, 'a' is no light, 'z' is double bright
94         i = (int)(cl.time * 10);
95         frac = (cl.time * 10) - i;
96         for (j = 0;j < MAX_LIGHTSTYLES;j++)
97         {
98                 if (!cl_lightstyle || !cl_lightstyle[j].length)
99                 {
100                         d_lightstylevalue[j] = 256;
101                         continue;
102                 }
103                 k = i % cl_lightstyle[j].length;
104                 l = (i-1) % cl_lightstyle[j].length;
105                 k = cl_lightstyle[j].map[k] - 'a';
106                 l = cl_lightstyle[j].map[l] - 'a';
107                 d_lightstylevalue[j] = ((k*frac)+(l*(1-frac)))*22;
108         }
109
110         r_numdlights = 0;
111         c_dlights = 0;
112
113         if (!r_dynamic.integer || !cl_dlights)
114                 return;
115
116         // TODO: optimize to not scan whole cl_dlights array if possible
117         for (i = 0;i < MAX_DLIGHTS;i++)
118         {
119                 if (cl_dlights[i].radius > 0)
120                 {
121                         R_RTLight_UpdateFromDLight(&cl_dlights[i].rtlight, &cl_dlights[i], false);
122                         // FIXME: use pointer instead of copy
123                         r_dlight[r_numdlights++] = cl_dlights[i];
124                         c_dlights++; // count every dlight in use
125                 }
126         }
127 }
128
129 void R_DrawCoronas(void)
130 {
131         int i, lnum, flag;
132         float cscale, scale, viewdist, dist;
133         dlight_t *light;
134         if (r_coronas.value < 0.01)
135                 return;
136         R_Mesh_Matrix(&r_identitymatrix);
137         viewdist = DotProduct(r_vieworigin, r_viewforward);
138         flag = r_rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
139         for (lnum = 0, light = r_shadow_worldlightchain;light;light = light->next, lnum++)
140         {
141                 if ((light->flags & flag) && light->corona * r_coronas.value > 0 && (r_shadow_debuglight.integer < 0 || r_shadow_debuglight.integer == lnum) && (dist = (DotProduct(light->rtlight.shadoworigin, r_viewforward) - viewdist)) >= 24.0f && CL_TraceLine(light->rtlight.shadoworigin, r_vieworigin, NULL, NULL, true, NULL, SUPERCONTENTS_SOLID) == 1)
142                 {
143                         cscale = light->rtlight.corona * r_coronas.value * 0.25f;
144                         scale = light->rtlight.radius * light->rtlight.coronasizescale;
145                         R_DrawSprite(GL_ONE, GL_ONE, lightcorona, true, light->rtlight.shadoworigin, r_viewright, r_viewup, scale, -scale, -scale, scale, light->rtlight.color[0] * cscale, light->rtlight.color[1] * cscale, light->rtlight.color[2] * cscale, 1);
146                 }
147         }
148         for (i = 0, light = r_dlight;i < r_numdlights;i++, light++)
149         {
150                 if ((light->flags & flag) && light->corona * r_coronas.value > 0 && (dist = (DotProduct(light->origin, r_viewforward) - viewdist)) >= 24.0f && CL_TraceLine(light->origin, r_vieworigin, NULL, NULL, true, NULL, SUPERCONTENTS_SOLID) == 1)
151                 {
152                         cscale = light->corona * r_coronas.value * 0.25f;
153                         scale = light->rtlight.radius * light->rtlight.coronasizescale;
154                         if (gl_flashblend.integer)
155                         {
156                                 cscale *= 4.0f;
157                                 scale *= 2.0f;
158                         }
159                         R_DrawSprite(GL_ONE, GL_ONE, lightcorona, true, light->origin, r_viewright, r_viewup, scale, -scale, -scale, scale, light->color[0] * cscale, light->color[1] * cscale, light->color[2] * cscale, 1);
160                 }
161         }
162 }
163
164 /*
165 =============================================================================
166
167 DYNAMIC LIGHTS
168
169 =============================================================================
170 */
171
172 static int lightpvsbytes;
173 static qbyte lightpvs[(MAX_MAP_LEAFS+7)>>3];
174
175 /*
176 =============
177 R_MarkLights
178 =============
179 */
180 static void R_RecursiveMarkLights(entity_render_t *ent, vec3_t lightorigin, dlight_t *light, int bit, int bitindex, mnode_t *node, qbyte *pvs, int pvsbits)
181 {
182         int i;
183         mleaf_t *leaf;
184         float dist;
185
186         // for comparisons to minimum acceptable light
187         while(node->contents >= 0)
188         {
189                 dist = PlaneDiff(lightorigin, node->plane);
