]> icculus.org git repositories - divverent/darkplaces.git/blob - gl_models.c
massive coding has been done on shadow volumes (some scrapped code which will be...
[divverent/darkplaces.git] / gl_models.c
1
2 #include "quakedef.h"
3 #include "cl_collision.h"
4 #include "r_shadow.h"
5
6 typedef struct
7 {
8         float m[3][4];
9 } zymbonematrix;
10
11 // LordHavoc: vertex arrays
12
13 float *aliasvertbuf;
14 float *aliasvertcolorbuf;
15 float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend
16 float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend
17
18 float *aliasvertcolor2;
19 float *aliasvertnorm;
20 int *aliasvertusage;
21 zymbonematrix *zymbonepose;
22
23 mempool_t *gl_models_mempool;
24
25 void gl_models_start(void)
26 {
27         // allocate vertex processing arrays
28         gl_models_mempool = Mem_AllocPool("GL_Models");
29         aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
30         aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
31         aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3]));
32         aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring
33         zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256]));
34         aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS]));
35 }
36
37 void gl_models_shutdown(void)
38 {
39         Mem_FreePool(&gl_models_mempool);
40 }
41
42 void gl_models_newmap(void)
43 {
44 }
45
46 void GL_Models_Init(void)
47 {
48         R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap);
49 }
50
51 void R_AliasLerpVerts(int vertcount, float *vertices, float *normals,
52                 float lerp1, const trivertx_t *verts1, const vec3_t fscale1, const vec3_t translate1,
53                 float lerp2, const trivertx_t *verts2, const vec3_t fscale2, const vec3_t translate2,
54                 float lerp3, const trivertx_t *verts3, const vec3_t fscale3, const vec3_t translate3,
55                 float lerp4, const trivertx_t *verts4, const vec3_t fscale4, const vec3_t translate4)
56 {
57         int i;
58         vec3_t scale1, scale2, scale3, scale4, translate;
59         const float *n1, *n2, *n3, *n4;
60         float *av, *avn;
61         av = vertices;
62         avn = normals;
63         VectorScale(fscale1, lerp1, scale1);
64         if (lerp2)
65         {
66                 VectorScale(fscale2, lerp2, scale2);
67                 if (lerp3)
68                 {
69                         VectorScale(fscale3, lerp3, scale3);
70                         if (lerp4)
71                         {
72                                 VectorScale(fscale4, lerp4, scale4);
73                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4;
74                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4;
75                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4;
76                                 // generate vertices
77                                 for (i = 0;i < vertcount;i++)
78                                 {
79                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0];
80                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1];
81                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2];
82                                         n1 = m_bytenormals[verts1->lightnormalindex];
83                                         n2 = m_bytenormals[verts2->lightnormalindex];
84                                         n3 = m_bytenormals[verts3->lightnormalindex];
85                                         n4 = m_bytenormals[verts4->lightnormalindex];
86                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4;
87                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4;
88                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4;
89                                         av += 4;
90                                         avn += 3;
91                                         verts1++;verts2++;verts3++;verts4++;
92                                 }
93                         }
94                         else
95                         {
96                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3;
97                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3;
98                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3;
99                                 // generate vertices
100                                 for (i = 0;i < vertcount;i++)
101                                 {
102                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0];
103                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1];
104                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2];
105                                         n1 = m_bytenormals[verts1->lightnormalindex];
106                                         n2 = m_bytenormals[verts2->lightnormalindex];
107                                         n3 = m_bytenormals[verts3->lightnormalindex];
108                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3;
109                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3;
110                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3;
111                                         av += 4;
112                                         avn += 3;
113                                         verts1++;verts2++;verts3++;
114                                 }
115                         }
116                 }
117                 else
118                 {
119                         translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2;
120                         translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2;
121                         translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2;
