implemented occlusion query support on corona rendering, this enables
[divverent/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "cl_dyntexture.h"
24 #include "r_shadow.h"
25 #include "polygon.h"
26 #include "image.h"
27
28 mempool_t *r_main_mempool;
29 rtexturepool_t *r_main_texturepool;
30
31 //
32 // screen size info
33 //
34 r_refdef_t r_refdef;
35
36 cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
37 cvar_t r_useinfinitefarclip = {CVAR_SAVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
38 cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" };
39 cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
40 cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
41 cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
42 cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
43 cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
44 cvar_t r_showshadowvolumes = {0, "r_showshadowvolumes", "0", "shows areas shadowed by lights, useful for finding out why some areas of a map render slowly (bright blue = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
45 cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
46 cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
47 cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
48 cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
49 cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
50 cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
51 cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"};
52 cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
53 cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling"};
54 cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
55 cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
56 cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
57 cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"};
58 cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"};
59 cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
60 cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
61 cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows DOWN, otherwise use the model lighting"};
62 cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
63 cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
64 cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
65 cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "2", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
66 cvar_t r_fog_exp2 = {0, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
67 cvar_t r_drawfog = {CVAR_SAVE, "r_drawfog", "1", "allows one to disable fog rendering"};
68
69 cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
70 cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
71 cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
72 cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
73 cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
74 cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
75 cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
76 cvar_t gl_skyclip = {0, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
77
78 cvar_t r_textureunits = {0, "r_textureunits", "32", "number of hardware texture units reported by driver (note: setting this to 1 turns off gl_combine)"};
79
80 cvar_t r_glsl = {CVAR_SAVE, "r_glsl", "1", "enables use of OpenGL 2.0 pixel shaders for lighting"};
81 cvar_t r_glsl_contrastboost = {CVAR_SAVE, "r_glsl_contrastboost", "1", "by how much to multiply the contrast in dark areas (1 is no change)"};
82 cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
83 cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
84 cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
85 cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
86 cvar_t r_glsl_postprocess = {CVAR_SAVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
87 cvar_t r_glsl_postprocess_uservec1 = {CVAR_SAVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
88 cvar_t r_glsl_postprocess_uservec2 = {CVAR_SAVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
89 cvar_t r_glsl_postprocess_uservec3 = {CVAR_SAVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
90 cvar_t r_glsl_postprocess_uservec4 = {CVAR_SAVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
91 cvar_t r_glsl_usegeneric = {CVAR_SAVE, "r_glsl_usegeneric", "1", "use shaders for rendering simple geometry (rather than conventional fixed-function rendering for this purpose)"};
92
93 cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
94 cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
95 cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
96 cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
97 cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
98
99 cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "1", "enables animation smoothing on sprites (requires r_lerpmodels 1)"};
100 cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
101 cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
102 cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
103
104 cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
105 cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"};
106 cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"};
107 cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"};
108 cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
109 cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exagerated the glow is"};
110 cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"};
111
112 cvar_t r_hdr = {CVAR_SAVE, "r_hdr", "0", "enables High Dynamic Range bloom effect (higher quality version of r_bloom)"};
113 cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
114 cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
115 cvar_t r_hdr_range = {CVAR_SAVE, "r_hdr_range", "4", "how much dynamic range to render bloom with (equivilant to multiplying r_bloom_brighten by this value and dividing r_bloom_colorscale by this value)"};
116
117 cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
118
119 cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
120
121 cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers)"};
122
123 cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
124 cvar_t r_batchmode = {0, "r_batchmode", "1", "selects method of rendering multiple surfaces with one driver call (values are 0, 1, 2, etc...)"};
125 cvar_t r_track_sprites = {CVAR_SAVE, "r_track_sprites", "1", "track SPR_LABEL* sprites by putting them as indicator at the screen border to rotate to"};
126 cvar_t r_track_sprites_flags = {CVAR_SAVE, "r_track_sprites_flags", "1", "1: Rotate sprites accodringly, 2: Make it a continuous rotation"};
127 cvar_t r_track_sprites_scalew = {CVAR_SAVE, "r_track_sprites_scalew", "1", "width scaling of tracked sprites"};
128 cvar_t r_track_sprites_scaleh = {CVAR_SAVE, "r_track_sprites_scaleh", "1", "height scaling of tracked sprites"};
129
130 extern cvar_t v_glslgamma;
131
132 extern qboolean v_flipped_state;
133
134 static struct r_bloomstate_s
135 {
136         qboolean enabled;
137         qboolean hdr;
138
139         int bloomwidth, bloomheight;
140
141         int screentexturewidth, screentextureheight;
142         rtexture_t *texture_screen;
143
144         int bloomtexturewidth, bloomtextureheight;
145         rtexture_t *texture_bloom;
146
147         // arrays for rendering the screen passes
148         float screentexcoord2f[8];
149         float bloomtexcoord2f[8];
150         float offsettexcoord2f[8];
151 }
152 r_bloomstate;
153
154 r_waterstate_t r_waterstate;
155
156 // shadow volume bsp struct with automatically growing nodes buffer
157 svbsp_t r_svbsp;
158
159 rtexture_t *r_texture_blanknormalmap;
160 rtexture_t *r_texture_white;
161 rtexture_t *r_texture_grey128;
162 rtexture_t *r_texture_black;
163 rtexture_t *r_texture_notexture;
164 rtexture_t *r_texture_whitecube;
165 rtexture_t *r_texture_normalizationcube;
166 rtexture_t *r_texture_fogattenuation;
167 rtexture_t *r_texture_gammaramps;
168 unsigned int r_texture_gammaramps_serial;
169 //rtexture_t *r_texture_fogintensity;
170
171 unsigned int r_queries[R_MAX_OCCLUSION_QUERIES];
172 unsigned int r_numqueries;
173 unsigned int r_maxqueries;
174
175 char r_qwskincache[MAX_SCOREBOARD][MAX_QPATH];
176 skinframe_t *r_qwskincache_skinframe[MAX_SCOREBOARD];
177
178 // vertex coordinates for a quad that covers the screen exactly
179 const static float r_screenvertex3f[12] =
180 {
181         0, 0, 0,
182         1, 0, 0,
183         1, 1, 0,
184         0, 1, 0
185 };
186
187 extern void R_DrawModelShadows(void);
188
189 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
190 {
191         int i;
192         for (i = 0;i < verts;i++)
193         {
194                 out[0] = in[0] * r;
195                 out[1] = in[1] * g;
196                 out[2] = in[2] * b;
197                 out[3] = in[3];
198                 in += 4;
199                 out += 4;
200         }
201 }
202
203 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
204 {
205         int i;
206         for (i = 0;i < verts;i++)
207         {
208                 out[0] = r;
209                 out[1] = g;
210                 out[2] = b;
211                 out[3] = a;
212                 out += 4;
213         }
214 }
215
216 // FIXME: move this to client?
217 void FOG_clear(void)
218 {
219         if (gamemode == GAME_NEHAHRA)
220         {
221                 Cvar_Set("gl_fogenable", "0");
222                 Cvar_Set("gl_fogdensity", "0.2");
223                 Cvar_Set("gl_fogred", "0.3");
224                 Cvar_Set("gl_foggreen", "0.3");
225                 Cvar_Set("gl_fogblue", "0.3");
226         }
227         r_refdef.fog_density = 0;
228         r_refdef.fog_red = 0;
229         r_refdef.fog_green = 0;
230         r_refdef.fog_blue = 0;
231         r_refdef.fog_alpha = 1;
232         r_refdef.fog_start = 0;
233         r_refdef.fog_end = 0;
234 }
235
236 float FogForDistance(vec_t dist)
237 {
238         unsigned int fogmasktableindex = (unsigned int)(dist * r_refdef.fogmasktabledistmultiplier);
239         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
240 }
241
242 float FogPoint_World(const vec3_t p)
243 {
244         return FogForDistance(VectorDistance((p), r_refdef.view.origin));
245 }
246
247 float FogPoint_Model(const vec3_t p)
248 {
249         return FogForDistance(VectorDistance((p), rsurface.modelorg) * Matrix4x4_ScaleFromMatrix(&rsurface.matrix));
250 }
251
252 static void R_BuildBlankTextures(void)
253 {
254         unsigned char data[4];
255         data[2] = 128; // normal X
256         data[1] = 128; // normal Y
257         data[0] = 255; // normal Z
258         data[3] = 128; // height
259         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
260         data[0] = 255;
261         data[1] = 255;
262         data[2] = 255;
263         data[3] = 255;
264         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
265         data[0] = 128;
266         data[1] = 128;
267         data[2] = 128;
268         data[3] = 255;
269         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
270         data[0] = 0;
271         data[1] = 0;
272         data[2] = 0;
273         data[3] = 255;
274         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
275 }
276
277 static void R_BuildNoTexture(void)
278 {
279         int x, y;
280         unsigned char pix[16][16][4];
281         // this makes a light grey/dark grey checkerboard texture
282         for (y = 0;y < 16;y++)
283         {
284                 for (x = 0;x < 16;x++)
285                 {
286                         if ((y < 8) ^ (x < 8))
287                         {
288                                 pix[y][x][0] = 128;
289                                 pix[y][x][1] = 128;
290                                 pix[y][x][2] = 128;
291                                 pix[y][x][3] = 255;
292                         }
293                         else
294                         {
295                                 pix[y][x][0] = 64;
296                                 pix[y][x][1] = 64;
297                                 pix[y][x][2] = 64;
298                                 pix[y][x][3] = 255;
299                         }
300                 }
301         }
302         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, NULL);
303 }
304
305 static void R_BuildWhiteCube(void)
306 {
307         unsigned char data[6*1*1*4];
308         memset(data, 255, sizeof(data));
309         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
310 }
311
312 static void R_BuildNormalizationCube(void)
313 {
314         int x, y, side;
315         vec3_t v;
316         vec_t s, t, intensity;
317 #define NORMSIZE 64
318         unsigned char data[6][NORMSIZE][NORMSIZE][4];
319         for (side = 0;side < 6;side++)
320         {
321                 for (y = 0;y < NORMSIZE;y++)
322                 {
323                         for (x = 0;x < NORMSIZE;x++)
324                         {
325                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
326                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
327                                 switch(side)
328                                 {
329                                 default:
330                                 case 0:
331                                         v[0] = 1;
332                                         v[1] = -t;
333                                         v[2] = -s;
334                                         break;
335                                 case 1:
336                                         v[0] = -1;
337                                         v[1] = -t;
338                                         v[2] = s;
339                                         break;
340                                 case 2:
341                                         v[0] = s;
342                                         v[1] = 1;
343                                         v[2] = t;
344                                         break;
345                                 case 3:
346                                         v[0] = s;
347                                         v[1] = -1;
348                                         v[2] = -t;
349                                         break;
350                                 case 4:
351                                         v[0] = s;
352                                         v[1] = -t;
353                                         v[2] = 1;
354                                         break;
355                                 case 5:
356                                         v[0] = -s;
357                                         v[1] = -t;
358                                         v[2] = -1;
359                                         break;
360                                 }
361                                 intensity = 127.0f / sqrt(DotProduct(v, v));
362                                 data[side][y][x][2] = (unsigned char)(128.0f + intensity * v[0]);
363                                 data[side][y][x][1] = (unsigned char)(128.0f + intensity * v[1]);
364                                 data[side][y][x][0] = (unsigned char)(128.0f + intensity * v[2]);
365                                 data[side][y][x][3] = 255;
366                         }
367                 }
368         }
369         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, &data[0][0][0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
370 }
371
372 static void R_BuildFogTexture(void)
373 {
374         int x, b;
375 #define FOGWIDTH 256
376         unsigned char data1[FOGWIDTH][4];
377         //unsigned char data2[FOGWIDTH][4];
378         double d, r, alpha;
379
380         r_refdef.fogmasktable_start = r_refdef.fog_start;
