]> icculus.org git repositories - divverent/darkplaces.git/blob - gl_models.c
Thanks to Elric for adding dpmaster support!
[divverent/darkplaces.git] / gl_models.c
1
2 #include "quakedef.h"
3
4 cvar_t r_quickmodels = {0, "r_quickmodels", "1"};
5
6 typedef struct
7 {
8         float m[3][4];
9 } zymbonematrix;
10
11 // LordHavoc: vertex arrays
12
13 float *aliasvertbuf;
14 float *aliasvertcolorbuf;
15 float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend
16 float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend
17
18 float *aliasvertcolor2;
19 float *aliasvertnorm;
20 int *aliasvertusage;
21 zymbonematrix *zymbonepose;
22
23 mempool_t *gl_models_mempool;
24
25 void gl_models_start(void)
26 {
27         // allocate vertex processing arrays
28         gl_models_mempool = Mem_AllocPool("GL_Models");
29         aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
30         aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
31         aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3]));
32         aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring
33         zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256]));
34         aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS]));
35 }
36
37 void gl_models_shutdown(void)
38 {
39         Mem_FreePool(&gl_models_mempool);
40 }
41
42 void gl_models_newmap(void)
43 {
44 }
45
46 void GL_Models_Init(void)
47 {
48         Cvar_RegisterVariable(&r_quickmodels);
49
50         R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap);
51 }
52
53 /*
54 void R_AliasTransformVerts(int vertcount)
55 {
56         vec3_t point;
57         float *av;
58         av = aliasvert;
59         while (vertcount >= 4)
60         {
61                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
62                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
63                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
64                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
65                 vertcount -= 4;
66         }
67         while(vertcount > 0)
68         {
69                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
70                 vertcount--;
71         }
72 }
73 */
74
75 void R_AliasLerpVerts(int vertcount,
76                 float lerp1, const trivertx_t *verts1, const vec3_t fscale1, const vec3_t translate1,
77                 float lerp2, const trivertx_t *verts2, const vec3_t fscale2, const vec3_t translate2,
78                 float lerp3, const trivertx_t *verts3, const vec3_t fscale3, const vec3_t translate3,
79                 float lerp4, const trivertx_t *verts4, const vec3_t fscale4, const vec3_t translate4)
80 {
81         int i;
82         vec3_t scale1, scale2, scale3, scale4, translate;
83         const float *n1, *n2, *n3, *n4;
84         float *av, *avn;
85         av = aliasvert;
86         avn = aliasvertnorm;
87         VectorScale(fscale1, lerp1, scale1);
88         if (lerp2)
89         {
90                 VectorScale(fscale2, lerp2, scale2);
91                 if (lerp3)
92                 {
93                         VectorScale(fscale3, lerp3, scale3);
94                         if (lerp4)
95                         {
96                                 VectorScale(fscale4, lerp4, scale4);
97                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4;
98                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4;
99                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4;
100                                 // generate vertices
101                                 for (i = 0;i < vertcount;i++)
102                                 {
103                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0];
104                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1];
105                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2];
106                                         n1 = m_bytenormals[verts1->lightnormalindex];
107                                         n2 = m_bytenormals[verts2->lightnormalindex];
108                                         n3 = m_bytenormals[verts3->lightnormalindex];
109                                         n4 = m_bytenormals[verts4->lightnormalindex];
110                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4;
111                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4;
112                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4;
113                                         av += 4;
114                                         avn += 3;
115                                         verts1++;verts2++;verts3++;verts4++;
116                                 }
117                         }
118                         else
119                         {
120                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3;
121                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3;
122                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3;
123                                 // generate vertices
124                                 for (i = 0;i < vertcount;i++)
125                                 {
126                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0];
127                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1];
128                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2];
129                                         n1 = m_bytenormals[verts1->lightnormalindex];
130                                         n2 = m_bytenormals[verts2->lightnormalindex];
131                                         n3 = m_bytenormals[verts3->lightnormalindex];
132                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3;
133                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3;
134                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3;
135                                         av += 4;