122                         // generate vertices
123                         for (i = 0;i < vertcount;i++)
124                         {
125                                 av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0];
126                                 av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1];
127                                 av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2];
128                                 n1 = m_bytenormals[verts1->lightnormalindex];
129                                 n2 = m_bytenormals[verts2->lightnormalindex];
130                                 avn[0] = n1[0] * lerp1 + n2[0] * lerp2;
131                                 avn[1] = n1[1] * lerp1 + n2[1] * lerp2;
132                                 avn[2] = n1[2] * lerp1 + n2[2] * lerp2;
133                                 av += 4;
134                                 avn += 3;
135                                 verts1++;verts2++;
136                         }
137                 }
138         }
139         else
140         {
141                 translate[0] = translate1[0] * lerp1;
142                 translate[1] = translate1[1] * lerp1;
143                 translate[2] = translate1[2] * lerp1;
144                 // generate vertices
145                 if (lerp1 != 1)
146                 {
147                         // general but almost never used case
148                         for (i = 0;i < vertcount;i++)
149                         {
150                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
151                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
152                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
153                                 n1 = m_bytenormals[verts1->lightnormalindex];
154                                 avn[0] = n1[0] * lerp1;
155                                 avn[1] = n1[1] * lerp1;
156                                 avn[2] = n1[2] * lerp1;
157                                 av += 4;
158                                 avn += 3;
159                                 verts1++;
160                         }
161                 }
162                 else
163                 {
164                         // fast normal case
165                         for (i = 0;i < vertcount;i++)
166                         {
167                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
168                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
169                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
170                                 VectorCopy(m_bytenormals[verts1->lightnormalindex], avn);
171                                 av += 4;
172                                 avn += 3;
173                                 verts1++;
174                         }
175                 }
176         }
177 }
178
179 skinframe_t *R_FetchSkinFrame(const entity_render_t *ent)
180 {
181         model_t *model = ent->model;
182         unsigned int s = (unsigned int) ent->skinnum;
183         if (s >= model->numskins)
184                 s = 0;
185         if (model->skinscenes[s].framecount > 1)
186                 return &model->skinframes[model->skinscenes[s].firstframe + (int) (cl.time * 10) % model->skinscenes[s].framecount];
187         else
188                 return &model->skinframes[model->skinscenes[s].firstframe];
189 }
190
191 void R_LerpMDLMD2Vertices(const entity_render_t *ent, float *vertices, float *normals)
192 {
193         const md2frame_t *frame1, *frame2, *frame3, *frame4;
194         const trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts;
195         const model_t *model = ent->model;
196
197         frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame];
198         frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame];
199         frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame];
200         frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame];
201         frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts];
202         frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts];
203         frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts];
204         frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts];
205         R_AliasLerpVerts(model->numverts, vertices, normals,
206                 ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate,
207                 ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate,
208                 ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate,
209                 ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate);
210 }
211
212 void R_DrawQ1Q2AliasModelCallback (const void *calldata1, int calldata2)
213 {
214         int i, c, fullbright, pantsfullbright, shirtfullbright, colormapped, tex;
215         float pantscolor[3], shirtcolor[3];
216         float fog, ifog, colorscale;
217         vec3_t diff;
218         qbyte *bcolor;
219         rmeshstate_t m;
220         model_t *model;
221         skinframe_t *skinframe;
222         const entity_render_t *ent = calldata1;
223         int blendfunc1, blendfunc2;
224
225         R_Mesh_Matrix(&ent->matrix);
226
227         model = ent->model;
228         R_Mesh_ResizeCheck(model->numverts);
229
230         skinframe = R_FetchSkinFrame(ent);
231
232         fullbright = (ent->effects & EF_FULLBRIGHT) != 0;
233
234         fog = 0;
235         if (fogenabled)
236         {
237                 VectorSubtract(ent->origin, r_origin, diff);
238                 fog = DotProduct(diff,diff);
239                 if (fog < 0.01f)
240                         fog = 0.01f;
241                 fog = exp(fogdensity/fog);
242                 if (fog > 1)
243                         fog = 1;
244                 if (fog < 0.01f)
245                         fog = 0;