381         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
382         r_refdef.fogmasktable_range = r_refdef.fogrange;
383         r_refdef.fogmasktable_density = r_refdef.fog_density;
384
385         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
386         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
387         {
388                 d = (x * r - r_refdef.fogmasktable_start);
389                 if(developer.integer >= 100)
390                         Con_Printf("%f ", d);
391                 d = max(0, d);
392                 if (r_fog_exp2.integer)
393                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
394                 else
395                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
396                 if(developer.integer >= 100)
397                         Con_Printf(" : %f ", alpha);
398                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
399                 if(developer.integer >= 100)
400                         Con_Printf(" = %f\n", alpha);
401                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
402         }
403
404         for (x = 0;x < FOGWIDTH;x++)
405         {
406                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
407                 data1[x][0] = b;
408                 data1[x][1] = b;
409                 data1[x][2] = b;
410                 data1[x][3] = 255;
411                 //data2[x][0] = 255 - b;
412                 //data2[x][1] = 255 - b;
413                 //data2[x][2] = 255 - b;
414                 //data2[x][3] = 255;
415         }
416         if (r_texture_fogattenuation)
417         {
418                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, FOGWIDTH, 1);
419                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, FOGWIDTH, 1);
420         }
421         else
422         {
423                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
424                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
425         }
426 }
427
428 static const char *builtinshaderstring =
429 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
430 "// written by Forest 'LordHavoc' Hale\n"
431 "\n"
432 "// common definitions between vertex shader and fragment shader:\n"
433 "\n"
434 "//#ifdef __GLSL_CG_DATA_TYPES\n"
435 "//# define myhalf half\n"
436 "//# define myhalf2 half2\n"
437 "//# define myhalf3 half3\n"
438 "//# define myhalf4 half4\n"
439 "//#else\n"
440 "# define myhalf float\n"
441 "# define myhalf2 vec2\n"
442 "# define myhalf3 vec3\n"
443 "# define myhalf4 vec4\n"
444 "//#endif\n"
445 "\n"
446 "#ifdef MODE_DEPTH_OR_SHADOW\n"
447 "\n"
448 "# ifdef VERTEX_SHADER\n"
449 "void main(void)\n"
450 "{\n"
451 "       gl_Position = ftransform();\n"
452 "}\n"
453 "# endif\n"
454 "\n"
455 "#else\n"
456 "\n"
457 "#ifdef MODE_POSTPROCESS\n"
458 "# ifdef VERTEX_SHADER\n"
459 "void main(void)\n"
460 "{\n"
461 "       gl_FrontColor = gl_Color;\n"
462 "       gl_Position = ftransform();\n"
463 "       gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;\n"
464 "#ifdef USEGLOW\n"
465 "       gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;\n"
466 "#endif\n"
467 "}\n"
468 "# endif\n"
469 "# ifdef FRAGMENT_SHADER\n"
470 "\n"
471 "uniform sampler2D Texture_First;\n"
472 "#ifdef USEGLOW\n"
473 "uniform sampler2D Texture_Second;\n"
474 "#endif\n"
475 "#ifdef USEGAMMARAMPS\n"
476 "uniform sampler2D Texture_GammaRamps;\n"
477 "#endif\n"
478 "#ifdef USEVERTEXTEXTUREBLEND\n"
479 "uniform vec4 TintColor;\n"
480 "#endif\n"
481 "#ifdef USECOLORMOD\n"
482 "uniform vec3 Gamma;\n"
483 "#endif\n"
484 "//uncomment these if you want to use them:\n"
485 "uniform vec4 UserVec1;\n"
486 "// uniform vec4 UserVec2;\n"
487 "// uniform vec4 UserVec3;\n"
488 "// uniform vec4 UserVec4;\n"
489 "// uniform float ClientTime;\n"
490 "uniform vec2 PixelSize;\n"
491 "void main(void)\n"
492 "{\n"
493 "       gl_FragColor = texture2D(Texture_First, gl_TexCoord[0].xy);\n"
494 "#ifdef USEGLOW\n"
495 "       gl_FragColor += texture2D(Texture_Second, gl_TexCoord[1].xy);\n"
496 "#endif\n"
497 "#ifdef USEVERTEXTEXTUREBLEND\n"
498 "       gl_FragColor = mix(gl_FragColor, TintColor, TintColor.a);\n"
499 "#endif\n"
500 "\n"
501 "#ifdef USEPOSTPROCESSING\n"
502 "// do r_glsl_dumpshader, edit glsl/default.glsl, and replace this by your own postprocessing if you want\n"
503 "// this code does a blur with the radius specified in the first component of r_glsl_postprocess_uservec1 and blends it using the second component\n"
504 "       gl_FragColor += texture2D(Texture_First, gl_TexCoord[0].xy + PixelSize*UserVec1.x*vec2(-0.987688, -0.156434)) * UserVec1.y;\n"
505 "       gl_FragColor += texture2D(Texture_First, gl_TexCoord[0].xy + PixelSize*UserVec1.x*vec2(-0.156434, -0.891007)) * UserVec1.y;\n"
506 "       gl_FragColor += texture2D(Texture_First, gl_TexCoord[0].xy + PixelSize*UserVec1.x*vec2( 0.891007, -0.453990)) * UserVec1.y;\n"
507 "       gl_FragColor += texture2D(Texture_First, gl_TexCoord[0].xy + PixelSize*UserVec1.x*vec2( 0.707107,  0.707107)) * UserVec1.y;\n"
508 "       gl_FragColor += texture2D(Texture_First, gl_TexCoord[0].xy + PixelSize*UserVec1.x*vec2(-0.453990,  0.891007)) * UserVec1.y;\n"
509 "       gl_FragColor /= (1 + 5 * UserVec1.y);\n"
510 "#endif\n"
511 "\n"
512 "#ifdef USEGAMMARAMPS\n"
513 "       gl_FragColor.r = texture2D(Texture_GammaRamps, vec2(gl_FragColor.r, 0)).r;\n"
514 "       gl_FragColor.g = texture2D(Texture_GammaRamps, vec2(gl_FragColor.g, 0)).g;\n"
515 "       gl_FragColor.b = texture2D(Texture_GammaRamps, vec2(gl_FragColor.b, 0)).b;\n"
516 "#endif\n"
517 "}\n"
518 "# endif\n"
519 "\n"
520 "\n"
521 "#else\n"
522 "#ifdef MODE_GENERIC\n"
523 "# ifdef VERTEX_SHADER\n"
524 "void main(void)\n"
525 "{\n"
526 "       gl_FrontColor = gl_Color;\n"
527 "#  ifdef USEDIFFUSE\n"
528 "       gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;\n"
529 "#  endif\n"
530 "#  ifdef USESPECULAR\n"
531 "       gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;\n"
532 "#  endif\n"
533 "       gl_Position = ftransform();\n"
534 "}\n"
535 "# endif\n"
536 "# ifdef FRAGMENT_SHADER\n"
537 "\n"
538 "#  ifdef USEDIFFUSE\n"
539 "uniform sampler2D Texture_First;\n"
540 "#  endif\n"
541 "#  ifdef USESPECULAR\n"
542 "uniform sampler2D Texture_Second;\n"
543 "#  endif\n"
544 "\n"
545 "void main(void)\n"
546 "{\n"
547 "       gl_FragColor = gl_Color;\n"
548 "#  ifdef USEDIFFUSE\n"
549 "       gl_FragColor *= texture2D(Texture_First, gl_TexCoord[0].xy);\n"
550 "#  endif\n"
551 "\n"
552 "#  ifdef USESPECULAR\n"
553 "       vec4 tex2 = texture2D(Texture_Second, gl_TexCoord[1].xy);\n"
554 "#  endif\n"
555 "#  ifdef USECOLORMAPPING\n"
556 "       gl_FragColor *= tex2;\n"
557 "#  endif\n"
558 "#  ifdef USEGLOW\n"
559 "       gl_FragColor += tex2;\n"
560 "#  endif\n"
561 "#  ifdef USEVERTEXTEXTUREBLEND\n"
562 "       gl_FragColor = mix(gl_FragColor, tex2, tex2.a);\n"
563 "#  endif\n"
564 "}\n"
565 "# endif\n"
566 "\n"
567 "#else // !MODE_GENERIC\n"
568 "\n"
569 "varying vec2 TexCoord;\n"
570 "varying vec2 TexCoordLightmap;\n"
571 "\n"
572 "#ifdef MODE_LIGHTSOURCE\n"
573 "varying vec3 CubeVector;\n"
574 "#endif\n"
575 "\n"
576 "#ifdef MODE_LIGHTSOURCE\n"
577 "varying vec3 LightVector;\n"
578 "#endif\n"
579 "#ifdef MODE_LIGHTDIRECTION\n"
580 "varying vec3 LightVector;\n"
581 "#endif\n"
582 "\n"
583 "varying vec3 EyeVector;\n"
584 "#ifdef USEFOG\n"
585 "varying vec3 EyeVectorModelSpace;\n"
586 "#endif\n"
587 "\n"
588 "varying vec3 VectorS; // direction of S texcoord (sometimes crudely called tangent)\n"
589 "varying vec3 VectorT; // direction of T texcoord (sometimes crudely called binormal)\n"
590 "varying vec3 VectorR; // direction of R texcoord (surface normal)\n"
591 "\n"
592 "#ifdef MODE_WATER\n"
593 "varying vec4 ModelViewProjectionPosition;\n"
594 "#endif\n"
595 "#ifdef MODE_REFRACTION\n"
596 "varying vec4 ModelViewProjectionPosition;\n"
597 "#endif\n"
598 "#ifdef USEREFLECTION\n"
599 "varying vec4 ModelViewProjectionPosition;\n"
600 "#endif\n"
601 "\n"
602 "\n"
603 "\n"
604 "\n"
605 "\n"
606 "// vertex shader specific:\n"
607 "#ifdef VERTEX_SHADER\n"
608 "\n"
609 "uniform vec3 LightPosition;\n"
610 "uniform vec3 EyePosition;\n"
611 "uniform vec3 LightDir;\n"
612 "\n"
613 "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3), this would require sending a 4 component texcoord1 with W as 1 or -1 according to which side the texcoord2 should be on\n"
614 "\n"
615 "void main(void)\n"
616 "{\n"
617 "       gl_FrontColor = gl_Color;\n"
618 "       // copy the surface texcoord\n"
619 "       TexCoord = vec2(gl_TextureMatrix[0] * gl_MultiTexCoord0);\n"
620 "#ifndef MODE_LIGHTSOURCE\n"
621 "# ifndef MODE_LIGHTDIRECTION\n"
622 "       TexCoordLightmap = vec2(gl_MultiTexCoord4);\n"
623 "# endif\n"
624 "#endif\n"
625 "\n"
626 "#ifdef MODE_LIGHTSOURCE\n"
627 "       // transform vertex position into light attenuation/cubemap space\n"
628 "       // (-1 to +1 across the light box)\n"
629 "       CubeVector = vec3(gl_TextureMatrix[3] * gl_Vertex);\n"
630 "\n"
631 "       // transform unnormalized light direction into tangent space\n"
632 "       // (we use unnormalized to ensure that it interpolates correctly and then\n"
633 "       //  normalize it per pixel)\n"
634 "       vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n"
635 "       LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n"
636 "       LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n"
637 "       LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n"
638 "#endif\n"
639 "\n"
640 "#ifdef MODE_LIGHTDIRECTION\n"
641 "       LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n"
642 "       LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n"
643 "       LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n"
644 "#endif\n"
645 "\n"
646 "       // transform unnormalized eye direction into tangent space\n"
647 "#ifndef USEFOG\n"
648 "       vec3 EyeVectorModelSpace;\n"
649 "#endif\n"
650 "       EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n"
651 "       EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n"
652 "       EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n"
653 "       EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n"
654 "\n"
655 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
656 "       VectorS = gl_MultiTexCoord1.xyz;\n"
657 "       VectorT = gl_MultiTexCoord2.xyz;\n"
658 "       VectorR = gl_MultiTexCoord3.xyz;\n"
659 "#endif\n"
660 "\n"
661 "//#if defined(MODE_WATER) || defined(MODE_REFRACTION) || defined(USEREFLECTION)\n"
662 "//     ModelViewProjectionPosition = gl_Vertex * gl_ModelViewProjectionMatrix;\n"
663 "//     //ModelViewProjectionPosition_svector = (gl_Vertex + vec4(gl_MultiTexCoord1.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
664 "//     //ModelViewProjectionPosition_tvector = (gl_Vertex + vec4(gl_MultiTexCoord2.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
665 "//#endif\n"
666 "\n"
667 "// transform vertex to camera space, using ftransform to match non-VS\n"
668 "       // rendering\n"
669 "       gl_Position = ftransform();\n"
670 "\n"
671 "#ifdef MODE_WATER\n"
672 "       ModelViewProjectionPosition = gl_Position;\n"
673 "#endif\n"
674 "#ifdef MODE_REFRACTION\n"
675 "       ModelViewProjectionPosition = gl_Position;\n"
676 "#endif\n"
677 "#ifdef USEREFLECTION\n"
678 "       ModelViewProjectionPosition = gl_Position;\n"
679 "#endif\n"
680 "}\n"
681 "\n"
682 "#endif // VERTEX_SHADER\n"
683 "\n"
684 "\n"
685 "\n"
686 "\n"
687 "// fragment shader specific:\n"
688 "#ifdef FRAGMENT_SHADER\n"
689 "\n"
690 "// 13 textures, we can only use up to 16 on DX9-class hardware\n"
691 "uniform sampler2D Texture_Normal;\n"
692 "uniform sampler2D Texture_Color;\n"
693 "uniform sampler2D Texture_Gloss;\n"
694 "uniform sampler2D Texture_Glow;\n"
695 "uniform sampler2D Texture_SecondaryNormal;\n"
696 "uniform sampler2D Texture_SecondaryColor;\n"
697 "uniform sampler2D Texture_SecondaryGloss;\n"
698 "uniform sampler2D Texture_SecondaryGlow;\n"
699 "uniform sampler2D Texture_Pants;\n"
700 "uniform sampler2D Texture_Shirt;\n"
701 "uniform sampler2D Texture_FogMask;\n"
702 "uniform sampler2D Texture_Lightmap;\n"
703 "uniform sampler2D Texture_Deluxemap;\n"
704 "uniform sampler2D Texture_Refraction;\n"
705 "uniform sampler2D Texture_Reflection;\n"
706 "uniform sampler2D Texture_Attenuation;\n"
707 "uniform samplerCube Texture_Cube;\n"
708 "\n"
709 "uniform myhalf3 LightColor;\n"
710 "uniform myhalf3 AmbientColor;\n"
711 "uniform myhalf3 DiffuseColor;\n"
712 "uniform myhalf3 SpecularColor;\n"
713 "uniform myhalf3 Color_Pants;\n"
714 "uniform myhalf3 Color_Shirt;\n"
715 "uniform myhalf3 FogColor;\n"
716 "\n"
717 "uniform myhalf4 TintColor;\n"
718 "\n"
719 "\n"
720 "//#ifdef MODE_WATER\n"
721 "uniform vec4 DistortScaleRefractReflect;\n"
722 "uniform vec4 ScreenScaleRefractReflect;\n"
723 "uniform vec4 ScreenCenterRefractReflect;\n"
724 "uniform myhalf4 RefractColor;\n"
725 "uniform myhalf4 ReflectColor;\n"
726 "uniform myhalf ReflectFactor;\n"
727 "uniform myhalf ReflectOffset;\n"
728 "//#else\n"
729 "//# ifdef MODE_REFRACTION\n"
730 "//uniform vec4 DistortScaleRefractReflect;\n"
731 "//uniform vec4 ScreenScaleRefractReflect;\n"
732 "//uniform vec4 ScreenCenterRefractReflect;\n"
733 "//uniform myhalf4 RefractColor;\n"
734 "//#  ifdef USEREFLECTION\n"
735 "//uniform myhalf4 ReflectColor;\n"
736 "//#  endif\n"
737 "//# else\n"
738 "//#  ifdef USEREFLECTION\n"
739 "//uniform vec4 DistortScaleRefractReflect;\n"
740 "//uniform vec4 ScreenScaleRefractReflect;\n"
741 "//uniform vec4 ScreenCenterRefractReflect;\n"
742 "//uniform myhalf4 ReflectColor;\n"
743 "//#  endif\n"
744 "//# endif\n"
745 "//#endif\n"
746 "\n"
747 "uniform myhalf GlowScale;\n"
748 "uniform myhalf SceneBrightness;\n"
749 "#ifdef USECONTRASTBOOST\n"
750 "uniform myhalf ContrastBoostCoeff;\n"
751 "#endif\n"
752 "\n"
753 "uniform float OffsetMapping_Scale;\n"
754 "uniform float OffsetMapping_Bias;\n"
755 "uniform float FogRangeRecip;\n"
756 "\n"
757 "uniform myhalf AmbientScale;\n"
758 "uniform myhalf DiffuseScale;\n"
759 "uniform myhalf SpecularScale;\n"
760 "uniform myhalf SpecularPower;\n"
761 "\n"
762 "#ifdef USEOFFSETMAPPING\n"
763 "vec2 OffsetMapping(vec2 TexCoord)\n"
764 "{\n"
765 "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n"
766 "       // 14 sample relief mapping: linear search and then binary search\n"
767 "       // this basically steps forward a small amount repeatedly until it finds\n"
768 "       // itself inside solid, then jitters forward and back using decreasing\n"
769 "       // amounts to find the impact\n"
770 "       //vec3 OffsetVector = vec3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1), -1);\n"
771 "       //vec3 OffsetVector = vec3(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
772 "       vec3 OffsetVector = vec3(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
773 "       vec3 RT = vec3(TexCoord, 1);\n"
774 "       OffsetVector *= 0.1;\n"
775 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
776 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
777 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
778 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
779 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
780 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
781 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
782 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
783 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
784 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z)          - 0.5);\n"
785 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.5    - 0.25);\n"
786 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.25   - 0.125);\n"