190                 if (dist > light->rtlight.lightmap_cullradius)
191                         node = node->children[0];
192                 else
193                 {
194                         if (dist >= -light->rtlight.lightmap_cullradius)
195                                 R_RecursiveMarkLights(ent, lightorigin, light, bit, bitindex, node->children[0], pvs, pvsbits);
196                         node = node->children[1];
197                 }
198         }
199
200         // check if leaf is visible according to pvs
201         leaf = (mleaf_t *)node;
202         i = leaf->clusterindex;
203         if (leaf->nummarksurfaces && (i >= pvsbits || CHECKPVSBIT(pvs, i)))
204         {
205                 int *surfacepvsframes, d, impacts, impactt;
206                 float sdist, maxdist, dist2, impact[3];
207                 msurface_t *surf;
208                 // mark the polygons
209                 maxdist = light->rtlight.lightmap_cullradius2;
210                 surfacepvsframes = ent->model->brushq1.surfacepvsframes;
211                 for (i = 0;i < leaf->nummarksurfaces;i++)
212                 {
213                         if (surfacepvsframes[leaf->firstmarksurface[i]] != ent->model->brushq1.pvsframecount)
214                                 continue;
215                         surf = ent->model->brushq1.surfaces + leaf->firstmarksurface[i];
216                         dist = sdist = PlaneDiff(lightorigin, surf->plane);
217                         if (surf->flags & SURF_PLANEBACK)
218                                 dist = -dist;
219
220                         if (dist < -0.25f && !(surf->flags & SURF_LIGHTBOTHSIDES))
221                                 continue;
222
223                         dist2 = dist * dist;
224                         if (dist2 >= maxdist)
225                                 continue;
226
227                         VectorCopy(lightorigin, impact);
228                         if (surf->plane->type >= 3)
229                                 VectorMA(impact, -sdist, surf->plane->normal, impact);
230                         else
231                                 impact[surf->plane->type] -= sdist;
232
233                         impacts = DotProduct (impact, surf->texinfo->vecs[0]) + surf->texinfo->vecs[0][3] - surf->texturemins[0];
234
235                         d = bound(0, impacts, surf->extents[0] + 16) - impacts;
236                         dist2 += d * d;
237                         if (dist2 > maxdist)
238                                 continue;
239
240                         impactt = DotProduct (impact, surf->texinfo->vecs[1]) + surf->texinfo->vecs[1][3] - surf->texturemins[1];
241
242                         d = bound(0, impactt, surf->extents[1] + 16) - impactt;
243                         dist2 += d * d;
244                         if (dist2 > maxdist)
245                                 continue;
246
247                         if (surf->dlightframe != r_framecount) // not dynamic until now
248                         {
249                                 surf->dlightbits[0] = surf->dlightbits[1] = surf->dlightbits[2] = surf->dlightbits[3] = surf->dlightbits[4] = surf->dlightbits[5] = surf->dlightbits[6] = surf->dlightbits[7] = 0;
250                                 surf->dlightframe = r_framecount;
251                                 surf->cached_dlight = true;
252                         }
253                         surf->dlightbits[bitindex] |= bit;
254                 }
255         }
256 }
257
258 void R_MarkLights(entity_render_t *ent)
259 {
260         int i, bit, bitindex;
261         dlight_t *light;
262         vec3_t lightorigin;
263         if (!gl_flashblend.integer && r_dynamic.integer && ent->model && ent->model->brushq1.num_leafs)
264         {
265                 for (i = 0, light = r_dlight;i < r_numdlights;i++, light++)
266                 {
267                         bit = 1 << (i & 31);
268                         bitindex = i >> 5;
269                         Matrix4x4_Transform(&ent->inversematrix, light->origin, lightorigin);
270                         lightpvsbytes = 0;
271                         if (r_vismarklights.integer && ent->model->brush.FatPVS)
272                                 lightpvsbytes = ent->model->brush.FatPVS(ent->model, lightorigin, 0, lightpvs, sizeof(lightpvs));
273                         R_RecursiveMarkLights(ent, lightorigin, light, bit, bitindex, ent->model->brushq1.nodes + ent->model->brushq1.hulls[0].firstclipnode, lightpvs, min(lightpvsbytes * 8, ent->model->brush.num_pvsclusters));