246                 // fog method: darken, additive fog
247                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
248                 // 2. render fog as additive
249         }
250         ifog = 1 - fog;
251
252         if (ent->effects & EF_ADDITIVE)
253         {
254                 blendfunc1 = GL_SRC_ALPHA;
255                 blendfunc2 = GL_ONE;
256         }
257         else if (ent->alpha != 1.0 || skinframe->fog != NULL)
258         {
259                 blendfunc1 = GL_SRC_ALPHA;
260                 blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
261         }
262         else
263         {
264                 blendfunc1 = GL_ONE;
265                 blendfunc2 = GL_ZERO;
266         }
267
268         if (!skinframe->base && !skinframe->pants && !skinframe->shirt && !skinframe->glow)
269         {
270                 // untextured
271                 memset(&m, 0, sizeof(m));
272                 m.blendfunc1 = blendfunc1;
273                 m.blendfunc2 = blendfunc2;
274                 colorscale = r_colorscale;
275                 if (gl_combine.integer)
276                 {
277                         colorscale *= 0.25f;
278                         m.texrgbscale[0] = 4;
279                 }
280                 m.tex[0] = R_GetTexture(r_notexture);
281                 R_Mesh_State(&m);
282                 c_alias_polys += model->numtris;
283                 for (i = 0;i < model->numverts * 2;i++)
284                         varray_texcoord[0][i] = model->mdlmd2data_texcoords[i] * 8.0f;
285                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
286                 R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, colorscale, colorscale, colorscale, false);
287                 GL_UseColorArray();
288                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
289                 return;
290         }
291
292         colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt));
293         if (colormapped)
294         {
295                 // 128-224 are backwards ranges
296                 c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12;
297                 bcolor = (qbyte *) (&d_8to24table[c]);
298                 pantsfullbright = c >= 224;
299                 VectorScale(bcolor, (1.0f / 255.0f), pantscolor);
300                 c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12;
301                 bcolor = (qbyte *) (&d_8to24table[c]);
302                 shirtfullbright = c >= 224;
303                 VectorScale(bcolor, (1.0f / 255.0f), shirtcolor);
304         }
305         else
306         {
307                 pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1;
308                 pantsfullbright = shirtfullbright = false;
309         }
310
311         tex = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged);
312         if (tex)
313         {
314                 memset(&m, 0, sizeof(m));
315                 m.blendfunc1 = blendfunc1;
316                 m.blendfunc2 = blendfunc2;
317                 colorscale = r_colorscale;
318                 if (gl_combine.integer)
319                 {
320                         colorscale *= 0.25f;
321                         m.texrgbscale[0] = 4;
322                 }
323                 m.tex[0] = tex;
324                 R_Mesh_State(&m);
325                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
326                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
327                 if (fullbright)
328                         GL_Color(colorscale * ifog, colorscale * ifog, colorscale * ifog, ent->alpha);
329                 else
330                 {
331                         GL_UseColorArray();
332                         R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, colorscale * ifog, colorscale * ifog, colorscale * ifog, false);
333                 }
334                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
335                 c_alias_polys += model->numtris;
336                 blendfunc1 = GL_SRC_ALPHA;
337                 blendfunc2 = GL_ONE;
338         }
339
340         if (colormapped)
341         {
342                 if (skinframe->pants)
343                 {
344                         tex = R_GetTexture(skinframe->pants);
345                         if (tex)
346                         {
347                                 memset(&m, 0, sizeof(m));
348                                 m.blendfunc1 = blendfunc1;
349                                 m.blendfunc2 = blendfunc2;
350                                 colorscale = r_colorscale;
351                                 if (gl_combine.integer)
352                                 {
353                                         colorscale *= 0.25f;
354                                         m.texrgbscale[0] = 4;
355                                 }
356                                 m.tex[0] = tex;
357                                 R_Mesh_State(&m);
358                                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
359                                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
360                                 if (pantsfullbright)
361                                         GL_Color(pantscolor[0] * colorscale * ifog, pantscolor[1] * colorscale * ifog, pantscolor[2] * colorscale * ifog, ent->alpha);
362                                 else
363                                 {
364                                         GL_UseColorArray();
365                                         R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, pantscolor[0] * colorscale * ifog, pantscolor[1] * colorscale * ifog, pantscolor[2] * colorscale * ifog, false);
366                                 }