787 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.125  - 0.0625);\n"
788 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n"
789 "       return RT.xy;\n"
790 "#else\n"
791 "       // 3 sample offset mapping (only 3 samples because of ATI Radeon 9500-9800/X300 limits)\n"
792 "       // this basically moves forward the full distance, and then backs up based\n"
793 "       // on height of samples\n"
794 "       //vec2 OffsetVector = vec2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1));\n"
795 "       //vec2 OffsetVector = vec2(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1));\n"
796 "       vec2 OffsetVector = vec2(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1));\n"
797 "       TexCoord += OffsetVector;\n"
798 "       OffsetVector *= 0.333;\n"
799 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
800 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
801 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
802 "       return TexCoord;\n"
803 "#endif\n"
804 "}\n"
805 "#endif // USEOFFSETMAPPING\n"
806 "\n"
807 "#ifdef MODE_WATER\n"
808 "\n"
809 "// water pass\n"
810 "void main(void)\n"
811 "{\n"
812 "#ifdef USEOFFSETMAPPING\n"
813 "       // apply offsetmapping\n"
814 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
815 "#define TexCoord TexCoordOffset\n"
816 "#endif\n"
817 "\n"
818 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
819 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
820 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec2(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xyxy * DistortScaleRefractReflect;\n"
821 "       float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 2.0) * ReflectFactor + ReflectOffset;\n"
822 "       gl_FragColor = mix(texture2D(Texture_Refraction, ScreenTexCoord.xy) * RefractColor, texture2D(Texture_Reflection, ScreenTexCoord.zw) * ReflectColor, Fresnel);\n"
823 "}\n"
824 "\n"
825 "#else // !MODE_WATER\n"
826 "#ifdef MODE_REFRACTION\n"
827 "\n"
828 "// refraction pass\n"
829 "void main(void)\n"
830 "{\n"
831 "#ifdef USEOFFSETMAPPING\n"
832 "       // apply offsetmapping\n"
833 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
834 "#define TexCoord TexCoordOffset\n"
835 "#endif\n"
836 "\n"
837 "       vec2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n"
838 "       //vec2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n"
839 "       vec2 ScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy + vec2(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xy * DistortScaleRefractReflect.xy;\n"
840 "       gl_FragColor = texture2D(Texture_Refraction, ScreenTexCoord) * RefractColor;\n"
841 "}\n"
842 "\n"
843 "#else // !MODE_REFRACTION\n"
844 "void main(void)\n"
845 "{\n"
846 "#ifdef USEOFFSETMAPPING\n"
847 "       // apply offsetmapping\n"
848 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
849 "#define TexCoord TexCoordOffset\n"
850 "#endif\n"
851 "\n"
852 "       // combine the diffuse textures (base, pants, shirt)\n"
853 "       myhalf4 color = myhalf4(texture2D(Texture_Color, TexCoord));\n"
854 "#ifdef USECOLORMAPPING\n"
855 "       color.rgb += myhalf3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhalf3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n"
856 "#endif\n"
857 "#ifdef USEVERTEXTEXTUREBLEND\n"
858 "       myhalf terrainblend = clamp(myhalf(gl_Color.a) * color.a * 2.0 - 0.5, myhalf(0.0), myhalf(1.0));\n"
859 "       //myhalf terrainblend = min(myhalf(gl_Color.a) * color.a * 2.0, myhalf(1.0));\n"
860 "       //myhalf terrainblend = myhalf(gl_Color.a) * color.a > 0.5;\n"
861 "       color.rgb = mix(myhalf3(texture2D(Texture_SecondaryColor, TexCoord)), color.rgb, terrainblend);\n"
862 "       color.a = 1.0;\n"
863 "       //color = mix(myhalf4(1, 0, 0, 1), color, terrainblend);\n"
864 "#endif\n"
865 "\n"
866 "#ifdef USEDIFFUSE\n"
867 "       // get the surface normal and the gloss color\n"
868 "# ifdef USEVERTEXTEXTUREBLEND\n"
869 "       myhalf3 surfacenormal = normalize(mix(myhalf3(texture2D(Texture_SecondaryNormal, TexCoord)), myhalf3(texture2D(Texture_Normal, TexCoord)), terrainblend) - myhalf3(0.5, 0.5, 0.5));\n"
870 "#  ifdef USESPECULAR\n"
871 "       myhalf3 glosscolor = mix(myhalf3(texture2D(Texture_SecondaryGloss, TexCoord)), myhalf3(texture2D(Texture_Gloss, TexCoord)), terrainblend);\n"
872 "#  endif\n"
873 "# else\n"
874 "       myhalf3 surfacenormal = normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5, 0.5, 0.5));\n"
875 "#  ifdef USESPECULAR\n"
876 "       myhalf3 glosscolor = myhalf3(texture2D(Texture_Gloss, TexCoord));\n"
877 "#  endif\n"
878 "# endif\n"
879 "#endif\n"
880 "\n"
881 "\n"
882 "\n"
883 "#ifdef MODE_LIGHTSOURCE\n"
884 "       // light source\n"
885 "\n"
886 "       // calculate surface normal, light normal, and specular normal\n"
887 "       // compute color intensity for the two textures (colormap and glossmap)\n"
888 "       // scale by light color and attenuation as efficiently as possible\n"
889 "       // (do as much scalar math as possible rather than vector math)\n"
890 "# ifdef USEDIFFUSE\n"
891 "       // get the light normal\n"
892 "       myhalf3 diffusenormal = myhalf3(normalize(LightVector));\n"
893 "# endif\n"
894 "# ifdef USESPECULAR\n"
895 "#  ifndef USEEXACTSPECULARMATH\n"
896 "       myhalf3 specularnormal = normalize(diffusenormal + myhalf3(normalize(EyeVector)));\n"
897 "\n"
898 "#  endif\n"
899 "       // calculate directional shading\n"
900 "#  ifdef USEEXACTSPECULARMATH\n"
901 "       color.rgb = myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (color.rgb * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))) + (SpecularScale * pow(myhalf(max(float(dot(reflect(diffusenormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower)) * glosscolor);\n"
902 "#  else\n"
903 "       color.rgb = myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (color.rgb * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))) + (SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower)) * glosscolor);\n"
904 "#  endif\n"
905 "# else\n"
906 "#  ifdef USEDIFFUSE\n"
907 "       // calculate directional shading\n"
908 "       color.rgb = color.rgb * (myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))));\n"
909 "#  else\n"
910 "       // calculate directionless shading\n"
911 "       color.rgb = color.rgb * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n"
912 "#  endif\n"
913 "# endif\n"
914 "\n"
915 "# ifdef USECUBEFILTER\n"
916 "       // apply light cubemap filter\n"
917 "       //color.rgb *= normalize(CubeVector) * 0.5 + 0.5;//vec3(textureCube(Texture_Cube, CubeVector));\n"
918 "       color.rgb *= myhalf3(textureCube(Texture_Cube, CubeVector));\n"
919 "# endif\n"
920 "#endif // MODE_LIGHTSOURCE\n"
921 "\n"
922 "\n"
923 "\n"
924 "\n"
925 "#ifdef MODE_LIGHTDIRECTION\n"
926 "       // directional model lighting\n"
927 "# ifdef USEDIFFUSE\n"
928 "       // get the light normal\n"
929 "       myhalf3 diffusenormal = myhalf3(normalize(LightVector));\n"
930 "# endif\n"
931 "# ifdef USESPECULAR\n"
932 "       // calculate directional shading\n"
933 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
934 "#  ifdef USEEXACTSPECULARMATH\n"
935 "       color.rgb += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularColor * pow(myhalf(max(float(dot(reflect(diffusenormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower);\n"
936 "#  else\n"
937 "       myhalf3 specularnormal = normalize(diffusenormal + myhalf3(normalize(EyeVector)));\n"
938 "       color.rgb += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularColor * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
939 "#  endif\n"
940 "# else\n"
941 "#  ifdef USEDIFFUSE\n"
942 "\n"
943 "       // calculate directional shading\n"
944 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
945 "#  else\n"
946 "       color.rgb *= AmbientColor;\n"
947 "#  endif\n"
948 "# endif\n"
949 "#endif // MODE_LIGHTDIRECTION\n"
950 "\n"
951 "\n"
952 "\n"
953 "\n"
954 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
955 "       // deluxemap lightmapping using light vectors in modelspace (evil q3map2)\n"
956 "\n"
957 "       // get the light normal\n"
958 "       myhalf3 diffusenormal_modelspace = myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) * 2.0 + myhalf3(-1.0, -1.0, -1.0);\n"
959 "       myhalf3 diffusenormal;\n"
960 "       diffusenormal.x = dot(diffusenormal_modelspace, myhalf3(VectorS));\n"
961 "       diffusenormal.y = dot(diffusenormal_modelspace, myhalf3(VectorT));\n"
962 "       diffusenormal.z = dot(diffusenormal_modelspace, myhalf3(VectorR));\n"
963 "       // calculate directional shading (and undoing the existing angle attenuation on the lightmap by the division)\n"
964 "       // note that q3map2 is too stupid to calculate proper surface normals when q3map_nonplanar\n"
965 "       // is used (the lightmap and deluxemap coords correspond to virtually random coordinates\n"
966 "       // on that luxel, and NOT to its center, because recursive triangle subdivision is used\n"
967 "       // to map the luxels to coordinates on the draw surfaces), which also causes\n"
968 "       // deluxemaps to be wrong because light contributions from the wrong side of the surface\n"
969 "       // are added up. To prevent divisions by zero or strong exaggerations, a max()\n"
970 "       // nudge is done here at expense of some additional fps. This is ONLY needed for\n"
971 "       // deluxemaps, tangentspace deluxemap avoid this problem by design.\n"
972 "       myhalf3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal) / max(0.25, diffusenormal.z)), 0.0)));\n"
973 "               // 0.25 supports up to 75.5 degrees normal/deluxe angle\n"
974 "# ifdef USESPECULAR\n"
975 "#  ifdef USEEXACTSPECULARMATH\n"
976 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(reflect(diffusenormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower);\n"
977 "#  else\n"
978 "       myhalf3 specularnormal = myhalf3(normalize(diffusenormal + myhalf3(normalize(EyeVector))));\n"
979 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
980 "#  endif\n"
981 "# endif\n"
982 "\n"
983 "       // apply lightmap color\n"
984 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n"
985 "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
986 "\n"
987 "\n"
988 "\n"
989 "\n"
990 "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
991 "       // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n"
992 "\n"
993 "       // get the light normal\n"
994 "       myhalf3 diffusenormal = myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) * 2.0 + myhalf3(-1.0, -1.0, -1.0);\n"
995 "       // calculate directional shading (and undoing the existing angle attenuation on the lightmap by the division)\n"
996 "       myhalf3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal) / diffusenormal.z), 0.0)));\n"
997 "# ifdef USESPECULAR\n"
998 "#  ifdef USEEXACTSPECULARMATH\n"
999 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(reflect(diffusenormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower);\n"
1000 "#  else\n"
1001 "       myhalf3 specularnormal = myhalf3(normalize(diffusenormal + myhalf3(normalize(EyeVector))));\n"
1002 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
1003 "#  endif\n"
1004 "# endif\n"
1005 "\n"
1006 "       // apply lightmap color\n"
1007 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n"
1008 "#endif // MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
1009 "\n"
1010 "\n"
1011 "\n"
1012 "\n"
1013 "#ifdef MODE_LIGHTMAP\n"
1014 "       // apply lightmap color\n"
1015 "       color.rgb = color.rgb * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap)) * DiffuseScale + color.rgb * AmbientScale;\n"
1016 "#endif // MODE_LIGHTMAP\n"
1017 "\n"
1018 "\n"
1019 "\n"
1020 "\n"
1021 "#ifdef MODE_VERTEXCOLOR\n"
1022 "       // apply lightmap color\n"
1023 "       color.rgb = color.rgb * myhalf3(gl_Color.rgb) * DiffuseScale + color.rgb * AmbientScale;\n"
1024 "#endif // MODE_VERTEXCOLOR\n"
1025 "\n"
1026 "\n"
1027 "\n"
1028 "\n"
1029 "#ifdef MODE_FLATCOLOR\n"
1030 "#endif // MODE_FLATCOLOR\n"
1031 "\n"
1032 "\n"
1033 "\n"
1034 "\n"
1035 "\n"
1036 "\n"
1037 "\n"
1038 "       color *= TintColor;\n"
1039 "\n"
1040 "#ifdef USEGLOW\n"
1041 "       color.rgb += myhalf3(texture2D(Texture_Glow, TexCoord)) * GlowScale;\n"
1042 "#endif\n"
1043 "\n"
1044 "#ifdef USECONTRASTBOOST\n"
1045 "       color.rgb = color.rgb / (ContrastBoostCoeff * color.rgb + myhalf3(1, 1, 1));\n"
1046 "#endif\n"
1047 "\n"
1048 "       color.rgb *= SceneBrightness;\n"
1049 "\n"
1050 "       // apply fog after Contrastboost/SceneBrightness because its color is already modified appropriately\n"
1051 "#ifdef USEFOG\n"
1052 "       color.rgb = mix(FogColor, color.rgb, myhalf(texture2D(Texture_FogMask, myhalf2(length(EyeVectorModelSpace)*FogRangeRecip, 0.0))));\n"
1053 "#endif\n"
1054 "\n"
1055 "       // reflection must come last because it already contains exactly the correct fog (the reflection render preserves camera distance from the plane, it only flips the side) and ContrastBoost/SceneBrightness\n"
1056 "#ifdef USEREFLECTION\n"
1057 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
1058 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
1059 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec3(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xyxy * DistortScaleRefractReflect;\n"
1060 "       color.rgb = mix(color.rgb, myhalf3(texture2D(Texture_Reflection, ScreenTexCoord.zw)) * ReflectColor.rgb, ReflectColor.a);\n"
1061 "#endif\n"
1062 "\n"
1063 "       gl_FragColor = vec4(color);\n"
1064 "}\n"
1065 "#endif // !MODE_REFRACTION\n"
1066 "#endif // !MODE_WATER\n"
1067 "\n"
1068 "#endif // FRAGMENT_SHADER\n"
1069 "\n"
1070 "#endif // !MODE_GENERIC\n"
1071 "#endif // !MODE_POSTPROCESS\n"
1072 "#endif // !MODE_DEPTH_OR_SHADOW\n"
1073 ;
1074
1075 typedef struct shaderpermutationinfo_s
1076 {
1077         const char *pretext;
1078         const char *name;
1079 }
1080 shaderpermutationinfo_t;
1081
1082 typedef struct shadermodeinfo_s
1083 {
1084         const char *vertexfilename;
1085         const char *geometryfilename;
1086         const char *fragmentfilename;
1087         const char *pretext;
1088         const char *name;
1089 }
1090 shadermodeinfo_t;
1091
1092 typedef enum shaderpermutation_e
1093 {
1094         SHADERPERMUTATION_DIFFUSE = 1<<0, // (lightsource) whether to use directional shading
1095         SHADERPERMUTATION_VERTEXTEXTUREBLEND = 1<<1, // indicates this is a two-layer material blend based on vertex alpha (q3bsp)
1096         SHADERPERMUTATION_COLORMAPPING = 1<<2, // indicates this is a colormapped skin
1097         SHADERPERMUTATION_CONTRASTBOOST = 1<<3, // r_glsl_contrastboost boosts the contrast at low color levels (similar to gamma)
1098         SHADERPERMUTATION_FOG = 1<<4, // tint the color by fog color or black if using additive blend mode
1099         SHADERPERMUTATION_CUBEFILTER = 1<<5, // (lightsource) use cubemap light filter
1100         SHADERPERMUTATION_GLOW = 1<<6, // (lightmap) blend in an additive glow texture
1101         SHADERPERMUTATION_SPECULAR = 1<<7, // (lightsource or deluxemapping) render specular effects
1102         SHADERPERMUTATION_EXACTSPECULARMATH = 1<<8, // (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation
1103         SHADERPERMUTATION_REFLECTION = 1<<9, // normalmap-perturbed reflection of the scene infront of the surface, preformed as an overlay on the surface
1104         SHADERPERMUTATION_OFFSETMAPPING = 1<<10, // adjust texcoords to roughly simulate a displacement mapped surface
1105         SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING = 1<<11, // adjust texcoords to accurately simulate a displacement mapped surface (requires OFFSETMAPPING to also be set!)