136                                         avn += 3;
137                                         verts1++;verts2++;verts3++;
138                                 }
139                         }
140                 }
141                 else
142                 {
143                         translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2;
144                         translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2;
145                         translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2;
146                         // generate vertices
147                         for (i = 0;i < vertcount;i++)
148                         {
149                                 av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0];
150                                 av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1];
151                                 av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2];
152                                 n1 = m_bytenormals[verts1->lightnormalindex];
153                                 n2 = m_bytenormals[verts2->lightnormalindex];
154                                 avn[0] = n1[0] * lerp1 + n2[0] * lerp2;
155                                 avn[1] = n1[1] * lerp1 + n2[1] * lerp2;
156                                 avn[2] = n1[2] * lerp1 + n2[2] * lerp2;
157                                 av += 4;
158                                 avn += 3;
159                                 verts1++;verts2++;
160                         }
161                 }
162         }
163         else
164         {
165                 translate[0] = translate1[0] * lerp1;
166                 translate[1] = translate1[1] * lerp1;
167                 translate[2] = translate1[2] * lerp1;
168                 // generate vertices
169                 if (lerp1 != 1)
170                 {
171                         // general but almost never used case
172                         for (i = 0;i < vertcount;i++)
173                         {
174                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
175                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
176                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
177                                 n1 = m_bytenormals[verts1->lightnormalindex];
178                                 avn[0] = n1[0] * lerp1;
179                                 avn[1] = n1[1] * lerp1;
180                                 avn[2] = n1[2] * lerp1;
181                                 av += 4;
182                                 avn += 3;
183                                 verts1++;
184                         }
185                 }
186                 else
187                 {
188                         // fast normal case
189                         for (i = 0;i < vertcount;i++)
190                         {
191                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
192                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
193                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
194                                 VectorCopy(m_bytenormals[verts1->lightnormalindex], avn);
195                                 av += 4;
196                                 avn += 3;
197                                 verts1++;
198                         }
199                 }
200         }
201 }
202
203 skinframe_t *R_FetchSkinFrame(const entity_render_t *ent)
204 {
205         model_t *model = ent->model;
206         unsigned int s = (unsigned int) ent->skinnum;
207         if (s >= model->numskins)
208                 s = 0;
209         if (model->skinscenes[s].framecount > 1)
210                 return &model->skinframes[model->skinscenes[s].firstframe + (int) (cl.time * 10) % model->skinscenes[s].framecount];
211         else
212                 return &model->skinframes[model->skinscenes[s].firstframe];
213 }
214
215 void R_SetupMDLMD2Frames(const entity_render_t *ent, float colorr, float colorg, float colorb)
216 {
217         const md2frame_t *frame1, *frame2, *frame3, *frame4;
218         const trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts;
219         const model_t *model = ent->model;
220
221         frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame];
222         frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame];
223         frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame];
224         frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame];
225         frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts];
226         frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts];
227         frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts];
228         frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts];
229         R_AliasLerpVerts(model->numverts,
230                 ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate,
231                 ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate,
232                 ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate,
233                 ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate);
234
235         R_LightModel(ent, model->numverts, colorr, colorg, colorb, false);
236
237         //R_AliasTransformVerts(model->numverts);
238 }
239
240 void R_DrawQ1Q2AliasModelCallback (const void *calldata1, int calldata2)
241 {
242         int i, c, pantsfullbright, shirtfullbright, colormapped, tex;
243         float pantscolor[3], shirtcolor[3];
244         float fog, colorscale;
245         vec3_t diff;
246         qbyte *bcolor;
247         rmeshstate_t m;
248         model_t *model;
249         skinframe_t *skinframe;
250         const entity_render_t *ent = calldata1;
251         int blendfunc1, blendfunc2;
252
253 //      softwaretransformforentity(ent);
254         R_Mesh_Matrix(&ent->matrix);
255
256         fog = 0;
257         if (fogenabled)
258         {