367                                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
368                                 c_alias_polys += model->numtris;
369                                 blendfunc1 = GL_SRC_ALPHA;
370                                 blendfunc2 = GL_ONE;
371                         }
372                 }
373                 if (skinframe->shirt)
374                 {
375                         tex = R_GetTexture(skinframe->shirt);
376                         if (tex)
377                         {
378                                 memset(&m, 0, sizeof(m));
379                                 m.blendfunc1 = blendfunc1;
380                                 m.blendfunc2 = blendfunc2;
381                                 colorscale = r_colorscale;
382                                 if (gl_combine.integer)
383                                 {
384                                         colorscale *= 0.25f;
385                                         m.texrgbscale[0] = 4;
386                                 }
387                                 m.tex[0] = tex;
388                                 R_Mesh_State(&m);
389                                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
390                                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
391                                 if (shirtfullbright)
392                                         GL_Color(shirtcolor[0] * colorscale * ifog, shirtcolor[1] * colorscale * ifog, shirtcolor[2] * colorscale * ifog, ent->alpha);
393                                 else
394                                 {
395                                         GL_UseColorArray();
396                                         R_LightModel(ent, model->numverts, varray_vertex, aliasvertnorm, varray_color, shirtcolor[0] * colorscale * ifog, shirtcolor[1] * colorscale * ifog, shirtcolor[2] * colorscale * ifog, false);
397                                 }
398                                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
399                                 c_alias_polys += model->numtris;
400                                 blendfunc1 = GL_SRC_ALPHA;
401                                 blendfunc2 = GL_ONE;
402                         }
403                 }
404         }
405         if (skinframe->glow)
406         {
407                 tex = R_GetTexture(skinframe->glow);
408                 if (tex)
409                 {
410                         memset(&m, 0, sizeof(m));
411                         m.blendfunc1 = blendfunc1;
412                         m.blendfunc2 = blendfunc2;
413                         m.tex[0] = tex;
414                         R_Mesh_State(&m);
415
416                         blendfunc1 = GL_SRC_ALPHA;
417                         blendfunc2 = GL_ONE;
418                         c_alias_polys += model->numtris;
419                         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
420                         memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
421                         GL_Color(ifog * r_colorscale, ifog * r_colorscale, ifog * r_colorscale, ent->alpha);
422                         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
423                 }
424         }
425         if (fog)
426         {
427                 memset(&m, 0, sizeof(m));
428                 m.blendfunc1 = GL_SRC_ALPHA;
429                 m.blendfunc2 = GL_ONE;
430                 m.tex[0] = R_GetTexture(skinframe->fog);
431                 R_Mesh_State(&m);
432
433                 c_alias_polys += model->numtris;
434                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
435                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
436                 GL_Color(fogcolor[0] * fog * r_colorscale, fogcolor[1] * fog * r_colorscale, fogcolor[2] * fog * r_colorscale, ent->alpha);
437                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
438         }
439 }
440
441 void R_DrawQ1Q2AliasModelShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, int visiblevolume)
442 {
443         float projectdistance;
444         projectdistance = lightradius + ent->model->radius - sqrt(DotProduct(relativelightorigin, relativelightorigin));
445         if (projectdistance > 0.1)
446         {
447                 R_Mesh_ResizeCheck(ent->model->numverts * 2);
448                 R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
449                 R_Shadow_Volume(ent->model->numverts, ent->model->numtris, varray_vertex, ent->model->mdlmd2data_indices, ent->model->mdlmd2data_triangleneighbors, relativelightorigin, lightradius, projectdistance, visiblevolume);
450         }
451 }
452
453 extern cvar_t r_shadows;
454 void R_DrawQ1Q2AliasModelFakeShadow (entity_render_t *ent)
455 {
456         int i;
457         rmeshstate_t m;
458         model_t *model;
459         float *v, planenormal[3], planedist, dist, projection[3], floororigin[3], surfnormal[3], lightdirection[3], v2[3];
460
461         /*
462         if (r_shadows.integer > 1)
463         {
464                 float f, lightscale, lightcolor[3];
465                 vec3_t temp;
466                 mlight_t *sl;
467                 rdlight_t *rd;
468                 memset(&m, 0, sizeof(m));
469                 m.blendfunc1 = GL_ONE;
470                 m.blendfunc2 = GL_ONE;
471                 R_Mesh_State(&m);
472                 R_Mesh_Matrix(&ent->matrix);
473                 for (i = 0, sl = cl.worldmodel->lights;i < cl.worldmodel->numlights;i++, sl++)
474                 {
475                         if (d_lightstylevalue[sl->style] > 0)
476                         {
477                                 VectorSubtract(ent->origin, sl->origin, temp);
478                                 f = DotProduct(temp,temp);