1106         SHADERPERMUTATION_GAMMARAMPS = 1<<12, // gamma (postprocessing only)
1107         SHADERPERMUTATION_POSTPROCESSING = 1<<13, // user defined postprocessing
1108         SHADERPERMUTATION_LIMIT = 1<<14, // size of permutations array
1109         SHADERPERMUTATION_COUNT = 14 // size of shaderpermutationinfo array
1110 }
1111 shaderpermutation_t;
1112
1113 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
1114 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
1115 {
1116         {"#define USEDIFFUSE\n", " diffuse"},
1117         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
1118         {"#define USECOLORMAPPING\n", " colormapping"},
1119         {"#define USECONTRASTBOOST\n", " contrastboost"},
1120         {"#define USEFOG\n", " fog"},
1121         {"#define USECUBEFILTER\n", " cubefilter"},
1122         {"#define USEGLOW\n", " glow"},
1123         {"#define USESPECULAR\n", " specular"},
1124         {"#define USEEXACTSPECULARMATH\n", " exactspecularmath"},
1125         {"#define USEREFLECTION\n", " reflection"},
1126         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
1127         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
1128         {"#define USEGAMMARAMPS\n", " gammaramps"},
1129         {"#define USEPOSTPROCESSING\n", " postprocessing"},
1130 };
1131
1132 // this enum is multiplied by SHADERPERMUTATION_MODEBASE
1133 typedef enum shadermode_e
1134 {
1135         SHADERMODE_GENERIC, // (particles/HUD/etc) vertex color, optionally multiplied by one texture
1136         SHADERMODE_POSTPROCESS, // postprocessing shader (r_glsl_postprocess)
1137         SHADERMODE_DEPTH_OR_SHADOW, // (depthfirst/shadows) vertex shader only
1138         SHADERMODE_FLATCOLOR, // (lightmap) modulate texture by uniform color (q1bsp, q3bsp)
1139         SHADERMODE_VERTEXCOLOR, // (lightmap) modulate texture by vertex colors (q3bsp)
1140         SHADERMODE_LIGHTMAP, // (lightmap) modulate texture by lightmap texture (q1bsp, q3bsp)
1141         SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE, // (lightmap) use directional pixel shading from texture containing modelspace light directions (q3bsp deluxemap)
1142         SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE, // (lightmap) use directional pixel shading from texture containing tangentspace light directions (q1bsp deluxemap)
1143         SHADERMODE_LIGHTDIRECTION, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
1144         SHADERMODE_LIGHTSOURCE, // (lightsource) use directional pixel shading from light source (rtlight)
1145         SHADERMODE_REFRACTION, // refract background (the material is rendered normally after this pass)
1146         SHADERMODE_WATER, // refract background and reflection (the material is rendered normally after this pass)
1147         SHADERMODE_COUNT
1148 }
1149 shadermode_t;
1150
1151 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
1152 shadermodeinfo_t shadermodeinfo[SHADERMODE_COUNT] =
1153 {
1154         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_GENERIC\n", " generic"},
1155         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_POSTPROCESS\n", " postprocess"},
1156         {"glsl/default.glsl", NULL, NULL               , "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
1157         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_FLATCOLOR\n", " flatcolor"},
1158         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
1159         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTMAP\n", " lightmap"},
1160         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
1161         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
1162         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
1163         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTSOURCE\n", " lightsource"},
1164         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_REFRACTION\n", " refraction"},
1165         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_WATER\n", " water"},
1166 };
1167
1168 typedef struct r_glsl_permutation_s
1169 {
1170         // indicates if we have tried compiling this permutation already
1171         qboolean compiled;
1172         // 0 if compilation failed
1173         int program;
1174         // locations of detected uniforms in program object, or -1 if not found
1175         int loc_Texture_First;
1176         int loc_Texture_Second;
1177         int loc_Texture_GammaRamps;
1178         int loc_Texture_Normal;
1179         int loc_Texture_Color;
1180         int loc_Texture_Gloss;
1181         int loc_Texture_Glow;
1182         int loc_Texture_SecondaryNormal;
1183         int loc_Texture_SecondaryColor;
1184         int loc_Texture_SecondaryGloss;
1185         int loc_Texture_SecondaryGlow;
1186         int loc_Texture_Pants;
1187         int loc_Texture_Shirt;
1188         int loc_Texture_FogMask;
1189         int loc_Texture_Lightmap;
1190         int loc_Texture_Deluxemap;
1191         int loc_Texture_Attenuation;
1192         int loc_Texture_Cube;
1193         int loc_Texture_Refraction;
1194         int loc_Texture_Reflection;
1195         int loc_FogColor;
1196         int loc_LightPosition;
1197         int loc_EyePosition;
1198         int loc_Color_Pants;
1199         int loc_Color_Shirt;
1200         int loc_FogRangeRecip;
1201         int loc_AmbientScale;
1202         int loc_DiffuseScale;
1203         int loc_SpecularScale;
1204         int loc_SpecularPower;
1205         int loc_GlowScale;
1206         int loc_SceneBrightness; // or: Scenebrightness * ContrastBoost
1207         int loc_OffsetMapping_Scale;
1208         int loc_TintColor;
1209         int loc_AmbientColor;
1210         int loc_DiffuseColor;
1211         int loc_SpecularColor;
1212         int loc_LightDir;
1213         int loc_ContrastBoostCoeff; // 1 - 1/ContrastBoost
1214         int loc_GammaCoeff; // 1 / gamma
1215         int loc_DistortScaleRefractReflect;
1216         int loc_ScreenScaleRefractReflect;
1217         int loc_ScreenCenterRefractReflect;
1218         int loc_RefractColor;
1219         int loc_ReflectColor;
1220         int loc_ReflectFactor;
1221         int loc_ReflectOffset;
1222         int loc_UserVec1;
1223         int loc_UserVec2;
1224         int loc_UserVec3;
1225         int loc_UserVec4;
1226         int loc_ClientTime;
1227         int loc_PixelSize;
1228 }
1229 r_glsl_permutation_t;
1230
1231 // information about each possible shader permutation
1232 r_glsl_permutation_t r_glsl_permutations[SHADERMODE_COUNT][SHADERPERMUTATION_LIMIT];
1233 // currently selected permutation
1234 r_glsl_permutation_t *r_glsl_permutation;
1235
1236 static char *R_GLSL_GetText(const char *filename, qboolean printfromdisknotice)
1237 {
1238         char *shaderstring;
1239         if (!filename || !filename[0])
1240                 return NULL;
1241         shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL);
1242         if (shaderstring)
1243         {
1244                 if (printfromdisknotice)
1245                         Con_DPrint("from disk... ");
1246                 return shaderstring;
1247         }
1248         else if (!strcmp(filename, "glsl/default.glsl"))
1249         {
1250                 shaderstring = (char *) Mem_Alloc(r_main_mempool, strlen(builtinshaderstring) + 1);
1251                 memcpy(shaderstring, builtinshaderstring, strlen(builtinshaderstring) + 1);
1252         }
1253         return shaderstring;
1254 }
1255
1256 static void R_GLSL_CompilePermutation(unsigned int mode, unsigned int permutation)
1257 {
1258         int i;
1259         shadermodeinfo_t *modeinfo = shadermodeinfo + mode;
1260         r_glsl_permutation_t *p = &r_glsl_permutations[mode][permutation];
1261         int vertstrings_count = 0;
1262         int geomstrings_count = 0;
1263         int fragstrings_count = 0;
1264         char *vertexstring, *geometrystring, *fragmentstring;
1265         const char *vertstrings_list[32+3];
1266         const char *geomstrings_list[32+3];
1267         const char *fragstrings_list[32+3];
1268         char permutationname[256];
1269
1270         if (p->compiled)
1271                 return;
1272         p->compiled = true;
1273         p->program = 0;
1274
1275         permutationname[0] = 0;
1276         vertexstring   = R_GLSL_GetText(modeinfo->vertexfilename, true);
1277         geometrystring = R_GLSL_GetText(modeinfo->geometryfilename, false);
1278         fragmentstring = R_GLSL_GetText(modeinfo->fragmentfilename, false);
1279
1280         strlcat(permutationname, shadermodeinfo[mode].vertexfilename, sizeof(permutationname));
1281
1282         // the first pretext is which type of shader to compile as
1283         // (later these will all be bound together as a program object)
1284         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1285         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1286         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1287
1288         // the second pretext is the mode (for example a light source)
1289         vertstrings_list[vertstrings_count++] = shadermodeinfo[mode].pretext;
1290         geomstrings_list[geomstrings_count++] = shadermodeinfo[mode].pretext;
1291         fragstrings_list[fragstrings_count++] = shadermodeinfo[mode].pretext;
1292         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1293
1294         // now add all the permutation pretexts
1295         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1296         {
1297                 if (permutation & (1<<i))
1298                 {
1299                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1300                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1301                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1302                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1303                 }
1304                 else
1305                 {
1306                         // keep line numbers correct
1307                         vertstrings_list[vertstrings_count++] = "\n";
1308                         geomstrings_list[geomstrings_count++] = "\n";
1309                         fragstrings_list[fragstrings_count++] = "\n";
1310                 }
1311         }
1312
1313         // now append the shader text itself
1314         vertstrings_list[vertstrings_count++] = vertexstring;
1315         geomstrings_list[geomstrings_count++] = geometrystring;
1316         fragstrings_list[fragstrings_count++] = fragmentstring;
1317
1318         // if any sources were NULL, clear the respective list
1319         if (!vertexstring)
1320                 vertstrings_count = 0;
1321         if (!geometrystring)
1322                 geomstrings_count = 0;
1323         if (!fragmentstring)
1324                 fragstrings_count = 0;
1325
1326         // compile the shader program
1327         if (vertstrings_count + geomstrings_count + fragstrings_count)
1328                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1329         if (p->program)
1330         {
1331                 CHECKGLERROR
1332                 qglUseProgramObjectARB(p->program);CHECKGLERROR
1333                 // look up all the uniform variable names we care about, so we don't
1334                 // have to look them up every time we set them
1335                 p->loc_Texture_First              = qglGetUniformLocationARB(p->program, "Texture_First");
1336                 p->loc_Texture_Second             = qglGetUniformLocationARB(p->program, "Texture_Second");
1337                 p->loc_Texture_GammaRamps         = qglGetUniformLocationARB(p->program, "Texture_GammaRamps");
1338                 p->loc_Texture_Normal             = qglGetUniformLocationARB(p->program, "Texture_Normal");
1339                 p->loc_Texture_Color              = qglGetUniformLocationARB(p->program, "Texture_Color");
1340                 p->loc_Texture_Gloss              = qglGetUniformLocationARB(p->program, "Texture_Gloss");
1341                 p->loc_Texture_Glow               = qglGetUniformLocationARB(p->program, "Texture_Glow");
1342                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocationARB(p->program, "Texture_SecondaryNormal");
1343                 p->loc_Texture_SecondaryColor     = qglGetUniformLocationARB(p->program, "Texture_SecondaryColor");
1344                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocationARB(p->program, "Texture_SecondaryGloss");
1345                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocationARB(p->program, "Texture_SecondaryGlow");
1346                 p->loc_Texture_FogMask            = qglGetUniformLocationARB(p->program, "Texture_FogMask");
1347                 p->loc_Texture_Pants              = qglGetUniformLocationARB(p->program, "Texture_Pants");
1348                 p->loc_Texture_Shirt              = qglGetUniformLocationARB(p->program, "Texture_Shirt");
1349                 p->loc_Texture_Lightmap           = qglGetUniformLocationARB(p->program, "Texture_Lightmap");
1350                 p->loc_Texture_Deluxemap          = qglGetUniformLocationARB(p->program, "Texture_Deluxemap");
1351                 p->loc_Texture_Refraction         = qglGetUniformLocationARB(p->program, "Texture_Refraction");
1352                 p->loc_Texture_Reflection         = qglGetUniformLocationARB(p->program, "Texture_Reflection");
1353                 p->loc_Texture_Attenuation        = qglGetUniformLocationARB(p->program, "Texture_Attenuation");
1354                 p->loc_Texture_Cube               = qglGetUniformLocationARB(p->program, "Texture_Cube");
1355                 p->loc_FogColor                   = qglGetUniformLocationARB(p->program, "FogColor");
1356                 p->loc_LightPosition              = qglGetUniformLocationARB(p->program, "LightPosition");
1357                 p->loc_EyePosition                = qglGetUniformLocationARB(p->program, "EyePosition");
1358                 p->loc_Color_Pants                = qglGetUniformLocationARB(p->program, "Color_Pants");
1359                 p->loc_Color_Shirt                = qglGetUniformLocationARB(p->program, "Color_Shirt");
1360                 p->loc_FogRangeRecip              = qglGetUniformLocationARB(p->program, "FogRangeRecip");
1361                 p->loc_AmbientScale               = qglGetUniformLocationARB(p->program, "AmbientScale");
1362                 p->loc_DiffuseScale               = qglGetUniformLocationARB(p->program, "DiffuseScale");
1363                 p->loc_SpecularPower              = qglGetUniformLocationARB(p->program, "SpecularPower");
1364                 p->loc_SpecularScale              = qglGetUniformLocationARB(p->program, "SpecularScale");
1365                 p->loc_GlowScale                  = qglGetUniformLocationARB(p->program, "GlowScale");
1366                 p->loc_SceneBrightness            = qglGetUniformLocationARB(p->program, "SceneBrightness");
1367                 p->loc_OffsetMapping_Scale        = qglGetUniformLocationARB(p->program, "OffsetMapping_Scale");
1368                 p->loc_TintColor                  = qglGetUniformLocationARB(p->program, "TintColor");
1369                 p->loc_AmbientColor               = qglGetUniformLocationARB(p->program, "AmbientColor");
1370                 p->loc_DiffuseColor               = qglGetUniformLocationARB(p->program, "DiffuseColor");
1371                 p->loc_SpecularColor              = qglGetUniformLocationARB(p->program, "SpecularColor");
1372                 p->loc_LightDir                   = qglGetUniformLocationARB(p->program, "LightDir");
1373                 p->loc_ContrastBoostCoeff         = qglGetUniformLocationARB(p->program, "ContrastBoostCoeff");
1374                 p->loc_DistortScaleRefractReflect = qglGetUniformLocationARB(p->program, "DistortScaleRefractReflect");
1375                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocationARB(p->program, "ScreenScaleRefractReflect");
1376                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocationARB(p->program, "ScreenCenterRefractReflect");
1377                 p->loc_RefractColor               = qglGetUniformLocationARB(p->program, "RefractColor");
1378                 p->loc_ReflectColor               = qglGetUniformLocationARB(p->program, "ReflectColor");
1379                 p->loc_ReflectFactor              = qglGetUniformLocationARB(p->program, "ReflectFactor");
1380                 p->loc_ReflectOffset              = qglGetUniformLocationARB(p->program, "ReflectOffset");
1381                 p->loc_GammaCoeff                 = qglGetUniformLocationARB(p->program, "GammaCoeff");
1382                 p->loc_UserVec1                   = qglGetUniformLocationARB(p->program, "UserVec1");
1383                 p->loc_UserVec2                   = qglGetUniformLocationARB(p->program, "UserVec2");
1384                 p->loc_UserVec3                   = qglGetUniformLocationARB(p->program, "UserVec3");
1385                 p->loc_UserVec4                   = qglGetUniformLocationARB(p->program, "UserVec4");
1386                 p->loc_ClientTime                 = qglGetUniformLocationARB(p->program, "ClientTime");
1387                 p->loc_PixelSize                  = qglGetUniformLocationARB(p->program, "PixelSize");
1388                 // initialize the samplers to refer to the texture units we use
1389                 if (p->loc_Texture_First           >= 0) qglUniform1iARB(p->loc_Texture_First          , GL20TU_FIRST);
1390                 if (p->loc_Texture_Second          >= 0) qglUniform1iARB(p->loc_Texture_Second         , GL20TU_SECOND);
1391                 if (p->loc_Texture_GammaRamps      >= 0) qglUniform1iARB(p->loc_Texture_GammaRamps     , GL20TU_GAMMARAMPS);
1392                 if (p->loc_Texture_Normal          >= 0) qglUniform1iARB(p->loc_Texture_Normal         , GL20TU_NORMAL);
1393                 if (p->loc_Texture_Color           >= 0) qglUniform1iARB(p->loc_Texture_Color          , GL20TU_COLOR);
1394                 if (p->loc_Texture_Gloss           >= 0) qglUniform1iARB(p->loc_Texture_Gloss          , GL20TU_GLOSS);
1395                 if (p->loc_Texture_Glow            >= 0) qglUniform1iARB(p->loc_Texture_Glow           , GL20TU_GLOW);
1396                 if (p->loc_Texture_SecondaryNormal >= 0) qglUniform1iARB(p->loc_Texture_SecondaryNormal, GL20TU_SECONDARY_NORMAL);
1397                 if (p->loc_Texture_SecondaryColor  >= 0) qglUniform1iARB(p->loc_Texture_SecondaryColor , GL20TU_SECONDARY_COLOR);
1398                 if (p->loc_Texture_SecondaryGloss  >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGloss , GL20TU_SECONDARY_GLOSS);
1399                 if (p->loc_Texture_SecondaryGlow   >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGlow  , GL20TU_SECONDARY_GLOW);
1400                 if (p->loc_Texture_Pants           >= 0) qglUniform1iARB(p->loc_Texture_Pants          , GL20TU_PANTS);
1401                 if (p->loc_Texture_Shirt           >= 0) qglUniform1iARB(p->loc_Texture_Shirt          , GL20TU_SHIRT);
1402                 if (p->loc_Texture_FogMask         >= 0) qglUniform1iARB(p->loc_Texture_FogMask        , GL20TU_FOGMASK);
1403                 if (p->loc_Texture_Lightmap        >= 0) qglUniform1iARB(p->loc_Texture_Lightmap       , GL20TU_LIGHTMAP);
1404                 if (p->loc_Texture_Deluxemap       >= 0) qglUniform1iARB(p->loc_Texture_Deluxemap      , GL20TU_DELUXEMAP);
1405                 if (p->loc_Texture_Attenuation     >= 0) qglUniform1iARB(p->loc_Texture_Attenuation    , GL20TU_ATTENUATION);
1406                 if (p->loc_Texture_Cube            >= 0) qglUniform1iARB(p->loc_Texture_Cube           , GL20TU_CUBE);
1407                 if (p->loc_Texture_Refraction      >= 0) qglUniform1iARB(p->loc_Texture_Refraction     , GL20TU_REFRACTION);
1408                 if (p->loc_Texture_Reflection      >= 0) qglUniform1iARB(p->loc_Texture_Reflection     , GL20TU_REFLECTION);
1409                 CHECKGLERROR
1410                 if (developer.integer)
1411                         Con_Printf("GLSL shader %s compiled.\n", permutationname);
1412         }
1413         else
1414                 Con_Printf("GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1415
1416         // free the strings
1417         if (vertexstring)
1418                 Mem_Free(vertexstring);
1419         if (geometrystring)
1420                 Mem_Free(geometrystring);
1421         if (fragmentstring)
1422                 Mem_Free(fragmentstring);
1423 }
1424
1425 void R_GLSL_Restart_f(void)
1426 {
1427         unsigned int mode;
1428         unsigned int permutation;
1429         for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1430                 for (permutation = 0;permutation < SHADERPERMUTATION_LIMIT;permutation++)
1431                         if (r_glsl_permutations[mode][permutation].program)
1432                                 GL_Backend_FreeProgram(r_glsl_permutations[mode][permutation].program);
1433         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1434 }
1435
1436 void R_GLSL_DumpShader_f(void)
1437 {
1438         int i;
1439
1440         qfile_t *file = FS_OpenRealFile("glsl/default.glsl", "w", false);
1441         if(!file)
1442         {
1443                 Con_Printf("failed to write to glsl/default.glsl\n");
1444                 return;
1445         }
1446
1447         FS_Print(file, "// The engine may define the following macros:\n");
1448         FS_Print(file, "// #define VERTEX_SHADER\n// #define GEOMETRY_SHADER\n// #define FRAGMENT_SHADER\n");