259                 VectorSubtract(ent->origin, r_origin, diff);
260                 fog = DotProduct(diff,diff);
261                 if (fog < 0.01f)
262                         fog = 0.01f;
263                 fog = exp(fogdensity/fog);
264                 if (fog > 1)
265                         fog = 1;
266                 if (fog < 0.01f)
267                         fog = 0;
268                 // fog method: darken, additive fog
269                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
270                 // 2. render fog as additive
271         }
272
273         model = ent->model;
274         R_Mesh_ResizeCheck(model->numverts);
275
276         skinframe = R_FetchSkinFrame(ent);
277
278         if (ent->effects & EF_ADDITIVE)
279         {
280                 blendfunc1 = GL_SRC_ALPHA;
281                 blendfunc2 = GL_ONE;
282         }
283         else if (ent->alpha != 1.0 || skinframe->fog != NULL)
284         {
285                 blendfunc1 = GL_SRC_ALPHA;
286                 blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
287         }
288         else
289         {
290                 blendfunc1 = GL_ONE;
291                 blendfunc2 = GL_ZERO;
292         }
293
294         colorscale = r_colorscale;
295         if (gl_combine.integer)
296                 colorscale *= 0.25f;
297         
298         if (!skinframe->base && !skinframe->pants && !skinframe->shirt && !skinframe->glow)
299         {
300                 // untextured
301                 memset(&m, 0, sizeof(m));
302                 m.blendfunc1 = blendfunc1;
303                 m.blendfunc2 = blendfunc2;
304                 if (gl_combine.integer)
305                         m.texrgbscale[0] = 4;
306                 m.tex[0] = R_GetTexture(r_notexture);
307                 R_Mesh_State(&m);
308
309                 c_alias_polys += model->numtris;
310                 for (i = 0;i < model->numverts * 2;i++)
311                         varray_texcoord[0][i] = model->mdlmd2data_texcoords[i] * 8.0f;
312                 aliasvert = varray_vertex;
313                 aliasvertcolor = varray_color;
314                 R_SetupMDLMD2Frames(ent, colorscale, colorscale, colorscale);
315                 aliasvert = aliasvertbuf;
316                 aliasvertcolor = aliasvertcolorbuf;
317                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
318                 return;
319         }
320
321
322         colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt));
323         if (!colormapped && !fog && !skinframe->glow && !skinframe->fog)
324         {
325                 // fastpath for the normal situation (one texture)
326                 memset(&m, 0, sizeof(m));
327                 m.blendfunc1 = blendfunc1;
328                 m.blendfunc2 = blendfunc2;
329                 if (gl_combine.integer)
330                         m.texrgbscale[0] = 4;
331                 m.tex[0] = R_GetTexture(skinframe->merged);
332                 R_Mesh_State(&m);
333
334                 c_alias_polys += model->numtris;
335                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
336                 aliasvert = varray_vertex;
337                 aliasvertcolor = varray_color;
338                 R_SetupMDLMD2Frames(ent, colorscale, colorscale, colorscale);
339                 aliasvert = aliasvertbuf;
340                 aliasvertcolor = aliasvertcolorbuf;
341                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
342                 return;
343         }
344
345         R_SetupMDLMD2Frames(ent, 1 - fog, 1 - fog, 1 - fog);
346
347         if (colormapped)
348         {
349                 // 128-224 are backwards ranges
350                 c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12;
351                 bcolor = (qbyte *) (&d_8to24table[c]);
352                 pantsfullbright = c >= 224;
353                 VectorScale(bcolor, (1.0f / 255.0f), pantscolor);
354                 c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12;
355                 bcolor = (qbyte *) (&d_8to24table[c]);
356                 shirtfullbright = c >= 224;
357                 VectorScale(bcolor, (1.0f / 255.0f), shirtcolor);
358         }
359         else
360         {
361                 pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1;
362                 pantsfullbright = shirtfullbright = false;
363         }
364
365         tex = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged);
366         if (tex)
367         {
368                 memset(&m, 0, sizeof(m));
369                 m.blendfunc1 = blendfunc1;
370                 m.blendfunc2 = blendfunc2;
371                 if (gl_combine.integer)
372                         m.texrgbscale[0] = 4;
373                 m.tex[0] = tex;
374                 R_Mesh_State(&m);
375
376                 blendfunc1 = GL_SRC_ALPHA;
377                 blendfunc2 = GL_ONE;
378                 c_alias_polys += model->numtris;
379                 R_ModulateColors(aliasvertcolor, varray_color, model->numverts, colorscale, colorscale, colorscale);
380                 memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4]));
381                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
382                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
383         }
384
385         if (colormapped)
386         {
387                 if (skinframe->pants)
388                 {
389                         tex = R_GetTexture(skinframe->pants);
390                         if (tex)
391                         {
392                                 memset(&m, 0, sizeof(m));
393                                 m.blendfunc1 = blendfunc1;
394                                 m.blendfunc2 = blendfunc2;
395                                 if (gl_combine.integer)
396                                         m.texrgbscale[0] = 4;
397                                 m.tex[0] = tex;
398                                 R_Mesh_State(&m);