479                                 if (f < (ent->model->radius2 + sl->cullradius2))
480                                 {
481                                         model = ent->model;
482                                         R_Mesh_ResizeCheck(model->numverts * 2);
483                                         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
484                                         Matrix4x4_Transform(&ent->inversematrix, sl->origin, temp);
485                                         GL_Color(0.1 * r_colorscale, 0.025 * r_colorscale, 0.0125 * r_colorscale, 1);
486                                         R_Shadow_Volume(model->numverts, model->numtris, varray_vertex, model->mdlmd2data_indices, model->mdlmd2data_triangleneighbors, temp, sl->cullradius + model->radius - sqrt(f), true);
487                                         GL_UseColorArray();
488                                         lightscale = d_lightstylevalue[sl->style] * (1.0f / 65536.0f);
489                                         VectorScale(sl->light, lightscale, lightcolor);
490                                         R_Shadow_VertexLight(model->numverts, varray_vertex, aliasvertnorm, temp, sl->cullradius2, sl->distbias, sl->subtract, lightcolor);
491                                         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
492                                 }
493                         }
494                 }
495                 for (i = 0, rd = r_dlight;i < r_numdlights;i++, rd++)
496                 {
497                         if (ent != rd->ent)
498                         {
499                                 VectorSubtract(ent->origin, rd->origin, temp);
500                                 f = DotProduct(temp,temp);
501                                 if (f < (ent->model->radius2 + rd->cullradius2))
502                                 {
503                                         model = ent->model;
504                                         R_Mesh_ResizeCheck(model->numverts * 2);
505                                         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
506                                         Matrix4x4_Transform(&ent->inversematrix, rd->origin, temp);
507                                         GL_Color(0.1 * r_colorscale, 0.025 * r_colorscale, 0.0125 * r_colorscale, 1);
508                                         R_Shadow_Volume(model->numverts, model->numtris, varray_vertex, model->mdlmd2data_indices, model->mdlmd2data_triangleneighbors, temp, rd->cullradius + model->radius - sqrt(f), true);
509                                         GL_UseColorArray();
510                                         R_Shadow_VertexLight(model->numverts, varray_vertex, aliasvertnorm, temp, rd->cullradius2, LIGHTOFFSET, rd->subtract, rd->light);
511                                         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
512                                 }
513                         }
514                 }
515                 return;
516         }
517         */
518
519         lightdirection[0] = 0.5;
520         lightdirection[1] = 0.2;
521         lightdirection[2] = -1;
522         VectorNormalizeFast(lightdirection);
523
524         VectorMA(ent->origin, 65536.0f, lightdirection, v2);
525         if (CL_TraceLine(ent->origin, v2, floororigin, surfnormal, 0, false, NULL) == 1)
526                 return;
527
528         R_Mesh_Matrix(&ent->matrix);
529
530         model = ent->model;
531         R_Mesh_ResizeCheck(model->numverts);
532
533         memset(&m, 0, sizeof(m));
534         m.blendfunc1 = GL_SRC_ALPHA;
535         m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
536         R_Mesh_State(&m);
537
538         c_alias_polys += model->numtris;
539         R_LerpMDLMD2Vertices(ent, varray_vertex, aliasvertnorm);
540
541         // put a light direction in the entity's coordinate space
542         Matrix4x4_Transform3x3(&ent->inversematrix, lightdirection, projection);
543         VectorNormalizeFast(projection);
544
545         // put the plane's normal in the entity's coordinate space
546         Matrix4x4_Transform3x3(&ent->inversematrix, surfnormal, planenormal);
547         VectorNormalizeFast(planenormal);
548
549         // put the plane's distance in the entity's coordinate space
550         VectorSubtract(floororigin, ent->origin, floororigin);
551         planedist = DotProduct(floororigin, surfnormal) + 2;
552
553         dist = -1.0f / DotProduct(projection, planenormal);
554         VectorScale(projection, dist, projection);
555         for (i = 0, v = varray_vertex;i < model->numverts;i++, v += 4)
556         {
557                 dist = DotProduct(v, planenormal) - planedist;
558                 if (dist > 0)
559                 //if (i & 1)
560                         VectorMA(v, dist, projection, v);
561         }
562         GL_Color(0, 0, 0, 0.5);
563         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
564 }
565
566 int ZymoticLerpBones(int count, const zymbonematrix *bonebase, const frameblend_t *blend, const zymbone_t *bone)
567 {
568         int i;
569         float lerp1, lerp2, lerp3, lerp4;
570         zymbonematrix *out, rootmatrix, m;
571         const zymbonematrix *bone1, *bone2, *bone3, *bone4;
572
573         rootmatrix.m[0][0] = 1;
574         rootmatrix.m[0][1] = 0;
575         rootmatrix.m[0][2] = 0;
576         rootmatrix.m[0][3] = 0;
577         rootmatrix.m[1][0] = 0;
578         rootmatrix.m[1][1] = 1;
579         rootmatrix.m[1][2] = 0;
580         rootmatrix.m[1][3] = 0;
581         rootmatrix.m[2][0] = 0;
582         rootmatrix.m[2][1] = 0;
583         rootmatrix.m[2][2] = 1;
584         rootmatrix.m[2][3] = 0;
585
586         bone1 = bonebase + blend[0].frame * count;