274                 }
275         }
276 }
277
278 /*
279 =============================================================================
280
281 LIGHT SAMPLING
282
283 =============================================================================
284 */
285
286 void R_CompleteLightPoint(vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal, const vec3_t p, int dynamic, const mleaf_t *leaf)
287 {
288         VectorClear(diffusecolor);
289         VectorClear(diffusenormal);
290
291         if (!r_fullbright.integer && r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint)
292         {
293                 ambientcolor[0] = ambientcolor[1] = ambientcolor[2] = r_ambient.value * (2.0f / 128.0f);
294                 r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, p, ambientcolor, diffusecolor, diffusenormal);
295         }
296         else
297                 VectorSet(ambientcolor, 1, 1, 1);
298
299         // FIXME: this .lights related stuff needs to be ported into the Mod_Q1BSP code
300         if (r_refdef.worldmodel->brushq1.numlights)
301         {
302                 int i;
303                 vec3_t v;
304                 float f;
305                 mlight_t *sl;
306                 for (i = 0;i < r_refdef.worldmodel->brushq1.numlights;i++)
307                 {
308                         sl = r_refdef.worldmodel->brushq1.lights + i;
309                         if (d_lightstylevalue[sl->style] > 0)
310                         {
311                                 VectorSubtract (p, sl->origin, v);
312                                 f = ((1.0f / (DotProduct(v, v) * sl->falloff + sl->distbias)) - sl->subtract);
313                                 if (f > 0 && CL_TraceLine(p, sl->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1)
314                                 {
315                                         f *= d_lightstylevalue[sl->style] * (1.0f / 65536.0f);
316                                         VectorMA(ambientcolor, f, sl->light, ambientcolor);
317                                 }
318                         }
319                 }
320         }
321
322         if (dynamic)
323         {
324                 int i;
325                 float f, v[3];
326                 dlight_t *light;
327                 // FIXME: this really should handle dlights as diffusecolor/diffusenormal somehow
328                 for (i = 0;i < r_numdlights;i++)
329                 {
330                         light = r_dlight + i;
331                         VectorSubtract(p, light->origin, v);
332                         f = DotProduct(v, v);
333                         if (f < light->rtlight.lightmap_cullradius2 && CL_TraceLine(p, light->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1)
334                         {
335                                 f = (1.0f / (f + LIGHTOFFSET)) - light->rtlight.lightmap_subtract;
336                                 VectorMA(ambientcolor, f, light->rtlight.lightmap_light, ambientcolor);
337                         }
338                 }
339         }
340 }
341
342 typedef struct
343 {
344         vec3_t origin;
345         //vec_t cullradius2;
346         vec3_t light;
347         // how much this light would contribute to ambient if replaced
348         vec3_t ambientlight;
349         vec_t subtract;
350         vec_t falloff;
351         vec_t offset;
352         // used for choosing only the brightest lights
353         vec_t intensity;
354 }
355 nearlight_t;
356
357 static int nearlights;
358 static nearlight_t nearlight[MAX_DLIGHTS];
359
360 int R_LightModel(float *ambient4f, float *diffusecolor, float *diffusenormal, const entity_render_t *ent, float colorr, float colorg, float colorb, float colora, int worldcoords)
361 {
362         int i, j, maxnearlights;
363         float v[3], f, mscale, stylescale, intensity, ambientcolor[3], tempdiffusenormal[3];
364         nearlight_t *nl;
365         mlight_t *sl;
366         dlight_t *light;
367
368         nearlights = 0;
369         maxnearlights = r_modellights.integer;
370         ambient4f[0] = ambient4f[1] = ambient4f[2] = r_ambient.value * (2.0f / 128.0f);
371         VectorClear(diffusecolor);
372         VectorClear(diffusenormal);
373         if (!(ent->flags & RENDER_LIGHT))
374         {
375                 // highly rare
376                 VectorSet(ambient4f, 1, 1, 1);
377                 maxnearlights = 0;
378         }
379         else if (r_lightmapintensity <= 0 && !(ent->flags & RENDER_TRANSPARENT))