399
400                                 blendfunc1 = GL_SRC_ALPHA;
401                                 blendfunc2 = GL_ONE;
402                                 c_alias_polys += model->numtris;
403                                 if (pantsfullbright)
404                                         R_FillColors(varray_color, model->numverts, pantscolor[0] * colorscale, pantscolor[1] * colorscale, pantscolor[2] * colorscale, ent->alpha);
405                                 else
406                                         R_ModulateColors(aliasvertcolor, varray_color, model->numverts, pantscolor[0] * colorscale, pantscolor[1] * colorscale, pantscolor[2] * colorscale);
407                                 memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4]));
408                                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
409                                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
410                         }
411                 }
412                 if (skinframe->shirt)
413                 {
414                         tex = R_GetTexture(skinframe->shirt);
415                         if (tex)
416                         {
417                                 memset(&m, 0, sizeof(m));
418                                 m.blendfunc1 = blendfunc1;
419                                 m.blendfunc2 = blendfunc2;
420                                 if (gl_combine.integer)
421                                         m.texrgbscale[0] = 4;
422                                 m.tex[0] = tex;
423                                 R_Mesh_State(&m);
424
425                                 blendfunc1 = GL_SRC_ALPHA;
426                                 blendfunc2 = GL_ONE;
427                                 c_alias_polys += model->numtris;
428                                 if (shirtfullbright)
429                                         R_FillColors(varray_color, model->numverts, shirtcolor[0] * colorscale, shirtcolor[1] * colorscale, shirtcolor[2] * colorscale, ent->alpha);
430                                 else
431                                         R_ModulateColors(aliasvertcolor, varray_color, model->numverts, shirtcolor[0] * colorscale, shirtcolor[1] * colorscale, shirtcolor[2] * colorscale);
432                                 memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4]));
433                                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
434                                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
435                         }
436                 }
437         }
438         if (skinframe->glow)
439         {
440                 tex = R_GetTexture(skinframe->glow);
441                 if (tex)
442                 {
443                         memset(&m, 0, sizeof(m));
444                         m.blendfunc1 = blendfunc1;
445                         m.blendfunc2 = blendfunc2;
446                         m.tex[0] = tex;
447                         R_Mesh_State(&m);
448
449                         blendfunc1 = GL_SRC_ALPHA;
450                         blendfunc2 = GL_ONE;
451                         c_alias_polys += model->numtris;
452                         R_FillColors(varray_color, model->numverts, (1 - fog) * r_colorscale, (1 - fog) * r_colorscale, (1 - fog) * r_colorscale, ent->alpha);
453                         memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4]));
454                         memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
455                         R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
456                 }
457         }
458         if (fog)
459         {
460                 memset(&m, 0, sizeof(m));
461                 m.blendfunc1 = GL_SRC_ALPHA;
462                 m.blendfunc2 = GL_ONE;
463                 m.tex[0] = R_GetTexture(skinframe->fog);
464                 R_Mesh_State(&m);
465
466                 c_alias_polys += model->numtris;
467                 R_FillColors(varray_color, model->numverts, fogcolor[0] * fog * r_colorscale, fogcolor[1] * fog * r_colorscale, fogcolor[2] * fog * r_colorscale, ent->alpha);
468                 memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4]));
469                 memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2]));
470                 R_Mesh_Draw(model->numverts, model->numtris, model->mdlmd2data_indices);
471         }
472 }
473
474 int ZymoticLerpBones(int count, const zymbonematrix *bonebase, const frameblend_t *blend, const zymbone_t *bone)
475 {
476         int i;
477         float lerp1, lerp2, lerp3, lerp4;
478         zymbonematrix *out, rootmatrix, m;
479         const zymbonematrix *bone1, *bone2, *bone3, *bone4;
480
481         /*
482         // LordHavoc: combine transform from zym coordinate space to quake coordinate space with model to world transform matrix
483         rootmatrix.m[0][0] = softwaretransform_matrix[0][1];
484         rootmatrix.m[0][1] = -softwaretransform_matrix[0][0];
485         rootmatrix.m[0][2] = softwaretransform_matrix[0][2];
486         rootmatrix.m[0][3] = softwaretransform_matrix[0][3];
487         rootmatrix.m[1][0] = softwaretransform_matrix[1][1];
488         rootmatrix.m[1][1] = -softwaretransform_matrix[1][0];
489         rootmatrix.m[1][2] = softwaretransform_matrix[1][2];
490         rootmatrix.m[1][3] = softwaretransform_matrix[1][3];
491         rootmatrix.m[2][0] = softwaretransform_matrix[2][1];
492         rootmatrix.m[2][1] = -softwaretransform_matrix[2][0];
493         rootmatrix.m[2][2] = softwaretransform_matrix[2][2];
494         rootmatrix.m[2][3] = softwaretransform_matrix[2][3];
495         */
496         rootmatrix.m[0][0] = 1;
497         rootmatrix.m[0][1] = 0;
498         rootmatrix.m[0][2] = 0;
499         rootmatrix.m[0][3] = 0;
500         rootmatrix.m[1][0] = 0;
501         rootmatrix.m[1][1] = 1;
502         rootmatrix.m[1][2] = 0;
503         rootmatrix.m[1][3] = 0;