587         lerp1 = blend[0].lerp;
588         if (blend[1].lerp)
589         {
590                 bone2 = bonebase + blend[1].frame * count;
591                 lerp2 = blend[1].lerp;
592                 if (blend[2].lerp)
593                 {
594                         bone3 = bonebase + blend[2].frame * count;
595                         lerp3 = blend[2].lerp;
596                         if (blend[3].lerp)
597                         {
598                                 // 4 poses
599                                 bone4 = bonebase + blend[3].frame * count;
600                                 lerp4 = blend[3].lerp;
601                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
602                                 {
603                                         // interpolate matrices
604                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4;
605                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4;
606                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4;
607                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4;
608                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4;
609                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4;
610                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4;
611                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4;
612                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4;
613                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4;
614                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4;
615                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4;
616                                         if (bone->parent >= 0)
617                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
618                                         else
619                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
620                                         bone1++;
621                                         bone2++;
622                                         bone3++;
623                                         bone4++;
624                                         bone++;
625                                 }
626                         }
627                         else
628                         {
629                                 // 3 poses
630                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
631                                 {
632                                         // interpolate matrices
633                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3;
634                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3;
635                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3;
636                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3;
637                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3;
638                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3;
639                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3;
640                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3;
641                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3;
642                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3;
643                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3;
644                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3;
645                                         if (bone->parent >= 0)
646                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
647                                         else
648                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
649                                         bone1++;
650                                         bone2++;
651                                         bone3++;
652                                         bone++;
653                                 }
654                         }
655                 }
656                 else
657                 {
658                         // 2 poses
659                         for (i = 0, out = zymbonepose;i < count;i++, out++)
660                         {
661                                 // interpolate matrices
662                                 m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2;
663                                 m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2;
664                                 m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2;
665                                 m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2;
666                                 m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2;
667                                 m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2;
668                                 m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2;
669                                 m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2;
670                                 m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2;
671                                 m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2;
672                                 m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2;
673                                 m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2;
674                                 if (bone->parent >= 0)
675                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
676                                 else
677                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
678                                 bone1++;
679                                 bone2++;
680                                 bone++;