1449         for (i = 0;i < SHADERMODE_COUNT;i++)
1450                 FS_Printf(file, "// %s", shadermodeinfo[i].pretext);
1451         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1452                 FS_Printf(file, "// %s", shaderpermutationinfo[i].pretext);
1453         FS_Print(file, "\n");
1454         FS_Print(file, builtinshaderstring);
1455         FS_Close(file);
1456
1457         Con_Printf("glsl/default.glsl written\n");
1458 }
1459
1460 void R_SetupShader_SetPermutation(unsigned int mode, unsigned int permutation)
1461 {
1462         r_glsl_permutation_t *perm = &r_glsl_permutations[mode][permutation];
1463         if (r_glsl_permutation != perm)
1464         {
1465                 r_glsl_permutation = perm;
1466                 if (!r_glsl_permutation->program)
1467                 {
1468                         if (!r_glsl_permutation->compiled)
1469                                 R_GLSL_CompilePermutation(mode, permutation);
1470                         if (!r_glsl_permutation->program)
1471                         {
1472                                 // remove features until we find a valid permutation
1473                                 int i;
1474                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1475                                 {
1476                                         // reduce i more quickly whenever it would not remove any bits
1477                                         int j = 1<<(SHADERPERMUTATION_COUNT-1-i);
1478                                         if (!(permutation & j))
1479                                                 continue;
1480                                         permutation -= j;
1481                                         r_glsl_permutation = &r_glsl_permutations[mode][permutation];
1482                                         if (!r_glsl_permutation->compiled)
1483                                                 R_GLSL_CompilePermutation(mode, permutation);
1484                                         if (r_glsl_permutation->program)
1485                                                 break;
1486                                 }
1487                                 if (i >= SHADERPERMUTATION_COUNT)
1488                                 {
1489                                         Con_Printf("OpenGL 2.0 shaders disabled - unable to find a working shader permutation fallback on this driver (set r_glsl 1 if you want to try again)\n");
1490                                         Cvar_SetValueQuick(&r_glsl, 0);
1491                                         R_GLSL_Restart_f(); // unload shaders
1492                                         return; // no bit left to clear
1493                                 }
1494                         }
1495                 }
1496                 CHECKGLERROR
1497                 qglUseProgramObjectARB(r_glsl_permutation->program);CHECKGLERROR
1498         }
1499 }
1500
1501 void R_SetupGenericShader(qboolean usetexture)
1502 {
1503         if (gl_support_fragment_shader)
1504         {
1505                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1506                         R_SetupShader_SetPermutation(SHADERMODE_GENERIC, usetexture ? SHADERPERMUTATION_DIFFUSE : 0);
1507                 else if (r_glsl_permutation)
1508                 {
1509                         r_glsl_permutation = NULL;
1510                         qglUseProgramObjectARB(0);CHECKGLERROR
1511                 }
1512         }
1513 }
1514
1515 void R_SetupGenericTwoTextureShader(int texturemode)
1516 {
1517         if (gl_support_fragment_shader)
1518         {
1519                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1520                         R_SetupShader_SetPermutation(SHADERMODE_GENERIC, SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_SPECULAR | (r_shadow_glossexact.integer ? SHADERPERMUTATION_EXACTSPECULARMATH : 0) | (texturemode == GL_MODULATE ? SHADERPERMUTATION_COLORMAPPING : (texturemode == GL_ADD ? SHADERPERMUTATION_GLOW : (texturemode == GL_DECAL ? SHADERPERMUTATION_VERTEXTEXTUREBLEND : 0))));
1521                 else if (r_glsl_permutation)
1522                 {
1523                         r_glsl_permutation = NULL;
1524                         qglUseProgramObjectARB(0);CHECKGLERROR
1525                 }
1526         }
1527         if (!r_glsl_permutation)
1528         {
1529                 if (texturemode == GL_DECAL && gl_combine.integer)
1530                         texturemode = GL_INTERPOLATE_ARB;
1531                 R_Mesh_TexCombine(1, texturemode, texturemode, 1, 1);
1532         }
1533 }
1534
1535 void R_SetupDepthOrShadowShader(void)
1536 {
1537         if (gl_support_fragment_shader)
1538         {
1539                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1540                         R_SetupShader_SetPermutation(SHADERMODE_DEPTH_OR_SHADOW, 0);
1541                 else if (r_glsl_permutation)
1542                 {
1543                         r_glsl_permutation = NULL;
1544                         qglUseProgramObjectARB(0);CHECKGLERROR
1545                 }
1546         }
1547 }
1548
1549 extern rtexture_t *r_shadow_attenuationgradienttexture;
1550 extern rtexture_t *r_shadow_attenuation2dtexture;
1551 extern rtexture_t *r_shadow_attenuation3dtexture;
1552 void R_SetupSurfaceShader(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass)
1553 {
1554         // select a permutation of the lighting shader appropriate to this
1555         // combination of texture, entity, light source, and fogging, only use the
1556         // minimum features necessary to avoid wasting rendering time in the
1557         // fragment shader on features that are not being used
1558         unsigned int permutation = 0;
1559         unsigned int mode = 0;
1560         // TODO: implement geometry-shader based shadow volumes someday
1561         if (r_glsl_offsetmapping.integer)
1562         {
1563                 permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1564                 if (r_glsl_offsetmapping_reliefmapping.integer)
1565                         permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1566         }
1567         if (rsurfacepass == RSURFPASS_BACKGROUND)
1568         {
1569                 // distorted background
1570                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1571                         mode = SHADERMODE_WATER;
1572                 else
1573                         mode = SHADERMODE_REFRACTION;
1574         }
1575         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1576         {
1577                 // light source
1578                 mode = SHADERMODE_LIGHTSOURCE;
1579                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1580                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1581                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1582                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1583                 if (diffusescale > 0)
1584                         permutation |= SHADERPERMUTATION_DIFFUSE;
1585                 if (specularscale > 0)
1586                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1587                 if (r_refdef.fogenabled)
1588                         permutation |= SHADERPERMUTATION_FOG;
1589                 if (rsurface.texture->colormapping)
1590                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1591                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1592                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1593         }
1594         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)
1595         {
1596                 // unshaded geometry (fullbright or ambient model lighting)
1597                 mode = SHADERMODE_FLATCOLOR;
1598                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1599                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1600                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1601                         permutation |= SHADERPERMUTATION_GLOW;
1602                 if (r_refdef.fogenabled)
1603                         permutation |= SHADERPERMUTATION_FOG;
1604                 if (rsurface.texture->colormapping)
1605                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1606                 if (r_glsl_offsetmapping.integer)
1607                 {
1608                         permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1609                         if (r_glsl_offsetmapping_reliefmapping.integer)
1610                                 permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1611                 }
1612                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1613                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1614                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1615                         permutation |= SHADERPERMUTATION_REFLECTION;
1616         }
1617         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT_DIRECTIONAL)
1618         {
1619                 // directional model lighting
1620                 mode = SHADERMODE_LIGHTDIRECTION;
1621                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1622                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1623                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1624                         permutation |= SHADERPERMUTATION_GLOW;
1625                 permutation |= SHADERPERMUTATION_DIFFUSE;
1626                 if (specularscale > 0)
1627                         permutation |= SHADERPERMUTATION_SPECULAR;
1628                 if (r_refdef.fogenabled)
1629                         permutation |= SHADERPERMUTATION_FOG;
1630                 if (rsurface.texture->colormapping)
1631                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1632                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1633                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1634                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1635                         permutation |= SHADERPERMUTATION_REFLECTION;
1636         }
1637         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1638         {
1639                 // ambient model lighting
1640                 mode = SHADERMODE_LIGHTDIRECTION;
1641                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1642                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1643                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1644                         permutation |= SHADERPERMUTATION_GLOW;
1645                 if (r_refdef.fogenabled)
1646                         permutation |= SHADERPERMUTATION_FOG;
1647                 if (rsurface.texture->colormapping)
1648                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1649                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1650                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1651                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1652                         permutation |= SHADERPERMUTATION_REFLECTION;
1653         }
1654         else
1655         {
1656                 // lightmapped wall
1657                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1658                 {
1659                         // deluxemapping (light direction texture)
1660                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1661                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1662                         else
1663                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1664                         permutation |= SHADERPERMUTATION_DIFFUSE;
1665                         if (specularscale > 0)
1666                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1667                 }
1668                 else if (r_glsl_deluxemapping.integer >= 2)
1669                 {
1670                         // fake deluxemapping (uniform light direction in tangentspace)
1671                         mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1672                         permutation |= SHADERPERMUTATION_DIFFUSE;
1673                         if (specularscale > 0)
1674                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1675                 }
1676                 else if (rsurface.uselightmaptexture)
1677                 {
1678                         // ordinary lightmapping (q1bsp, q3bsp)
1679                         mode = SHADERMODE_LIGHTMAP;
1680                 }
1681                 else
1682                 {
1683                         // ordinary vertex coloring (q3bsp)
1684                         mode = SHADERMODE_VERTEXCOLOR;
1685                 }
1686                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1687                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1688                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1689                         permutation |= SHADERPERMUTATION_GLOW;
1690                 if (r_refdef.fogenabled)
1691                         permutation |= SHADERPERMUTATION_FOG;
1692                 if (rsurface.texture->colormapping)
1693                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1694                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1695                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1696                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1697                         permutation |= SHADERPERMUTATION_REFLECTION;
1698         }
1699         if(permutation & SHADERPERMUTATION_SPECULAR)
1700                 if(r_shadow_glossexact.integer)
1701                         permutation |= SHADERPERMUTATION_EXACTSPECULARMATH;
1702         R_SetupShader_SetPermutation(mode, permutation);
1703         if (mode == SHADERMODE_LIGHTSOURCE)
1704         {
1705                 if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1706                 if (permutation & SHADERPERMUTATION_DIFFUSE)
1707                 {
1708                         if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2], rsurface.texture->lightmapcolor[3]);
1709                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, ambientscale);
1710                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, diffusescale);
1711                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, specularscale);
1712                 }
1713                 else
1714                 {
1715                         // ambient only is simpler
1716                         if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, lightcolorbase[0] * ambientscale, lightcolorbase[1] * ambientscale, lightcolorbase[2] * ambientscale, rsurface.texture->lightmapcolor[3]);
1717                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, 1);
1718                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, 0);
1719                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, 0);
1720                 }
1721                 // additive passes are only darkened by fog, not tinted
1722                 if (r_glsl_permutation->loc_FogColor >= 0)
1723                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1724         }
1725         else
1726         {
1727                 if (mode == SHADERMODE_LIGHTDIRECTION)
1728                 {
1729                         if (r_glsl_permutation->loc_AmbientColor  >= 0) qglUniform3fARB(r_glsl_permutation->loc_AmbientColor , rsurface.modellight_ambient[0] * ambientscale  * 0.5f, rsurface.modellight_ambient[1] * ambientscale  * 0.5f, rsurface.modellight_ambient[2] * ambientscale  * 0.5f);
1730                         if (r_glsl_permutation->loc_DiffuseColor  >= 0) qglUniform3fARB(r_glsl_permutation->loc_DiffuseColor , rsurface.modellight_diffuse[0] * diffusescale  * 0.5f, rsurface.modellight_diffuse[1] * diffusescale  * 0.5f, rsurface.modellight_diffuse[2] * diffusescale  * 0.5f);
1731                         if (r_glsl_permutation->loc_SpecularColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_SpecularColor, rsurface.modellight_diffuse[0] * specularscale * 0.5f, rsurface.modellight_diffuse[1] * specularscale * 0.5f, rsurface.modellight_diffuse[2] * specularscale * 0.5f);
1732                         if (r_glsl_permutation->loc_LightDir      >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);
1733                 }
1734                 else
1735                 {
1736                         if (r_glsl_permutation->loc_AmbientScale  >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, r_refdef.scene.ambient * 1.0f / 128.0f);
1737                         if (r_glsl_permutation->loc_DiffuseScale  >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, r_refdef.lightmapintensity);
1738                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, r_refdef.lightmapintensity * specularscale);
1739                 }
1740                 if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, rsurface.texture->lightmapcolor[0], rsurface.texture->lightmapcolor[1], rsurface.texture->lightmapcolor[2], rsurface.texture->lightmapcolor[3]);
1741                 if (r_glsl_permutation->loc_GlowScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_GlowScale, r_hdr_glowintensity.value);
1742                 // additive passes are only darkened by fog, not tinted
1743                 if (r_glsl_permutation->loc_FogColor >= 0)
1744                 {
1745                         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD)
1746                                 qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1747                         else
1748                                 qglUniform3fARB(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1749                 }
1750                 if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor);
1751                 if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]);
1752                 if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]);
1753                 if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_RefractColor, 1, rsurface.texture->refractcolor4f);
1754                 if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_ReflectColor, 1, rsurface.texture->reflectcolor4f);
1755                 if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin);
1756                 if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectOffset, rsurface.texture->reflectmin);
1757         }
1758         if (r_glsl_permutation->loc_ContrastBoostCoeff >= 0)
1759         {
1760                 // The formula used is actually:
1761                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1762                 //   color.rgb *= SceneBrightness;
1763                 // simplified:
1764                 //   color.rgb = [[SceneBrightness * ContrastBoost]] * color.rgb / ([[ContrastBoost - 1]] * color.rgb + 1);
1765                 // and do [[calculations]] here in the engine
1766                 qglUniform1fARB(r_glsl_permutation->loc_ContrastBoostCoeff, r_glsl_contrastboost.value - 1);
1767                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_refdef.view.colorscale * r_glsl_contrastboost.value);
1768         }
1769         else
1770                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_refdef.view.colorscale);
1771         if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_EyePosition, rsurface.modelorg[0], rsurface.modelorg[1], rsurface.modelorg[2]);
1772         if (r_glsl_permutation->loc_Color_Pants >= 0)
1773         {
1774                 if (rsurface.texture->currentskinframe->pants)
1775                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]);
1776                 else
1777                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1778         }
1779         if (r_glsl_permutation->loc_Color_Shirt >= 0)
1780         {
1781                 if (rsurface.texture->currentskinframe->shirt)
1782                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]);
1783                 else
1784                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
1785         }
1786         if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogRangeRecip, r_refdef.fograngerecip * Matrix4x4_ScaleFromMatrix(&rsurface.matrix));
1787         if(permutation & SHADERPERMUTATION_EXACTSPECULARMATH)
1788         {
1789                 if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower * 0.25);
1790         }
1791         else
1792         {
1793                 if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower);
1794         }
1795         if (r_glsl_permutation->loc_OffsetMapping_Scale >= 0) qglUniform1fARB(r_glsl_permutation->loc_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value);
1796         CHECKGLERROR
1797 }
1798
1799 #define SKINFRAME_HASH 1024
1800
1801 typedef struct
1802 {
1803         int loadsequence; // incremented each level change
1804         memexpandablearray_t array;
1805         skinframe_t *hash[SKINFRAME_HASH];
1806 }
1807 r_skinframe_t;
1808 r_skinframe_t r_skinframe;
1809
1810 void R_SkinFrame_PrepareForPurge(void)
1811 {
1812         r_skinframe.loadsequence++;
1813         // wrap it without hitting zero
1814         if (r_skinframe.loadsequence >= 200)
1815                 r_skinframe.loadsequence = 1;
1816 }
1817