380                 maxnearlights = 0;
381         else
382         {
383                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint)
384                 {
385                         r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, ent->origin, ambient4f, diffusecolor, tempdiffusenormal);
386                         Matrix4x4_Transform3x3(&ent->inversematrix, tempdiffusenormal, diffusenormal);
387                         VectorNormalize(diffusenormal);
388                 }
389                 else
390                         VectorSet(ambient4f, 1, 1, 1);
391         }
392
393         // scale of the model's coordinate space, to alter light attenuation to match
394         // make the mscale squared so it can scale the squared distance results
395         mscale = ent->scale * ent->scale;
396         // FIXME: no support for .lights on non-Q1BSP?
397         nl = &nearlight[0];
398         for (i = 0;i < ent->numentlights;i++)
399         {
400                 sl = r_refdef.worldmodel->brushq1.lights + ent->entlights[i];
401                 stylescale = d_lightstylevalue[sl->style] * (1.0f / 65536.0f);
402                 VectorSubtract (ent->origin, sl->origin, v);
403                 f = ((1.0f / (DotProduct(v, v) * sl->falloff + sl->distbias)) - sl->subtract) * stylescale;
404                 VectorScale(sl->light, f, ambientcolor);
405                 intensity = DotProduct(ambientcolor, ambientcolor);
406                 if (f < 0)
407                         intensity *= -1.0f;
408                 if (nearlights < maxnearlights)
409                         j = nearlights++;
410                 else
411                 {
412                         for (j = 0;j < maxnearlights;j++)
413                         {
414                                 if (nearlight[j].intensity < intensity)
415                                 {
416                                         if (nearlight[j].intensity > 0)
417                                                 VectorAdd(ambient4f, nearlight[j].ambientlight, ambient4f);
418                                         break;
419                                 }
420                         }
421                 }
422                 if (j >= maxnearlights)
423                 {
424                         // this light is less significant than all others,
425                         // add it to ambient
426                         if (intensity > 0)
427                                 VectorAdd(ambient4f, ambientcolor, ambient4f);
428                 }
429                 else
430                 {
431                         nl = nearlight + j;
432                         nl->intensity = intensity;
433                         // transform the light into the model's coordinate system
434                         if (worldcoords)
435                                 VectorCopy(sl->origin, nl->origin);
436                         else
437                                 Matrix4x4_Transform(&ent->inversematrix, sl->origin, nl->origin);
438                         // integrate mscale into falloff, for maximum speed
439                         nl->falloff = sl->falloff * mscale;
440                         VectorCopy(ambientcolor, nl->ambientlight);
441                         nl->light[0] = sl->light[0] * stylescale * colorr * 4.0f;
442                         nl->light[1] = sl->light[1] * stylescale * colorg * 4.0f;
443                         nl->light[2] = sl->light[2] * stylescale * colorb * 4.0f;
444                         nl->subtract = sl->subtract;
445                         nl->offset = sl->distbias;
446                 }
447         }
448         if (!r_rtdlight || (ent->flags & RENDER_TRANSPARENT))
449         {
450                 // FIXME: this dlighting doesn't look like rtlights
451                 for (i = 0;i < r_numdlights;i++)
452                 {
453                         light = r_dlight + i;
454                         VectorCopy(light->origin, v);
455                         if (v[0] < ent->mins[0]) v[0] = ent->mins[0];if (v[0] > ent->maxs[0]) v[0] = ent->maxs[0];
456                         if (v[1] < ent->mins[1]) v[1] = ent->mins[1];if (v[1] > ent->maxs[1]) v[1] = ent->maxs[1];
457                         if (v[2] < ent->mins[2]) v[2] = ent->mins[2];if (v[2] > ent->maxs[2]) v[2] = ent->maxs[2];
458                         VectorSubtract (v, light->origin, v);
459                         if (DotProduct(v, v) < light->rtlight.lightmap_cullradius2)