681                         }
682                 }
683         }
684         else
685         {
686                 // 1 pose
687                 if (lerp1 != 1)
688                 {
689                         // lerp != 1.0
690                         for (i = 0, out = zymbonepose;i < count;i++, out++)
691                         {
692                                 // interpolate matrices
693                                 m.m[0][0] = bone1->m[0][0] * lerp1;
694                                 m.m[0][1] = bone1->m[0][1] * lerp1;
695                                 m.m[0][2] = bone1->m[0][2] * lerp1;
696                                 m.m[0][3] = bone1->m[0][3] * lerp1;
697                                 m.m[1][0] = bone1->m[1][0] * lerp1;
698                                 m.m[1][1] = bone1->m[1][1] * lerp1;
699                                 m.m[1][2] = bone1->m[1][2] * lerp1;
700                                 m.m[1][3] = bone1->m[1][3] * lerp1;
701                                 m.m[2][0] = bone1->m[2][0] * lerp1;
702                                 m.m[2][1] = bone1->m[2][1] * lerp1;
703                                 m.m[2][2] = bone1->m[2][2] * lerp1;
704                                 m.m[2][3] = bone1->m[2][3] * lerp1;
705                                 if (bone->parent >= 0)
706                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
707                                 else
708                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
709                                 bone1++;
710                                 bone++;
711                         }
712                 }
713                 else
714                 {
715                         // lerp == 1.0
716                         for (i = 0, out = zymbonepose;i < count;i++, out++)
717                         {
718                                 if (bone->parent >= 0)
719                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]);
720                                 else
721                                         R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]);
722                                 bone1++;
723                                 bone++;
724                         }
725                 }
726         }
727         return true;
728 }
729
730 void ZymoticTransformVerts(int vertcount, float *vertex, int *bonecounts, zymvertex_t *vert)
731 {
732         int c;
733         float *out = vertex;
734         zymbonematrix *matrix;
735         while(vertcount--)
736         {
737                 c = *bonecounts++;
738                 // FIXME: validate bonecounts at load time (must be >= 1)
739                 // FIXME: need 4th component in origin, for how much of the translate to blend in
740                 if (c == 1)
741                 {
742                         matrix = &zymbonepose[vert->bonenum];
743                         out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
744                         out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
745                         out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
746                         vert++;
747                 }
748                 else
749                 {
750                         VectorClear(out);
751                         while(c--)
752                         {
753                                 matrix = &zymbonepose[vert->bonenum];
754                                 out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
755                                 out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
756                                 out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
757                                 vert++;
758                         }
759                 }
760                 out += 4;
761         }
762 }
763
764 void ZymoticCalcNormals(int vertcount, float *vertex, float *normals, int shadercount, int *renderlist)
765 {
766         int a, b, c, d;
767         float *out, v1[3], v2[3], normal[3], s;
768         int *u;
769         // clear normals
770         memset(normals, 0, sizeof(float) * vertcount * 3);
771         memset(aliasvertusage, 0, sizeof(int) * vertcount);
772         // parse render list and accumulate surface normals
773         while(shadercount--)
774         {
775                 d = *renderlist++;
776                 while (d--)
777                 {
778                         a = renderlist[0]*4;
779                         b = renderlist[1]*4;
780                         c = renderlist[2]*4;
781                         v1[0] = vertex[a+0] - vertex[b+0];
782                         v1[1] = vertex[a+1] - vertex[b+1];
783                         v1[2] = vertex[a+2] - vertex[b+2];
784                         v2[0] = vertex[c+0] - vertex[b+0];
785                         v2[1] = vertex[c+1] - vertex[b+1];
786                         v2[2] = vertex[c+2] - vertex[b+2];
787                         CrossProduct(v1, v2, normal);
788                         VectorNormalizeFast(normal);
789                         // add surface normal to vertices
790                         a = renderlist[0] * 3;
791                         normals[a+0] += normal[0];
792                         normals[a+1] += normal[1];
793                         normals[a+2] += normal[2];
794                         aliasvertusage[renderlist[0]]++;
795                         a = renderlist[1] * 3;
796                         normals[a+0] += normal[0];
797                         normals[a+1] += normal[1];
798                         normals[a+2] += normal[2];
799                         aliasvertusage[renderlist[1]]++;
800                         a = renderlist[2] * 3;
801                         normals[a+0] += normal[0];