1818 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
1819 {
1820         if (!skinframe)
1821                 return;
1822         // mark the skinframe as used for the purging code
1823         skinframe->loadsequence = r_skinframe.loadsequence;
1824 }
1825
1826 void R_SkinFrame_Purge(void)
1827 {
1828         int i;
1829         skinframe_t *s;
1830         for (i = 0;i < SKINFRAME_HASH;i++)
1831         {
1832                 for (s = r_skinframe.hash[i];s;s = s->next)
1833                 {
1834                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
1835                         {
1836                                 if (s->merged == s->base)
1837                                         s->merged = NULL;
1838                                 // FIXME: maybe pass a pointer to the pointer to R_PurgeTexture and reset it to NULL inside? [11/29/2007 Black]
1839                                 R_PurgeTexture(s->stain );s->stain  = NULL;
1840                                 R_PurgeTexture(s->merged);s->merged = NULL;
1841                                 R_PurgeTexture(s->base  );s->base   = NULL;
1842                                 R_PurgeTexture(s->pants );s->pants  = NULL;
1843                                 R_PurgeTexture(s->shirt );s->shirt  = NULL;
1844                                 R_PurgeTexture(s->nmap  );s->nmap   = NULL;
1845                                 R_PurgeTexture(s->gloss );s->gloss  = NULL;
1846                                 R_PurgeTexture(s->glow  );s->glow   = NULL;
1847                                 R_PurgeTexture(s->fog   );s->fog    = NULL;
1848                                 s->loadsequence = 0;
1849                         }
1850                 }
1851         }
1852 }
1853
1854 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
1855         skinframe_t *item;
1856         char basename[MAX_QPATH];
1857
1858         Image_StripImageExtension(name, basename, sizeof(basename));
1859
1860         if( last == NULL ) {
1861                 int hashindex;
1862                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1863                 item = r_skinframe.hash[hashindex];
1864         } else {
1865                 item = last->next;
1866         }
1867
1868         // linearly search through the hash bucket
1869         for( ; item ; item = item->next ) {
1870                 if( !strcmp( item->basename, basename ) ) {
1871                         return item;
1872                 }
1873         }
1874         return NULL;
1875 }
1876
1877 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add)
1878 {
1879         skinframe_t *item;
1880         int hashindex;
1881         char basename[MAX_QPATH];
1882
1883         Image_StripImageExtension(name, basename, sizeof(basename));
1884
1885         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1886         for (item = r_skinframe.hash[hashindex];item;item = item->next)
1887                 if (!strcmp(item->basename, basename) && item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc)
1888                         break;
1889
1890         if (!item) {
1891                 rtexture_t *dyntexture;
1892                 // check whether its a dynamic texture
1893                 dyntexture = CL_GetDynTexture( basename );
1894                 if (!add && !dyntexture)
1895                         return NULL;
1896                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
1897                 memset(item, 0, sizeof(*item));
1898                 strlcpy(item->basename, basename, sizeof(item->basename));
1899                 item->base = dyntexture; // either NULL or dyntexture handle
1900                 item->textureflags = textureflags;
1901                 item->comparewidth = comparewidth;
1902                 item->compareheight = compareheight;
1903                 item->comparecrc = comparecrc;
1904                 item->next = r_skinframe.hash[hashindex];
1905                 r_skinframe.hash[hashindex] = item;
1906         }
1907         else if( item->base == NULL )
1908         {
1909                 rtexture_t *dyntexture;
1910                 // check whether its a dynamic texture
1911                 // this only needs to be done because Purge doesnt delete skinframes - only sets the texture pointers to NULL and we need to restore it before returing.. [11/29/2007 Black]
1912                 dyntexture = CL_GetDynTexture( basename );
1913                 item->base = dyntexture; // either NULL or dyntexture handle
1914         }
1915
1916         R_SkinFrame_MarkUsed(item);
1917         return item;
1918 }
1919
1920 #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \
1921         { \
1922                 unsigned long long avgcolor[5], wsum; \
1923                 int pix, comp, w; \
1924                 avgcolor[0] = 0; \
1925                 avgcolor[1] = 0; \
1926                 avgcolor[2] = 0; \
1927                 avgcolor[3] = 0; \
1928                 avgcolor[4] = 0; \
1929                 wsum = 0; \
1930                 for(pix = 0; pix < cnt; ++pix) \
1931                 { \
1932                         w = 0; \
1933                         for(comp = 0; comp < 3; ++comp) \
1934                                 w += getpixel; \
1935                         if(w) /* ignore perfectly black pixels because that is better for model skins */ \
1936                         { \
1937                                 ++wsum; \
1938                                 /* comp = 3; -- not needed, comp is always 3 when we get here */ \
1939                                 w = getpixel; \
1940                                 for(comp = 0; comp < 3; ++comp) \
1941                                         avgcolor[comp] += getpixel * w; \
1942                                 avgcolor[3] += w; \
1943                         } \
1944                         /* comp = 3; -- not needed, comp is always 3 when we get here */ \
1945                         avgcolor[4] += getpixel; \
1946                 } \
1947                 if(avgcolor[3] == 0) /* no pixels seen? even worse */ \
1948                         avgcolor[3] = 1; \
1949                 skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \
1950                 skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \
1951                 skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \
1952                 skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \
1953         }
1954
1955 skinframe_t *R_SkinFrame_LoadExternal_CheckAlpha(const char *name, int textureflags, qboolean complain, qboolean *has_alpha)
1956 {
1957         // FIXME: it should be possible to disable loading various layers using
1958         // cvars, to prevent wasted loading time and memory usage if the user does
1959         // not want them
1960         qboolean loadnormalmap = true;
1961         qboolean loadgloss = true;
1962         qboolean loadpantsandshirt = true;
1963         qboolean loadglow = true;
1964         int j;
1965         unsigned char *pixels;
1966         unsigned char *bumppixels;
1967         unsigned char *basepixels = NULL;
1968         int basepixels_width;
1969         int basepixels_height;
1970         skinframe_t *skinframe;
1971
1972         *has_alpha = false;
1973
1974         if (cls.state == ca_dedicated)
1975                 return NULL;
1976
1977         // return an existing skinframe if already loaded
1978         // if loading of the first image fails, don't make a new skinframe as it
1979         // would cause all future lookups of this to be missing
1980         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
1981         if (skinframe && skinframe->base)
1982                 return skinframe;
1983
1984         basepixels = loadimagepixelsbgra(name, complain, true);
1985         if (basepixels == NULL)
1986                 return NULL;
1987
1988         if (developer_loading.integer)
1989                 Con_Printf("loading skin \"%s\"\n", name);
1990
1991         // we've got some pixels to store, so really allocate this new texture now
1992         if (!skinframe)
1993                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
1994         skinframe->stain = NULL;
1995         skinframe->merged = NULL;
1996         skinframe->base = r_texture_notexture;
1997         skinframe->pants = NULL;
1998         skinframe->shirt = NULL;
1999         skinframe->nmap = r_texture_blanknormalmap;
2000         skinframe->gloss = NULL;
2001         skinframe->glow = NULL;
2002         skinframe->fog = NULL;
2003
2004         basepixels_width = image_width;
2005         basepixels_height = image_height;
2006         skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
2007
2008         if (textureflags & TEXF_ALPHA)
2009         {
2010                 for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
2011                         if (basepixels[j] < 255)
2012                                 break;
2013                 if (j < basepixels_width * basepixels_height * 4)
2014                 {
2015                         // has transparent pixels
2016                         *has_alpha = true;
2017                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2018                         for (j = 0;j < image_width * image_height * 4;j += 4)
2019                         {
2020                                 pixels[j+0] = 255;
2021                                 pixels[j+1] = 255;
2022                                 pixels[j+2] = 255;
2023                                 pixels[j+3] = basepixels[j+3];
2024                         }
2025                         skinframe->fog = R_LoadTexture2D (r_main_texturepool, va("%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
2026                         Mem_Free(pixels);
2027                 }
2028         }
2029
2030         R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]);
2031         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2032
2033         // _norm is the name used by tenebrae and has been adopted as standard
2034         if (loadnormalmap)
2035         {
2036                 if ((pixels = loadimagepixelsbgra(va("%s_norm", skinframe->basename), false, false)) != NULL)
2037                 {
2038                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | skinframe->textureflags) & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
2039                         Mem_Free(pixels);
2040                         pixels = NULL;
2041                 }
2042                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va("%s_bump", skinframe->basename), false, false)) != NULL)
2043                 {
2044                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2045                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
2046                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | skinframe->textureflags) & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
2047                         Mem_Free(pixels);
2048                         Mem_Free(bumppixels);
2049                 }
2050                 else if (r_shadow_bumpscale_basetexture.value > 0)
2051                 {
2052                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
2053                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
2054                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | skinframe->textureflags) & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
2055                         Mem_Free(pixels);
2056                 }
2057         }
2058         // _luma is supported for tenebrae compatibility
2059         // (I think it's a very stupid name, but oh well)
2060         // _glow is the preferred name
2061         if (loadglow          && ((pixels = loadimagepixelsbgra(va("%s_glow", skinframe->basename), false, false)) != NULL || (pixels = loadimagepixelsbgra(va("%s_luma", skinframe->basename), false, false)) != NULL)) {skinframe->glow = R_LoadTexture2D (r_main_texturepool, va("%s_glow", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_glow.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
2062         if (loadgloss         && (pixels = loadimagepixelsbgra(va("%s_gloss", skinframe->basename), false, false)) != NULL) {skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va("%s_gloss", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_gloss.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
2063         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_pants", skinframe->basename), false, false)) != NULL) {skinframe->pants = R_LoadTexture2D (r_main_texturepool, va("%s_pants", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
2064         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_shirt", skinframe->basename), false, false)) != NULL) {skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va("%s_shirt", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
2065
2066         if (basepixels)
2067                 Mem_Free(basepixels);
2068
2069         return skinframe;
2070 }
2071
2072 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain)
2073 {
2074         qboolean has_alpha;
2075         return R_SkinFrame_LoadExternal_CheckAlpha(name, textureflags, complain, &has_alpha);
2076 }
2077
2078 static rtexture_t *R_SkinFrame_TextureForSkinLayer(const unsigned char *in, int width, int height, const char *name, const unsigned int *palette, int textureflags, qboolean force)
2079 {
2080         int i;
2081         if (!force)
2082         {
2083                 for (i = 0;i < width*height;i++)
2084                         if (((unsigned char *)&palette[in[i]])[3] > 0)
2085                                 break;
2086                 if (i == width*height)
2087                         return NULL;
2088         }
2089         return R_LoadTexture2D (r_main_texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette);
2090 }
2091
2092 // this is only used by .spr32 sprites, HL .spr files, HL .bsp files
2093 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height)
2094 {
2095         int i;
2096         unsigned char *temp1, *temp2;
2097         skinframe_t *skinframe;
2098
2099         if (cls.state == ca_dedicated)
2100                 return NULL;
2101
2102         // if already loaded just return it, otherwise make a new skinframe
2103         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height*4) : 0, true);
2104         if (skinframe && skinframe->base)
2105                 return skinframe;
2106
2107         skinframe->stain = NULL;
2108         skinframe->merged = NULL;
2109         skinframe->base = r_texture_notexture;
2110         skinframe->pants = NULL;
2111         skinframe->shirt = NULL;
2112         skinframe->nmap = r_texture_blanknormalmap;
2113         skinframe->gloss = NULL;
2114         skinframe->glow = NULL;
2115         skinframe->fog = NULL;
2116
2117         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2118         if (!skindata)
2119                 return NULL;
2120
2121         if (developer_loading.integer)
2122                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2123
2124         if (r_shadow_bumpscale_basetexture.value > 0)
2125         {
2126                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2127                 temp2 = temp1 + width * height * 4;
2128                 Image_HeightmapToNormalmap_BGRA(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
2129                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
2130                 Mem_Free(temp1);
2131         }
2132         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_BGRA, skinframe->textureflags, NULL);
2133         if (textureflags & TEXF_ALPHA)
2134         {
2135                 for (i = 3;i < width * height * 4;i += 4)
2136                         if (skindata[i] < 255)
2137                                 break;
2138                 if (i < width * height * 4)
2139                 {
2140                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2141                         memcpy(fogpixels, skindata, width * height * 4);
2142                         for (i = 0;i < width * height * 4;i += 4)
2143                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2144                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, skinframe->textureflags, NULL);
2145                         Mem_Free(fogpixels);
2146                 }
2147         }
2148
2149         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]);
2150         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2151
2152         return skinframe;
2153 }
2154
2155 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2156 {
2157         int i;
2158         unsigned char *temp1, *temp2;
2159         unsigned int *palette;
2160         skinframe_t *skinframe;
2161
2162         if (cls.state == ca_dedicated)
2163                 return NULL;
2164
2165         // if already loaded just return it, otherwise make a new skinframe
2166         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2167         if (skinframe && skinframe->base)
2168                 return skinframe;
2169
2170         palette = (loadglowtexture ? palette_bgra_nofullbrights : ((skinframe->textureflags & TEXF_ALPHA) ? palette_bgra_transparent : palette_bgra_complete));
2171
2172         skinframe->stain = NULL;
2173         skinframe->merged = NULL;
2174         skinframe->base = r_texture_notexture;
2175         skinframe->pants = NULL;
2176         skinframe->shirt = NULL;
2177         skinframe->nmap = r_texture_blanknormalmap;
2178         skinframe->gloss = NULL;
2179         skinframe->glow = NULL;
2180         skinframe->fog = NULL;
2181
2182         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2183         if (!skindata)
2184                 return NULL;
2185
2186         if (developer_loading.integer)
2187                 Con_Printf("loading quake skin \"%s\"\n", name);
2188
2189         if (r_shadow_bumpscale_basetexture.value > 0)
2190         {
2191                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2192                 temp2 = temp1 + width * height * 4;
2193                 // use either a custom palette or the quake palette
2194                 Image_Copy8bitBGRA(skindata, temp1, width * height, palette_bgra_complete);
2195                 Image_HeightmapToNormalmap_BGRA(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
2196                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
2197                 Mem_Free(temp1);
2198         }
2199         // use either a custom palette, or the quake palette
2200         skinframe->base = skinframe->merged = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_merged", skinframe->basename), palette, skinframe->textureflags, true); // all
2201         if (loadglowtexture)
2202                 skinframe->glow = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_glow", skinframe->basename), palette_bgra_onlyfullbrights, skinframe->textureflags, false); // glow
2203         if (loadpantsandshirt)
2204         {
2205                 skinframe->pants = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_pants", skinframe->basename), palette_bgra_pantsaswhite, skinframe->textureflags, false); // pants
2206                 skinframe->shirt = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_shirt", skinframe->basename), palette_bgra_shirtaswhite, skinframe->textureflags, false); // shirt
2207         }
2208         if (skinframe->pants || skinframe->shirt)
2209                 skinframe->base = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", skinframe->basename), loadglowtexture ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap, skinframe->textureflags, false); // no special colors
2210         if (textureflags & TEXF_ALPHA)
2211         {
2212                 for (i = 0;i < width * height;i++)
2213                         if (((unsigned char *)palette_bgra_alpha)[skindata[i]*4+3] < 255)
2214                                 break;
2215                 if (i < width * height)
2216                         skinframe->fog = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_fog", skinframe->basename), palette_bgra_alpha, skinframe->textureflags, true); // fog mask
2217         }
2218
2219         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]);
2220         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2221
2222         return skinframe;
2223 }
2224
2225 skinframe_t *R_SkinFrame_LoadMissing(void)
2226 {
2227         skinframe_t *skinframe;
2228
2229         if (cls.state == ca_dedicated)
2230                 return NULL;
2231
2232         skinframe = R_SkinFrame_Find("missing", TEXF_PRECACHE, 0, 0, 0, true);
2233         skinframe->stain = NULL;
2234         skinframe->merged = NULL;
2235         skinframe->base = r_texture_notexture;
2236         skinframe->pants = NULL;
2237         skinframe->shirt = NULL;
2238         skinframe->nmap = r_texture_blanknormalmap;
2239         skinframe->gloss = NULL;
2240         skinframe->glow = NULL;
2241         skinframe->fog = NULL;
2242
2243         skinframe->avgcolor[0] = rand() / RAND_MAX;
2244         skinframe->avgcolor[1] = rand() / RAND_MAX;
2245         skinframe->avgcolor[2] = rand() / RAND_MAX;
2246         skinframe->avgcolor[3] = 1;
2247
2248         return skinframe;
2249 }
2250
2251 void gl_main_start(void)
2252 {
2253         r_numqueries = 0;
2254         r_maxqueries = 0;
2255         memset(r_queries, 0, sizeof(r_queries));
2256
2257         memset(r_qwskincache, 0, sizeof(r_qwskincache));