504         rootmatrix.m[2][0] = 0;
505         rootmatrix.m[2][1] = 0;
506         rootmatrix.m[2][2] = 1;
507         rootmatrix.m[2][3] = 0;
508
509         bone1 = bonebase + blend[0].frame * count;
510         lerp1 = blend[0].lerp;
511         if (blend[1].lerp)
512         {
513                 bone2 = bonebase + blend[1].frame * count;
514                 lerp2 = blend[1].lerp;
515                 if (blend[2].lerp)
516                 {
517                         bone3 = bonebase + blend[2].frame * count;
518                         lerp3 = blend[2].lerp;
519                         if (blend[3].lerp)
520                         {
521                                 // 4 poses
522                                 bone4 = bonebase + blend[3].frame * count;
523                                 lerp4 = blend[3].lerp;
524                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
525                                 {
526                                         // interpolate matrices
527                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4;
528                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4;
529                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4;
530                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4;
531                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4;
532                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4;
533                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4;
534                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4;
535                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4;
536                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4;
537                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4;
538                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4;
539                                         if (bone->parent >= 0)
540                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
541                                         else
542                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
543                                         bone1++;
544                                         bone2++;
545                                         bone3++;
546                                         bone4++;
547                                         bone++;
548                                 }
549                         }
550                         else
551                         {
552                                 // 3 poses
553                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
554                                 {
555                                         // interpolate matrices
556                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3;
557                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3;
558                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3;
559                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3;
560                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3;
561                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3;
562                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3;
563                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3;
564                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3;
565                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3;
566                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3;
567                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3;
568                                         if (bone->parent >= 0)
569                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
570                                         else
571                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
572                                         bone1++;
573                                         bone2++;
574                                         bone3++;
575                                         bone++;
576                                 }
577                         }
578                 }
579                 else
580                 {
581                         // 2 poses
582                         for (i = 0, out = zymbonepose;i < count;i++, out++)
583                         {
584                                 // interpolate matrices
585                                 m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2;
586                                 m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2;
587                                 m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2;
588                                 m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2;
589                                 m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2;
590                                 m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2;
591                                 m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2;
592                                 m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2;
593                                 m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2;
594                                 m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2;
595                                 m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2;
596                                 m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2;
597                                 if (bone->parent >= 0)
598                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
599                                 else
600                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
601                                 bone1++;
602                                 bone2++;