802                         normals[a+1] += normal[1];
803                         normals[a+2] += normal[2];
804                         aliasvertusage[renderlist[2]]++;
805                         renderlist += 3;
806                 }
807         }
808         // FIXME: precalc this
809         // average surface normals
810         out = normals;
811         u = aliasvertusage;
812         while(vertcount--)
813         {
814                 if (*u > 1)
815                 {
816                         s = ixtable[*u];
817                         out[0] *= s;
818                         out[1] *= s;
819                         out[2] *= s;
820                 }
821                 u++;
822                 out += 3;
823         }
824 }
825
826 void R_DrawZymoticModelMeshCallback (const void *calldata1, int calldata2)
827 {
828         float fog, ifog, colorscale;
829         vec3_t diff;
830         int i, *renderlist, *elements;
831         zymtype1header_t *m;
832         rtexture_t *texture;
833         rmeshstate_t mstate;
834         const entity_render_t *ent = calldata1;
835         int shadernum = calldata2;
836         int numverts, numtriangles;
837
838         R_Mesh_Matrix(&ent->matrix);
839
840         // find the vertex index list and texture
841         m = ent->model->zymdata_header;
842         renderlist = (int *)(m->lump_render.start + (int) m);
843         for (i = 0;i < shadernum;i++)
844                 renderlist += renderlist[0] * 3 + 1;
845         texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum];
846
847         numverts = m->numverts;
848         numtriangles = *renderlist++;
849         elements = renderlist;
850         R_Mesh_ResizeCheck(numverts);
851
852         fog = 0;
853         if (fogenabled)
854         {
855                 VectorSubtract(ent->origin, r_origin, diff);
856                 fog = DotProduct(diff,diff);
857                 if (fog < 0.01f)
858                         fog = 0.01f;
859                 fog = exp(fogdensity/fog);
860                 if (fog > 1)
861                         fog = 1;
862                 if (fog < 0.01f)
863                         fog = 0;
864                 // fog method: darken, additive fog
865                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
866                 // 2. render fog as additive
867         }
868         ifog = 1 - fog;
869
870         memset(&mstate, 0, sizeof(mstate));
871         if (ent->effects & EF_ADDITIVE)
872         {
873                 mstate.blendfunc1 = GL_SRC_ALPHA;
874                 mstate.blendfunc2 = GL_ONE;
875         }
876         else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture))
877         {
878                 mstate.blendfunc1 = GL_SRC_ALPHA;
879                 mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
880         }
881         else
882         {
883                 mstate.blendfunc1 = GL_ONE;
884                 mstate.blendfunc2 = GL_ZERO;
885         }
886         colorscale = r_colorscale;
887         if (gl_combine.integer)
888         {
889                 mstate.texrgbscale[0] = 4;
890                 colorscale *= 0.25f;
891         }
892         mstate.tex[0] = R_GetTexture(texture);
893         R_Mesh_State(&mstate);
894         ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m));
895         ZymoticTransformVerts(numverts, varray_vertex, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m));
896         ZymoticCalcNormals(numverts, varray_vertex, aliasvertnorm, m->numshaders, (int *)(m->lump_render.start + (int) m));
897         memcpy(varray_texcoord[0], (float *)(m->lump_texcoords.start + (int) m), numverts * sizeof(float[2]));
898         GL_UseColorArray();
899         R_LightModel(ent, numverts, varray_vertex, aliasvertnorm, varray_color, ifog * colorscale, ifog * colorscale, ifog * colorscale, false);
900         R_Mesh_Draw(numverts, numtriangles, elements);
901         c_alias_polys += numtriangles;
902
903         if (fog)
904         {
905                 memset(&mstate, 0, sizeof(mstate));
906                 mstate.blendfunc1 = GL_SRC_ALPHA;
907                 mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
908                 // FIXME: need alpha mask for fogging...
909                 //mstate.tex[0] = R_GetTexture(texture);
910                 R_Mesh_State(&mstate);
911                 GL_Color(fogcolor[0] * r_colorscale, fogcolor[1] * r_colorscale, fogcolor[2] * r_colorscale, ent->alpha * fog);
912                 R_Mesh_Draw(numverts, numtriangles, elements);
913                 c_alias_polys += numtriangles;
914         }
915 }
916
917 void R_DrawZymoticModel (entity_render_t *ent)
918 {
919         int i;
920         zymtype1header_t *m;
921         rtexture_t *texture;
922
923         if (ent->alpha < (1.0f / 64.0f))
924                 return; // basically completely transparent
925
926         c_models++;
927
928         m = ent->model->zymdata_header;
929         for (i = 0;i < m->numshaders;i++)
930         {
931                 texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i];
932                 if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture))
933                         R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i);
934                 else
935                         R_DrawZymoticModelMeshCallback(ent, i);
936         }
937 }
938
939 void R_DrawQ1Q2AliasModel(entity_render_t *ent)
940 {
941         if (ent->alpha < (1.0f / 64.0f))
942                 return; // basically completely transparent
943
944         c_models++;
945
946         if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL)
947                 R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0);
948         else
949                 R_DrawQ1Q2AliasModelCallback(ent, 0);
950 }