2258         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
2259
2260         // set up r_skinframe loading system for textures
2261         memset(&r_skinframe, 0, sizeof(r_skinframe));
2262         r_skinframe.loadsequence = 1;
2263         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
2264
2265         r_main_texturepool = R_AllocTexturePool();
2266         R_BuildBlankTextures();
2267         R_BuildNoTexture();
2268         if (gl_texturecubemap)
2269         {
2270                 R_BuildWhiteCube();
2271                 R_BuildNormalizationCube();
2272         }
2273         r_texture_fogattenuation = NULL;
2274         r_texture_gammaramps = NULL;
2275         //r_texture_fogintensity = NULL;
2276         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2277         memset(&r_waterstate, 0, sizeof(r_waterstate));
2278         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
2279         memset(&r_svbsp, 0, sizeof (r_svbsp));
2280
2281         r_refdef.fogmasktable_density = 0;
2282 }
2283
2284 void gl_main_shutdown(void)
2285 {
2286         if (r_maxqueries)
2287                 qglDeleteQueriesARB(r_maxqueries, r_queries);
2288
2289         r_numqueries = 0;
2290         r_maxqueries = 0;
2291         memset(r_queries, 0, sizeof(r_queries));
2292
2293         memset(r_qwskincache, 0, sizeof(r_qwskincache));
2294         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
2295
2296         // clear out the r_skinframe state
2297         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
2298         memset(&r_skinframe, 0, sizeof(r_skinframe));
2299
2300         if (r_svbsp.nodes)
2301                 Mem_Free(r_svbsp.nodes);
2302         memset(&r_svbsp, 0, sizeof (r_svbsp));
2303         R_FreeTexturePool(&r_main_texturepool);
2304         r_texture_blanknormalmap = NULL;
2305         r_texture_white = NULL;
2306         r_texture_grey128 = NULL;
2307         r_texture_black = NULL;
2308         r_texture_whitecube = NULL;
2309         r_texture_normalizationcube = NULL;
2310         r_texture_fogattenuation = NULL;
2311         r_texture_gammaramps = NULL;
2312         //r_texture_fogintensity = NULL;
2313         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2314         memset(&r_waterstate, 0, sizeof(r_waterstate));
2315         R_GLSL_Restart_f();
2316 }
2317
2318 extern void CL_ParseEntityLump(char *entitystring);
2319 void gl_main_newmap(void)
2320 {
2321         // FIXME: move this code to client
2322         int l;
2323         char *entities, entname[MAX_QPATH];
2324         if (cl.worldmodel)
2325         {
2326                 strlcpy(entname, cl.worldmodel->name, sizeof(entname));
2327                 l = (int)strlen(entname) - 4;
2328                 if (l >= 0 && !strcmp(entname + l, ".bsp"))
2329                 {
2330                         memcpy(entname + l, ".ent", 5);
2331                         if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
2332                         {
2333                                 CL_ParseEntityLump(entities);
2334                                 Mem_Free(entities);
2335                                 return;
2336                         }
2337                 }
2338                 if (cl.worldmodel->brush.entities)
2339                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
2340         }
2341 }
2342
2343 void GL_Main_Init(void)
2344 {
2345         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
2346
2347         Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
2348         Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
2349         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
2350         if (gamemode == GAME_NEHAHRA)
2351         {
2352                 Cvar_RegisterVariable (&gl_fogenable);
2353                 Cvar_RegisterVariable (&gl_fogdensity);
2354                 Cvar_RegisterVariable (&gl_fogred);
2355                 Cvar_RegisterVariable (&gl_foggreen);
2356                 Cvar_RegisterVariable (&gl_fogblue);
2357                 Cvar_RegisterVariable (&gl_fogstart);
2358                 Cvar_RegisterVariable (&gl_fogend);
2359                 Cvar_RegisterVariable (&gl_skyclip);
2360         }
2361         Cvar_RegisterVariable(&r_depthfirst);
2362         Cvar_RegisterVariable(&r_useinfinitefarclip);
2363         Cvar_RegisterVariable(&r_nearclip);
2364         Cvar_RegisterVariable(&r_showbboxes);
2365         Cvar_RegisterVariable(&r_showsurfaces);
2366         Cvar_RegisterVariable(&r_showtris);
2367         Cvar_RegisterVariable(&r_shownormals);
2368         Cvar_RegisterVariable(&r_showlighting);
2369         Cvar_RegisterVariable(&r_showshadowvolumes);
2370         Cvar_RegisterVariable(&r_showcollisionbrushes);
2371         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
2372         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
2373         Cvar_RegisterVariable(&r_showdisabledepthtest);
2374         Cvar_RegisterVariable(&r_drawportals);
2375         Cvar_RegisterVariable(&r_drawentities);
2376         Cvar_RegisterVariable(&r_cullentities_trace);
2377         Cvar_RegisterVariable(&r_cullentities_trace_samples);
2378         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
2379         Cvar_RegisterVariable(&r_cullentities_trace_delay);
2380         Cvar_RegisterVariable(&r_drawviewmodel);
2381         Cvar_RegisterVariable(&r_speeds);
2382         Cvar_RegisterVariable(&r_fullbrights);
2383         Cvar_RegisterVariable(&r_wateralpha);
2384         Cvar_RegisterVariable(&r_dynamic);
2385         Cvar_RegisterVariable(&r_fullbright);
2386         Cvar_RegisterVariable(&r_shadows);
2387         Cvar_RegisterVariable(&r_shadows_throwdistance);
2388         Cvar_RegisterVariable(&r_q1bsp_skymasking);
2389         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
2390         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
2391         Cvar_RegisterVariable(&r_fog_exp2);
2392         Cvar_RegisterVariable(&r_drawfog);
2393         Cvar_RegisterVariable(&r_textureunits);
2394         Cvar_RegisterVariable(&r_glsl);
2395         Cvar_RegisterVariable(&r_glsl_contrastboost);
2396         Cvar_RegisterVariable(&r_glsl_deluxemapping);
2397         Cvar_RegisterVariable(&r_glsl_offsetmapping);
2398         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
2399         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
2400         Cvar_RegisterVariable(&r_glsl_postprocess);
2401         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
2402         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
2403         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
2404         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
2405         Cvar_RegisterVariable(&r_glsl_usegeneric);
2406         Cvar_RegisterVariable(&r_water);
2407         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
2408         Cvar_RegisterVariable(&r_water_clippingplanebias);
2409         Cvar_RegisterVariable(&r_water_refractdistort);
2410         Cvar_RegisterVariable(&r_water_reflectdistort);
2411         Cvar_RegisterVariable(&r_lerpsprites);
2412         Cvar_RegisterVariable(&r_lerpmodels);
2413         Cvar_RegisterVariable(&r_lerplightstyles);
2414         Cvar_RegisterVariable(&r_waterscroll);
2415         Cvar_RegisterVariable(&r_bloom);
2416         Cvar_RegisterVariable(&r_bloom_colorscale);
2417         Cvar_RegisterVariable(&r_bloom_brighten);
2418         Cvar_RegisterVariable(&r_bloom_blur);
2419         Cvar_RegisterVariable(&r_bloom_resolution);
2420         Cvar_RegisterVariable(&r_bloom_colorexponent);
2421         Cvar_RegisterVariable(&r_bloom_colorsubtract);
2422         Cvar_RegisterVariable(&r_hdr);
2423         Cvar_RegisterVariable(&r_hdr_scenebrightness);
2424         Cvar_RegisterVariable(&r_hdr_glowintensity);
2425         Cvar_RegisterVariable(&r_hdr_range);
2426         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
2427         Cvar_RegisterVariable(&developer_texturelogging);
2428         Cvar_RegisterVariable(&gl_lightmaps);
2429         Cvar_RegisterVariable(&r_test);
2430         Cvar_RegisterVariable(&r_batchmode);
2431         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
2432                 Cvar_SetValue("r_fullbrights", 0);
2433         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap);
2434
2435         Cvar_RegisterVariable(&r_track_sprites);
2436         Cvar_RegisterVariable(&r_track_sprites_flags);
2437         Cvar_RegisterVariable(&r_track_sprites_scalew);
2438         Cvar_RegisterVariable(&r_track_sprites_scaleh);
2439 }
2440
2441 extern void R_Textures_Init(void);
2442 extern void GL_Draw_Init(void);
2443 extern void GL_Main_Init(void);
2444 extern void R_Shadow_Init(void);
2445 extern void R_Sky_Init(void);
2446 extern void GL_Surf_Init(void);
2447 extern void R_Particles_Init(void);
2448 extern void R_Explosion_Init(void);
2449 extern void gl_backend_init(void);
2450 extern void Sbar_Init(void);
2451 extern void R_LightningBeams_Init(void);
2452 extern void Mod_RenderInit(void);
2453
2454 void Render_Init(void)
2455 {
2456         gl_backend_init();
2457         R_Textures_Init();
2458         GL_Main_Init();
2459         GL_Draw_Init();
2460         R_Shadow_Init();
2461         R_Sky_Init();
2462         GL_Surf_Init();
2463         Sbar_Init();
2464         R_Particles_Init();
2465         R_Explosion_Init();
2466         R_LightningBeams_Init();
2467         Mod_RenderInit();
2468 }
2469
2470 /*
2471 ===============
2472 GL_Init
2473 ===============
2474 */
2475 extern char *ENGINE_EXTENSIONS;
2476 void GL_Init (void)
2477 {
2478         gl_renderer = (const char *)qglGetString(GL_RENDERER);
2479         gl_vendor = (const char *)qglGetString(GL_VENDOR);
2480         gl_version = (const char *)qglGetString(GL_VERSION);
2481         gl_extensions = (const char *)qglGetString(GL_EXTENSIONS);
2482
2483         if (!gl_extensions)
2484                 gl_extensions = "";
2485         if (!gl_platformextensions)
2486                 gl_platformextensions = "";
2487
2488         Con_Printf("GL_VENDOR: %s\n", gl_vendor);
2489         Con_Printf("GL_RENDERER: %s\n", gl_renderer);
2490         Con_Printf("GL_VERSION: %s\n", gl_version);
2491         Con_DPrintf("GL_EXTENSIONS: %s\n", gl_extensions);
2492         Con_DPrintf("%s_EXTENSIONS: %s\n", gl_platform, gl_platformextensions);
2493
2494         VID_CheckExtensions();
2495
2496         // LordHavoc: report supported extensions
2497         Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions );
2498
2499         // clear to black (loading plaque will be seen over this)
2500         CHECKGLERROR
2501         qglClearColor(0,0,0,1);CHECKGLERROR
2502         qglClear(GL_COLOR_BUFFER_BIT);CHECKGLERROR
2503 }
2504
2505 int R_CullBox(const vec3_t mins, const vec3_t maxs)
2506 {
2507         int i;
2508         mplane_t *p;
2509         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
2510         {
2511                 // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
2512                 if (i == 4)
2513                         continue;
2514                 p = r_refdef.view.frustum + i;
2515                 switch(p->signbits)
2516                 {
2517                 default:
2518                 case 0:
2519                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2520                                 return true;
2521                         break;
2522                 case 1:
2523                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2524                                 return true;
2525                         break;
2526                 case 2:
2527                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2528                                 return true;
2529                         break;
2530                 case 3:
2531                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2532                                 return true;
2533                         break;
2534                 case 4:
2535                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2536                                 return true;
2537                         break;
2538                 case 5:
2539                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2540                                 return true;
2541                         break;
2542                 case 6:
2543                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2544                                 return true;
2545                         break;
2546                 case 7:
2547                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2548                                 return true;
2549                         break;
2550                 }
2551         }
2552         return false;
2553 }
2554
2555 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
2556 {
2557         int i;
2558         const mplane_t *p;
2559         for (i = 0;i < numplanes;i++)
2560         {
2561                 p = planes + i;
2562                 switch(p->signbits)
2563                 {
2564                 default:
2565                 case 0:
2566                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2567                                 return true;
2568                         break;
2569                 case 1:
2570                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2571                                 return true;
2572                         break;
2573                 case 2:
2574                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2575                                 return true;
2576                         break;
2577                 case 3:
2578                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2579                                 return true;
2580                         break;
2581                 case 4:
2582                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2583                                 return true;
2584                         break;
2585                 case 5:
2586                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2587                                 return true;
2588                         break;
2589                 case 6:
2590                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2591                                 return true;
2592                         break;
2593                 case 7:
2594                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2595                                 return true;
2596                         break;
2597                 }
2598         }
2599         return false;
2600 }
2601
2602 //==================================================================================
2603
2604 static void R_View_UpdateEntityVisible (void)
2605 {
2606         int i, renderimask;
2607         entity_render_t *ent;
2608
2609         if (!r_drawentities.integer)
2610                 return;
2611
2612         renderimask = r_refdef.envmap ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : ((chase_active.integer || r_waterstate.renderingscene) ? RENDER_VIEWMODEL : RENDER_EXTERIORMODEL);
2613         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
2614         {
2615                 // worldmodel can check visibility
2616                 memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities);
2617                 for (i = 0;i < r_refdef.scene.numentities;i++)
2618                 {
2619                         ent = r_refdef.scene.entities[i];
2620                         if (!(ent->flags & renderimask))
2621                         if (!R_CullBox(ent->mins, ent->maxs) || (ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
2622                         if ((ent->effects & EF_NODEPTHTEST) || (ent->flags & RENDER_VIEWMODEL) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs))
2623                                 r_refdef.viewcache.entityvisible[i] = true;
2624                 }
2625                 if(r_cullentities_trace.integer && r_refdef.scene.worldmodel->brush.TraceLineOfSight)
2626                 {
2627                         for (i = 0;i < r_refdef.scene.numentities;i++)
2628                         {
2629                                 ent = r_refdef.scene.entities[i];
2630                                 if(r_refdef.viewcache.entityvisible[i] && !(ent->effects & EF_NODEPTHTEST) && !(ent->flags & RENDER_VIEWMODEL) && !(ent->model && (ent->model->name[0] == '*')))
2631                                 {
2632                                         if(Mod_CanSeeBox_Trace(r_cullentities_trace_samples.integer, r_cullentities_trace_enlarge.value, r_refdef.scene.worldmodel, r_refdef.view.origin, ent->mins, ent->maxs))
2633                                                 ent->last_trace_visibility = realtime;
2634                                         if(ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value)
2635                                                 r_refdef.viewcache.entityvisible[i] = 0;
2636                                 }
2637                         }
2638                 }
2639         }
2640         else
2641         {
2642                 // no worldmodel or it can't check visibility
2643                 for (i = 0;i < r_refdef.scene.numentities;i++)
2644                 {
2645                         ent = r_refdef.scene.entities[i];
2646                         r_refdef.viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs));
2647                 }
2648         }
2649 }
2650
2651 // only used if skyrendermasked, and normally returns false
2652 int R_DrawBrushModelsSky (void)
2653 {
2654         int i, sky;
2655         entity_render_t *ent;
2656
2657         if (!r_drawentities.integer)
2658                 return false;
2659
2660         sky = false;
2661         for (i = 0;i < r_refdef.scene.numentities;i++)
2662         {
2663                 if (!r_refdef.viewcache.entityvisible[i])
2664                         continue;
2665                 ent = r_refdef.scene.entities[i];
2666                 if (!ent->model || !ent->model->DrawSky)
2667                         continue;
2668                 ent->model->DrawSky(ent);
2669                 sky = true;
2670         }
2671         return sky;
2672 }
2673
2674 static void R_DrawNoModel(entity_render_t *ent);
2675 static void R_DrawModels(void)
2676 {
2677         int i;
2678         entity_render_t *ent;
2679
2680         if (!r_drawentities.integer)
2681                 return;
2682
2683         for (i = 0;i < r_refdef.scene.numentities;i++)
2684         {
2685                 if (!r_refdef.viewcache.entityvisible[i])
2686                         continue;
2687                 ent = r_refdef.scene.entities[i];
2688                 r_refdef.stats.entities++;
2689                 if (ent->model && ent->model->Draw != NULL)
2690                         ent->model->Draw(ent);
2691                 else
2692                         R_DrawNoModel(ent);
2693         }
2694 }
2695
2696 static void R_DrawModelsDepth(void)
2697 {
2698         int i;
2699         entity_render_t *ent;
2700
2701         if (!r_drawentities.integer)
2702                 return;
2703
2704         for (i = 0;i < r_refdef.scene.numentities;i++)
2705         {
2706                 if (!r_refdef.viewcache.entityvisible[i])
2707                         continue;
2708                 ent = r_refdef.scene.entities[i];
2709                 if (ent->model && ent->model->DrawDepth != NULL)
2710                         ent->model->DrawDepth(ent);
2711         }
2712 }
2713
2714 static void R_DrawModelsDebug(void)
2715 {
2716         int i;
2717         entity_render_t *ent;
2718
2719         if (!r_drawentities.integer)
2720                 return;
2721
2722         for (i = 0;i < r_refdef.scene.numentities;i++)
2723         {
2724                 if (!r_refdef.viewcache.entityvisible[i])
2725                         continue;
2726                 ent = r_refdef.scene.entities[i];
2727                 if (ent->model && ent->model->DrawDebug != NULL)
2728                         ent->model->DrawDebug(ent);
2729         }
2730 }
2731
2732 static void R_DrawModelsAddWaterPlanes(void)
2733 {
2734         int i;
2735         entity_render_t *ent;
2736
2737         if (!r_drawentities.integer)
2738                 return;
2739
2740         for (i = 0;i < r_refdef.scene.numentities;i++)
2741         {
2742                 if (!r_refdef.viewcache.entityvisible[i])
2743                         continue;
2744                 ent = r_refdef.scene.entities[i];
2745                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
2746                         ent->model->DrawAddWaterPlanes(ent);
2747         }
2748 }
2749
2750 static void R_View_SetFrustum(void)
2751 {
2752         int i;
2753         double slopex, slopey;
2754         vec3_t forward, left, up, origin;
2755
2756         // we can't trust r_refdef.view.forward and friends in reflected scenes
2757         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
2758
2759 #if 0
2760         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
2761         r_refdef.view.frustum[0].normal[1] = 0 - 0;
2762         r_refdef.view.frustum[0].normal[2] = -1 - 0;
2763         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
2764         r_refdef.view.frustum[1].normal[1] = 0 + 0;
2765         r_refdef.view.frustum[1].normal[2] = -1 + 0;
2766         r_refdef.view.frustum[2].normal[0] = 0 - 0;