603                                 bone++;
604                         }
605                 }
606         }
607         else
608         {
609                 // 1 pose
610                 if (lerp1 != 1)
611                 {
612                         // lerp != 1.0
613                         for (i = 0, out = zymbonepose;i < count;i++, out++)
614                         {
615                                 // interpolate matrices
616                                 m.m[0][0] = bone1->m[0][0] * lerp1;
617                                 m.m[0][1] = bone1->m[0][1] * lerp1;
618                                 m.m[0][2] = bone1->m[0][2] * lerp1;
619                                 m.m[0][3] = bone1->m[0][3] * lerp1;
620                                 m.m[1][0] = bone1->m[1][0] * lerp1;
621                                 m.m[1][1] = bone1->m[1][1] * lerp1;
622                                 m.m[1][2] = bone1->m[1][2] * lerp1;
623                                 m.m[1][3] = bone1->m[1][3] * lerp1;
624                                 m.m[2][0] = bone1->m[2][0] * lerp1;
625                                 m.m[2][1] = bone1->m[2][1] * lerp1;
626                                 m.m[2][2] = bone1->m[2][2] * lerp1;
627                                 m.m[2][3] = bone1->m[2][3] * lerp1;
628                                 if (bone->parent >= 0)
629                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
630                                 else
631                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
632                                 bone1++;
633                                 bone++;
634                         }
635                 }
636                 else
637                 {
638                         // lerp == 1.0
639                         for (i = 0, out = zymbonepose;i < count;i++, out++)
640                         {
641                                 if (bone->parent >= 0)
642                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]);
643                                 else
644                                         R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]);
645                                 bone1++;
646                                 bone++;
647                         }
648                 }
649         }
650         return true;
651 }
652
653 void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert)
654 {
655         int c;
656         float *out = aliasvert;
657         zymbonematrix *matrix;
658         while(vertcount--)
659         {
660                 c = *bonecounts++;
661                 // FIXME: validate bonecounts at load time (must be >= 1)
662                 // FIXME: need 4th component in origin, for how much of the translate to blend in
663                 if (c == 1)
664                 {
665                         matrix = &zymbonepose[vert->bonenum];
666                         out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
667                         out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
668                         out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
669                         vert++;
670                 }
671                 else
672                 {
673                         VectorClear(out);
674                         while(c--)
675                         {
676                                 matrix = &zymbonepose[vert->bonenum];
677                                 out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
678                                 out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
679                                 out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
680                                 vert++;
681                         }
682                 }
683                 out += 4;
684         }
685 }
686
687 void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist)
688 {
689         int a, b, c, d;
690         float *out, v1[3], v2[3], normal[3], s;
691         int *u;
692         // clear normals
693         memset(aliasvertnorm, 0, sizeof(float) * vertcount * 3);
694         memset(aliasvertusage, 0, sizeof(int) * vertcount);
695         // parse render list and accumulate surface normals
696         while(shadercount--)
697         {
698                 d = *renderlist++;
699                 while (d--)
700                 {
701                         a = renderlist[0]*4;
702                         b = renderlist[1]*4;
703                         c = renderlist[2]*4;
704                         v1[0] = aliasvert[a+0] - aliasvert[b+0];
705                         v1[1] = aliasvert[a+1] - aliasvert[b+1];
706                         v1[2] = aliasvert[a+2] - aliasvert[b+2];
707                         v2[0] = aliasvert[c+0] - aliasvert[b+0];
708                         v2[1] = aliasvert[c+1] - aliasvert[b+1];
709                         v2[2] = aliasvert[c+2] - aliasvert[b+2];
710                         CrossProduct(v1, v2, normal);
711                         VectorNormalizeFast(normal);
712                         // add surface normal to vertices
713                         a = renderlist[0] * 3;
714                         aliasvertnorm[a+0] += normal[0];
715                         aliasvertnorm[a+1] += normal[1];
716                         aliasvertnorm[a+2] += normal[2];
717                         aliasvertusage[renderlist[0]]++;
718                         a = renderlist[1] * 3;
719                         aliasvertnorm[a+0] += normal[0];
720                         aliasvertnorm[a+1] += normal[1];
721                         aliasvertnorm[a+2] += normal[2];
722                         aliasvertusage[renderlist[1]]++;
723                         a = renderlist[2] * 3;
724                         aliasvertnorm[a+0] += normal[0];
725                         aliasvertnorm[a+1] += normal[1];
726                         aliasvertnorm[a+2] += normal[2];