460                         {
461                                 if (CL_TraceLine(ent->origin, light->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) != 1)
462                                         continue;
463                                 VectorSubtract (ent->origin, light->origin, v);
464                                 f = ((1.0f / (DotProduct(v, v) + LIGHTOFFSET)) - light->rtlight.lightmap_subtract);
465                                 VectorScale(light->rtlight.lightmap_light, f, ambientcolor);
466                                 intensity = DotProduct(ambientcolor, ambientcolor);
467                                 if (f < 0)
468                                         intensity *= -1.0f;
469                                 if (nearlights < maxnearlights)
470                                         j = nearlights++;
471                                 else
472                                 {
473                                         for (j = 0;j < maxnearlights;j++)
474                                         {
475                                                 if (nearlight[j].intensity < intensity)
476                                                 {
477                                                         if (nearlight[j].intensity > 0)
478                                                                 VectorAdd(ambient4f, nearlight[j].ambientlight, ambient4f);
479                                                         break;
480                                                 }
481                                         }
482                                 }
483                                 if (j >= maxnearlights)
484                                 {
485                                         // this light is less significant than all others,
486                                         // add it to ambient
487                                         if (intensity > 0)
488                                                 VectorAdd(ambient4f, ambientcolor, ambient4f);
489                                 }
490                                 else
491                                 {
492                                         nl = nearlight + j;
493                                         nl->intensity = intensity;
494                                         // transform the light into the model's coordinate system
495                                         if (worldcoords)
496                                                 VectorCopy(light->origin, nl->origin);
497                                         else
498                                         {
499                                                 Matrix4x4_Transform(&ent->inversematrix, light->origin, nl->origin);
500                                                 /*
501                                                 Con_Printf("%i %s : %f %f %f : %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n"
502                                                 , rd - r_dlight, ent->model->name
503                                                 , light->origin[0], light->origin[1], light->origin[2]
504                                                 , nl->origin[0], nl->origin[1], nl->origin[2]
505                                                 , ent->inversematrix.m[0][0], ent->inversematrix.m[0][1], ent->inversematrix.m[0][2], ent->inversematrix.m[0][3]
506                                                 , ent->inversematrix.m[1][0], ent->inversematrix.m[1][1], ent->inversematrix.m[1][2], ent->inversematrix.m[1][3]
507                                                 , ent->inversematrix.m[2][0], ent->inversematrix.m[2][1], ent->inversematrix.m[2][2], ent->inversematrix.m[2][3]
508                                                 , ent->inversematrix.m[3][0], ent->inversematrix.m[3][1], ent->inversematrix.m[3][2], ent->inversematrix.m[3][3]);
509                                                 */
510                                         }
511                                         // integrate mscale into falloff, for maximum speed
512                                         nl->falloff = mscale;
513                                         VectorCopy(ambientcolor, nl->ambientlight);
514                                         nl->light[0] = light->rtlight.lightmap_light[0] * colorr * 4.0f;
515                                         nl->light[1] = light->rtlight.lightmap_light[1] * colorg * 4.0f;