2767         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
2768         r_refdef.view.frustum[2].normal[2] = -1 - 0;
2769         r_refdef.view.frustum[3].normal[0] = 0 + 0;
2770         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
2771         r_refdef.view.frustum[3].normal[2] = -1 + 0;
2772 #endif
2773
2774 #if 0
2775         zNear = r_refdef.nearclip;
2776         nudge = 1.0 - 1.0 / (1<<23);
2777         r_refdef.view.frustum[4].normal[0] = 0 - 0;
2778         r_refdef.view.frustum[4].normal[1] = 0 - 0;
2779         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
2780         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
2781         r_refdef.view.frustum[5].normal[0] = 0 + 0;
2782         r_refdef.view.frustum[5].normal[1] = 0 + 0;
2783         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
2784         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
2785 #endif
2786
2787
2788
2789 #if 0
2790         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
2791         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
2792         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
2793         r_refdef.view.frustum[0].dist = m[15] - m[12];
2794
2795         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
2796         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
2797         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
2798         r_refdef.view.frustum[1].dist = m[15] + m[12];
2799
2800         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
2801         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
2802         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
2803         r_refdef.view.frustum[2].dist = m[15] - m[13];
2804
2805         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
2806         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
2807         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
2808         r_refdef.view.frustum[3].dist = m[15] + m[13];
2809
2810         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
2811         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
2812         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
2813         r_refdef.view.frustum[4].dist = m[15] - m[14];
2814
2815         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
2816         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
2817         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
2818         r_refdef.view.frustum[5].dist = m[15] + m[14];
2819 #endif
2820
2821         if (r_refdef.view.useperspective)
2822         {
2823                 slopex = 1.0 / r_refdef.view.frustum_x;
2824                 slopey = 1.0 / r_refdef.view.frustum_y;
2825                 VectorMA(forward, -slopex, left, r_refdef.view.frustum[0].normal);
2826                 VectorMA(forward,  slopex, left, r_refdef.view.frustum[1].normal);
2827                 VectorMA(forward, -slopey, up  , r_refdef.view.frustum[2].normal);
2828                 VectorMA(forward,  slopey, up  , r_refdef.view.frustum[3].normal);
2829                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
2830
2831                 // Leaving those out was a mistake, those were in the old code, and they
2832                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
2833                 // I couldn't reproduce it after adding those normalizations. --blub
2834                 VectorNormalize(r_refdef.view.frustum[0].normal);
2835                 VectorNormalize(r_refdef.view.frustum[1].normal);
2836                 VectorNormalize(r_refdef.view.frustum[2].normal);
2837                 VectorNormalize(r_refdef.view.frustum[3].normal);
2838
2839                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
2840                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward, -1024 * slopex, left, -1024 * slopey, up, r_refdef.view.frustumcorner[0]);
2841                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward,  1024 * slopex, left, -1024 * slopey, up, r_refdef.view.frustumcorner[1]);
2842                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward, -1024 * slopex, left,  1024 * slopey, up, r_refdef.view.frustumcorner[2]);
2843                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward,  1024 * slopex, left,  1024 * slopey, up, r_refdef.view.frustumcorner[3]);
2844
2845                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
2846                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
2847                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
2848                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
2849                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
2850         }
2851         else
2852         {
2853                 VectorScale(left, -r_refdef.view.ortho_x, r_refdef.view.frustum[0].normal);
2854                 VectorScale(left,  r_refdef.view.ortho_x, r_refdef.view.frustum[1].normal);
2855                 VectorScale(up, -r_refdef.view.ortho_y, r_refdef.view.frustum[2].normal);
2856                 VectorScale(up,  r_refdef.view.ortho_y, r_refdef.view.frustum[3].normal);
2857                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
2858                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) + r_refdef.view.ortho_x;
2859                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) + r_refdef.view.ortho_x;
2860                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) + r_refdef.view.ortho_y;
2861                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) + r_refdef.view.ortho_y;
2862                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
2863         }
2864         r_refdef.view.numfrustumplanes = 5;
2865
2866         if (r_refdef.view.useclipplane)
2867         {
2868                 r_refdef.view.numfrustumplanes = 6;
2869                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
2870         }
2871
2872         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
2873                 PlaneClassify(r_refdef.view.frustum + i);
2874
2875         // LordHavoc: note to all quake engine coders, Quake had a special case
2876         // for 90 degrees which assumed a square view (wrong), so I removed it,
2877         // Quake2 has it disabled as well.
2878
2879         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
2880         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
2881         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
2882         //PlaneClassify(&frustum[0]);
2883
2884         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
2885         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
2886         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
2887         //PlaneClassify(&frustum[1]);
2888
2889         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
2890         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
2891         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
2892         //PlaneClassify(&frustum[2]);
2893
2894         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
2895         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
2896         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
2897         //PlaneClassify(&frustum[3]);
2898
2899         // nearclip plane
2900         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
2901         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
2902         //PlaneClassify(&frustum[4]);
2903 }
2904
2905 void R_View_Update(void)
2906 {
2907         R_View_SetFrustum();
2908         R_View_WorldVisibility(r_refdef.view.useclipplane);
2909         R_View_UpdateEntityVisible();
2910 }
2911
2912 void R_SetupView(qboolean allowwaterclippingplane)
2913 {
2914         if (!r_refdef.view.useperspective)
2915                 GL_SetupView_Mode_Ortho(-r_refdef.view.ortho_x, -r_refdef.view.ortho_y, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip);
2916         else if (gl_stencil && r_useinfinitefarclip.integer)
2917                 GL_SetupView_Mode_PerspectiveInfiniteFarClip(r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip);
2918         else
2919                 GL_SetupView_Mode_Perspective(r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip);
2920
2921         GL_SetupView_Orientation_FromEntity(&r_refdef.view.matrix);
2922
2923         if (r_refdef.view.useclipplane && allowwaterclippingplane)
2924         {
2925                 // LordHavoc: couldn't figure out how to make this approach the
2926                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
2927                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
2928                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
2929                         dist = r_refdef.view.clipplane.dist;
2930                 GL_SetupView_ApplyCustomNearClipPlane(r_refdef.view.clipplane.normal[0], r_refdef.view.clipplane.normal[1], r_refdef.view.clipplane.normal[2], dist);
2931         }
2932 }
2933
2934 void R_ResetViewRendering2D(void)
2935 {
2936         DrawQ_Finish();
2937
2938         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
2939         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
2940         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
2941         GL_Scissor(r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
2942         GL_Color(1, 1, 1, 1);
2943         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2944         GL_BlendFunc(GL_ONE, GL_ZERO);
2945         GL_AlphaTest(false);
2946         GL_ScissorTest(false);
2947         GL_DepthMask(false);
2948         GL_DepthRange(0, 1);
2949         GL_DepthTest(false);
2950         R_Mesh_Matrix(&identitymatrix);
2951         R_Mesh_ResetTextureState();
2952         GL_PolygonOffset(0, 0);
2953         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2954         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2955         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2956         qglStencilMask(~0);CHECKGLERROR
2957         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2958         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2959         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2960         R_SetupGenericShader(true);
2961 }
2962
2963 void R_ResetViewRendering3D(void)
2964 {
2965         DrawQ_Finish();
2966
2967         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
2968         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
2969         R_SetupView(true);
2970         GL_Scissor(r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
2971         GL_Color(1, 1, 1, 1);
2972         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2973         GL_BlendFunc(GL_ONE, GL_ZERO);
2974         GL_AlphaTest(false);
2975         GL_ScissorTest(true);
2976         GL_DepthMask(true);
2977         GL_DepthRange(0, 1);
2978         GL_DepthTest(true);
2979         R_Mesh_Matrix(&identitymatrix);
2980         R_Mesh_ResetTextureState();
2981         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
2982         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2983         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2984         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2985         qglStencilMask(~0);CHECKGLERROR
2986         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2987         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2988         GL_CullFace(r_refdef.view.cullface_back);
2989         R_SetupGenericShader(true);
2990 }
2991
2992 void R_RenderScene(qboolean addwaterplanes);
2993
2994 static void R_Water_StartFrame(void)
2995 {
2996         int i;
2997         int waterwidth, waterheight, texturewidth, textureheight;
2998         r_waterstate_waterplane_t *p;
2999
3000         // set waterwidth and waterheight to the water resolution that will be
3001         // used (often less than the screen resolution for faster rendering)
3002         waterwidth = (int)bound(1, r_refdef.view.width * r_water_resolutionmultiplier.value, r_refdef.view.width);
3003         waterheight = (int)bound(1, r_refdef.view.height * r_water_resolutionmultiplier.value, r_refdef.view.height);
3004
3005         // calculate desired texture sizes
3006         // can't use water if the card does not support the texture size
3007         if (!r_water.integer || !r_glsl.integer || !gl_support_fragment_shader || waterwidth > gl_max_texture_size || waterheight > gl_max_texture_size || r_showsurfaces.integer)
3008                 texturewidth = textureheight = waterwidth = waterheight = 0;
3009         else if (gl_support_arb_texture_non_power_of_two)
3010         {
3011                 texturewidth = waterwidth;
3012                 textureheight = waterheight;
3013         }
3014         else
3015         {
3016                 for (texturewidth   = 1;texturewidth   < waterwidth ;texturewidth   *= 2);
3017                 for (textureheight  = 1;textureheight  < waterheight;textureheight  *= 2);
3018         }
3019
3020         // allocate textures as needed
3021         if (r_waterstate.waterwidth != waterwidth || r_waterstate.waterheight != waterheight || r_waterstate.texturewidth != texturewidth || r_waterstate.textureheight != textureheight)
3022         {
3023                 r_waterstate.maxwaterplanes = MAX_WATERPLANES;
3024                 for (i = 0, p = r_waterstate.waterplanes;i < r_waterstate.maxwaterplanes;i++, p++)
3025                 {
3026                         if (p->texture_refraction)
3027                                 R_FreeTexture(p->texture_refraction);
3028                         p->texture_refraction = NULL;
3029                         if (p->texture_reflection)
3030                                 R_FreeTexture(p->texture_reflection);
3031                         p->texture_reflection = NULL;
3032                 }
3033                 memset(&r_waterstate, 0, sizeof(r_waterstate));
3034                 r_waterstate.waterwidth = waterwidth;
3035                 r_waterstate.waterheight = waterheight;
3036                 r_waterstate.texturewidth = texturewidth;
3037                 r_waterstate.textureheight = textureheight;
3038         }
3039
3040         if (r_waterstate.waterwidth)
3041         {
3042                 r_waterstate.enabled = true;
3043
3044                 // set up variables that will be used in shader setup
3045                 r_waterstate.screenscale[0] = 0.5f * (float)waterwidth / (float)texturewidth;
3046                 r_waterstate.screenscale[1] = 0.5f * (float)waterheight / (float)textureheight;
3047                 r_waterstate.screencenter[0] = 0.5f * (float)waterwidth / (float)texturewidth;
3048                 r_waterstate.screencenter[1] = 0.5f * (float)waterheight / (float)textureheight;
3049         }
3050
3051         r_waterstate.maxwaterplanes = MAX_WATERPLANES;
3052         r_waterstate.numwaterplanes = 0;
3053 }
3054
3055 static void R_Water_AddWaterPlane(msurface_t *surface)
3056 {
3057         int triangleindex, planeindex;
3058         const int *e;
3059         vec3_t vert[3];
3060         vec3_t normal;
3061         vec3_t center;
3062         mplane_t plane;
3063         r_waterstate_waterplane_t *p;
3064         // just use the first triangle with a valid normal for any decisions
3065         VectorClear(normal);
3066         for (triangleindex = 0, e = rsurface.modelelement3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
3067         {
3068                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[0]*3, vert[0]);
3069                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[1]*3, vert[1]);
3070                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[2]*3, vert[2]);
3071                 TriangleNormal(vert[0], vert[1], vert[2], normal);
3072                 if (VectorLength2(normal) >= 0.001)
3073                         break;
3074         }
3075
3076         VectorCopy(normal, plane.normal);
3077         VectorNormalize(plane.normal);
3078         plane.dist = DotProduct(vert[0], plane.normal);
3079         PlaneClassify(&plane);
3080         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
3081         {
3082                 // skip backfaces (except if nocullface is set)
3083                 if (!(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
3084                         return;
3085                 VectorNegate(plane.normal, plane.normal);
3086                 plane.dist *= -1;
3087                 PlaneClassify(&plane);
3088         }
3089
3090
3091         // find a matching plane if there is one
3092         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
3093                 if (fabs(PlaneDiff(vert[0], &p->plane)) < 1 && fabs(PlaneDiff(vert[1], &p->plane)) < 1 && fabs(PlaneDiff(vert[2], &p->plane)) < 1)
3094                         break;
3095         if (planeindex >= r_waterstate.maxwaterplanes)
3096                 return; // nothing we can do, out of planes
3097
3098         // if this triangle does not fit any known plane rendered this frame, add one
3099         if (planeindex >= r_waterstate.numwaterplanes)
3100         {
3101                 // store the new plane
3102                 r_waterstate.numwaterplanes++;
3103                 p->plane = plane;
3104                 // clear materialflags and pvs
3105                 p->materialflags = 0;
3106                 p->pvsvalid = false;
3107         }
3108         // merge this surface's materialflags into the waterplane
3109         p->materialflags |= surface->texture->currentframe->currentmaterialflags;
3110         // merge this surface's PVS into the waterplane
3111         VectorMAM(0.5f, surface->mins, 0.5f, surface->maxs, center);
3112         if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
3113          && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
3114         {
3115                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
3116                 p->pvsvalid = true;
3117         }
3118 }
3119
3120 static void R_Water_ProcessPlanes(void)
3121 {
3122         r_refdef_view_t originalview;
3123         int planeindex;
3124         r_waterstate_waterplane_t *p;
3125
3126         originalview = r_refdef.view;
3127
3128         // make sure enough textures are allocated
3129         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
3130         {
3131                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
3132                 {
3133                         if (!p->texture_refraction)
3134                                 p->texture_refraction = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_refraction", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
3135                         if (!p->texture_refraction)
3136                                 goto error;
3137                 }
3138
3139                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
3140                 {
3141                         if (!p->texture_reflection)
3142                                 p->texture_reflection = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_reflection", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
3143                         if (!p->texture_reflection)
3144                                 goto error;
3145                 }
3146         }
3147
3148         // render views
3149         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
3150         {
3151                 r_refdef.view.showdebug = false;
3152                 r_refdef.view.width = r_waterstate.waterwidth;
3153                 r_refdef.view.height = r_waterstate.waterheight;
3154                 r_refdef.view.useclipplane = true;
3155                 r_waterstate.renderingscene = true;
3156
3157                 // render the normal view scene and copy into texture
3158                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
3159                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
3160                 {
3161                         r_refdef.view.clipplane = p->plane;
3162                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
3163                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
3164                         PlaneClassify(&r_refdef.view.clipplane);
3165
3166                         R_RenderScene(false);
3167
3168                         // copy view into the screen texture
3169                         R_Mesh_TexBind(0, R_GetTexture(p->texture_refraction));
3170                         GL_ActiveTexture(0);
3171                         CHECKGLERROR
3172                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
3173                 }
3174
3175                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
3176                 {
3177                         // render reflected scene and copy into texture
3178                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
3179                         // update the r_refdef.view.origin because otherwise the sky renders at the wrong location (amongst other problems)
3180                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
3181                         r_refdef.view.clipplane = p->plane;
3182                         // reverse the cullface settings for this render
3183                         r_refdef.view.cullface_front = GL_FRONT;
3184                         r_refdef.view.cullface_back = GL_BACK;
3185                     &nbs