727                         aliasvertusage[renderlist[2]]++;
728                         renderlist += 3;
729                 }
730         }
731         // FIXME: precalc this
732         // average surface normals
733         out = aliasvertnorm;
734         u = aliasvertusage;
735         while(vertcount--)
736         {
737                 if (*u > 1)
738                 {
739                         s = ixtable[*u];
740                         out[0] *= s;
741                         out[1] *= s;
742                         out[2] *= s;
743                 }
744                 u++;
745                 out += 3;
746         }
747 }
748
749 void R_DrawZymoticModelMeshCallback (const void *calldata1, int calldata2)
750 {
751         float fog, colorscale;
752         vec3_t diff;
753         int i, *renderlist, *elements;
754         zymtype1header_t *m;
755         rtexture_t *texture;
756         rmeshstate_t mstate;
757         const entity_render_t *ent = calldata1;
758         int shadernum = calldata2;
759         int numverts, numtriangles;
760
761         R_Mesh_Matrix(&ent->matrix);
762
763         // find the vertex index list and texture
764         m = ent->model->zymdata_header;
765         renderlist = (int *)(m->lump_render.start + (int) m);
766         for (i = 0;i < shadernum;i++)
767                 renderlist += renderlist[0] * 3 + 1;
768         texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum];
769
770         numverts = m->numverts;
771         numtriangles = *renderlist++;
772         elements = renderlist;
773         R_Mesh_ResizeCheck(numverts);
774
775         fog = 0;
776         if (fogenabled)
777         {
778                 VectorSubtract(ent->origin, r_origin, diff);
779                 fog = DotProduct(diff,diff);
780                 if (fog < 0.01f)
781                         fog = 0.01f;
782                 fog = exp(fogdensity/fog);
783                 if (fog > 1)
784                         fog = 1;
785                 if (fog < 0.01f)
786                         fog = 0;
787                 // fog method: darken, additive fog
788                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
789                 // 2. render fog as additive
790         }
791
792         ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m));
793         ZymoticTransformVerts(numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m));
794         ZymoticCalcNormals(numverts, m->numshaders, (int *)(m->lump_render.start + (int) m));
795
796         R_LightModel(ent, numverts, 1 - fog, 1 - fog, 1 - fog, false);
797
798         memset(&mstate, 0, sizeof(mstate));
799         if (ent->effects & EF_ADDITIVE)
800         {
801                 mstate.blendfunc1 = GL_SRC_ALPHA;
802                 mstate.blendfunc2 = GL_ONE;
803         }
804         else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture))
805         {
806                 mstate.blendfunc1 = GL_SRC_ALPHA;
807                 mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
808         }
809         else
810         {
811                 mstate.blendfunc1 = GL_ONE;
812                 mstate.blendfunc2 = GL_ZERO;
813         }
814         colorscale = r_colorscale;
815         if (gl_combine.integer)
816         {
817                 mstate.texrgbscale[0] = 4;
818                 colorscale *= 0.25f;
819         }
820         mstate.tex[0] = R_GetTexture(texture);
821         R_Mesh_State(&mstate);
822
823         c_alias_polys += numtriangles;
824         memcpy(varray_vertex, aliasvert, numverts * sizeof(float[4]));
825         R_ModulateColors(aliasvertcolor, varray_color, numverts, colorscale, colorscale, colorscale);
826         memcpy(varray_texcoord[0], (float *)(m->lump_texcoords.start + (int) m), numverts * sizeof(float[2]));
827         R_Mesh_Draw(numverts, numtriangles, elements);
828
829         if (fog)
830         {
831                 memset(&mstate, 0, sizeof(mstate));
832                 mstate.blendfunc1 = GL_SRC_ALPHA;
833                 mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
834                 // FIXME: need alpha mask for fogging...
835                 //mstate.tex[0] = R_GetTexture(texture);
836                 R_Mesh_State(&mstate);
837
838                 c_alias_polys += numtriangles;
839                 memcpy(varray_vertex, aliasvert, numverts * sizeof(float[4]));
840                 R_FillColors(varray_color, numverts, fogcolor[0] * r_colorscale, fogcolor[1] * r_colorscale, fogcolor[2] * r_colorscale, ent->alpha * fog);
841                 //memcpy(mesh_texcoord[0], (float *)(m->lump_texcoords.start + (int) m), numverts * sizeof(float[2]));
842                 R_Mesh_Draw(numverts, numtriangles, elements);
843         }
844 }
845
846 void R_DrawZymoticModel (entity_render_t *ent)
847 {
848         int i;
849         zymtype1header_t *m;
850         rtexture_t *texture;
851
852         if (ent->alpha < (1.0f / 64.0f))
853                 return; // basically completely transparent
854
855         c_models++;
856
857         m = ent->model->zymdata_header;
858         for (i = 0;i < m->numshaders;i++)
859         {
860                 texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i];
861                 if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture))
862                         R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i);
863                 else
864                         R_DrawZymoticModelMeshCallback(ent, i);
865         }
866 }
867
868 void R_DrawQ1Q2AliasModel(entity_render_t *ent)
869 {
870         if (ent->alpha < (1.0f / 64.0f))
871                 return; // basically completely transparent
872
873         c_models++;
874
875         if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL)
876                 R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0);
877         else
878                 R_DrawQ1Q2AliasModelCallback(ent, 0);
879 }
880