516                                         nl->light[2] = light->rtlight.lightmap_light[2] * colorb * 4.0f;
517                                         nl->subtract = light->rtlight.lightmap_subtract;
518                                         nl->offset = LIGHTOFFSET;
519                                 }
520                         }
521                 }
522         }
523         ambient4f[0] *= colorr;
524         ambient4f[1] *= colorg;
525         ambient4f[2] *= colorb;
526         ambient4f[3] = colora;
527         diffusecolor[0] *= colorr;
528         diffusecolor[1] *= colorg;
529         diffusecolor[2] *= colorb;
530         return nearlights != 0 || DotProduct(diffusecolor, diffusecolor) > 0;
531 }
532
533 void R_LightModel_CalcVertexColors(const float *ambientcolor4f, const float *diffusecolor, const float *diffusenormal, int numverts, const float *vertex3f, const float *normal3f, float *color4f)
534 {
535         int i, j, usediffuse;
536         float color[4], v[3], dot, dist2, f, dnormal[3];
537         nearlight_t *nl;
538         usediffuse = DotProduct(diffusecolor, diffusecolor) > 0;
539         // negate the diffuse normal to avoid the need to negate the
540         // dotproduct on each vertex
541         VectorNegate(diffusenormal, dnormal);
542         if (usediffuse)
543                 VectorNormalize(dnormal);
544         // directional shading code here
545         for (i = 0;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
546         {
547                 VectorCopy4(ambientcolor4f, color);
548
549                 // silly directional diffuse shading
550                 if (usediffuse)
551                 {
552                         dot = DotProduct(normal3f, dnormal);
553                         if (dot > 0)
554                                 VectorMA(color, dot, diffusecolor, color);
555                 }
556
557                 // pretty good lighting
558                 for (j = 0, nl = &nearlight[0];j < nearlights;j++, nl++)
559                 {
560                         VectorSubtract(nl->origin, vertex3f, v);
561                         // first eliminate negative lighting (back side)
562                         dot = DotProduct(normal3f, v);
563                         if (dot > 0)
564                         {
565                                 // we'll need this again later to normalize the dotproduct
566                                 dist2 = DotProduct(v,v);
567                                 // do the distance attenuation math
568                                 f = (1.0f / (dist2 * nl->falloff + nl->offset)) - nl->subtract;
569                                 if (f > 0)
570                                 {
571                                         // we must divide dot by sqrt(dist2) to compensate for
572                                         // the fact we did not normalize v before doing the
573                                         // dotproduct, the result is in the range 0 to 1 (we
574                                         // eliminated negative numbers already)
575                                         f *= dot / sqrt(dist2);
576                                         // blend in the lighting
577                                         VectorMA(color, f, nl->light, color);
578                                 }
579                         }
580                 }
581                 VectorCopy4(color, color4f);
582         }
583 }
584
585 void R_UpdateEntLights(entity_render_t *ent)
586 {
587         int i;
588         const mlight_t *sl;
589         vec3_t v;
590         if (r_lightmapintensity <= 0 && !(ent->flags & RENDER_TRANSPARENT))
591                 return;
592         VectorSubtract(ent->origin, ent->entlightsorigin, v);
593         if (ent->entlightsframe != (r_framecount - 1) || (realtime > ent->entlightstime && DotProduct(v,v) >= 1.0f))
594         {
595                 ent->entlightstime = realtime + 0.1;
596                 VectorCopy(ent->origin, ent->entlightsorigin);
597                 ent->numentlights = 0;
598                 if (r_refdef.worldmodel)
599                         for (i = 0, sl = r_refdef.worldmodel->brushq1.lights;i < r_refdef.worldmodel->brushq1.numlights && ent->numentlights < MAXENTLIGHTS;i++, sl++)
600                                 if (CL_TraceLine(ent->origin, sl->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1)
601                                         ent->entlights[ent->numentlights++] = i;
602         }
603         ent->entlightsframe = r_framecount;
604 }
605