]> icculus.org git repositories - divverent/darkplaces.git/blob - gl_models.c
most of the framework for hardware accelerated transforms is back, just the actual...
[divverent/darkplaces.git] / gl_models.c
1
2 #include "quakedef.h"
3
4 cvar_t r_quickmodels = {0, "r_quickmodels", "1"};
5
6 typedef struct
7 {
8         float m[3][4];
9 } zymbonematrix;
10
11 // LordHavoc: vertex arrays
12
13 float *aliasvertbuf;
14 float *aliasvertcolorbuf;
15 float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend
16 float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend
17
18 float *aliasvertcolor2;
19 float *aliasvertnorm;
20 int *aliasvertusage;
21 zymbonematrix *zymbonepose;
22
23 mempool_t *gl_models_mempool;
24
25 void gl_models_start(void)
26 {
27         // allocate vertex processing arrays
28         gl_models_mempool = Mem_AllocPool("GL_Models");
29         aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
30         aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
31         aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3]));
32         aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring
33         zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256]));
34         aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS]));
35 }
36
37 void gl_models_shutdown(void)
38 {
39         Mem_FreePool(&gl_models_mempool);
40 }
41
42 void gl_models_newmap(void)
43 {
44 }
45
46 void GL_Models_Init(void)
47 {
48         Cvar_RegisterVariable(&r_quickmodels);
49
50         R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap);
51 }
52
53 /*
54 void R_AliasTransformVerts(int vertcount)
55 {
56         vec3_t point;
57         float *av;
58         av = aliasvert;
59         while (vertcount >= 4)
60         {
61                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
62                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
63                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
64                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
65                 vertcount -= 4;
66         }
67         while(vertcount > 0)
68         {
69                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
70                 vertcount--;
71         }
72 }
73 */
74
75 void R_AliasLerpVerts(int vertcount,
76                 float lerp1, const trivertx_t *verts1, const vec3_t fscale1, const vec3_t translate1,
77                 float lerp2, const trivertx_t *verts2, const vec3_t fscale2, const vec3_t translate2,
78                 float lerp3, const trivertx_t *verts3, const vec3_t fscale3, const vec3_t translate3,
79                 float lerp4, const trivertx_t *verts4, const vec3_t fscale4, const vec3_t translate4)
80 {
81         int i;
82         vec3_t scale1, scale2, scale3, scale4, translate;
83         const float *n1, *n2, *n3, *n4;
84         float *av, *avn;
85         av = aliasvert;
86         avn = aliasvertnorm;
87         VectorScale(fscale1, lerp1, scale1);
88         if (lerp2)
89         {
90                 VectorScale(fscale2, lerp2, scale2);
91                 if (lerp3)
92                 {
93                         VectorScale(fscale3, lerp3, scale3);
94                         if (lerp4)
95                         {
96                                 VectorScale(fscale4, lerp4, scale4);
97                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4;
98                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4;
99                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4;
100                                 // generate vertices
101                                 for (i = 0;i < vertcount;i++)
102                                 {
103                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0];
104                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1];
105                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2];
106                                         n1 = m_bytenormals[verts1->lightnormalindex];
107                                         n2 = m_bytenormals[verts2->lightnormalindex];
108                                         n3 = m_bytenormals[verts3->lightnormalindex];
109                                         n4 = m_bytenormals[verts4->lightnormalindex];
110                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4;
111                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4;
112                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4;
113                                         av += 4;
114                                         avn += 3;
115                                         verts1++;verts2++;verts3++;verts4++;
116                                 }
117                         }
118                         else
119                         {
120                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3;
121                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3;
122                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3;
123                                 // generate vertices
124                                 for (i = 0;i < vertcount;i++)
125                                 {
126                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0];
127                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1];
128                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2];
129                                         n1 = m_bytenormals[verts1->lightnormalindex];
130                                         n2 = m_bytenormals[verts2->lightnormalindex];
131                                         n3 = m_bytenormals[verts3->lightnormalindex];
132                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3;
133                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3;
134                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3;
135                                         av += 4;
136                                         avn += 3;
137                                         verts1++;verts2++;verts3++;
138                                 }
139                         }
140                 }
141                 else
142                 {
143                         translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2;
144                         translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2;
145                         translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2;
146                         // generate vertices
147                         for (i = 0;i < vertcount;i++)
148                         {
149                                 av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0];
150                                 av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1];
151                                 av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2];
152                                 n1 = m_bytenormals[verts1->lightnormalindex];
153                                 n2 = m_bytenormals[verts2->lightnormalindex];
154                                 avn[0] = n1[0] * lerp1 + n2[0] * lerp2;
155                                 avn[1] = n1[1] * lerp1 + n2[1] * lerp2;
156                                 avn[2] = n1[2] * lerp1 + n2[2] * lerp2;
157                                 av += 4;
158                                 avn += 3;
159                                 verts1++;verts2++;
160                         }
161                 }
162         }
163         else
164         {
165                 translate[0] = translate1[0] * lerp1;
166                 translate[1] = translate1[1] * lerp1;
167                 translate[2] = translate1[2] * lerp1;
168                 // generate vertices
169                 if (lerp1 != 1)
170                 {
171                         // general but almost never used case
172                         for (i = 0;i < vertcount;i++)
173                         {
174                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
175                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
176                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
177                                 n1 = m_bytenormals[verts1->lightnormalindex];
178                                 avn[0] = n1[0] * lerp1;
179                                 avn[1] = n1[1] * lerp1;
180                                 avn[2] = n1[2] * lerp1;
181                                 av += 4;
182                                 avn += 3;
183                                 verts1++;
184                         }
185                 }
186                 else
187                 {
188                         // fast normal case
189                         for (i = 0;i < vertcount;i++)
190                         {
191                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
192                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
193                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
194                                 VectorCopy(m_bytenormals[verts1->lightnormalindex], avn);
195                                 av += 4;
196                                 avn += 3;
197                                 verts1++;
198                         }
199                 }
200         }
201 }
202
203 skinframe_t *R_FetchSkinFrame(const entity_render_t *ent)
204 {
205         model_t *model = ent->model;
206         if (model->skinscenes[ent->skinnum].framecount > 1)
207                 return &model->skinframes[model->skinscenes[ent->skinnum].firstframe + (int) (cl.time * 10) % model->skinscenes[ent->skinnum].framecount];
208         else
209                 return &model->skinframes[model->skinscenes[ent->skinnum].firstframe];
210 }
211
212 void R_SetupMDLMD2Frames(const entity_render_t *ent, float colorr, float colorg, float colorb)
213 {
214         const md2frame_t *frame1, *frame2, *frame3, *frame4;
215         const trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts;
216         const model_t *model = ent->model;
217
218         frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame];
219         frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame];
220         frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame];
221         frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame];
222         frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts];
223         frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts];
224         frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts];
225         frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts];
226         R_AliasLerpVerts(model->numverts,
227                 ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate,
228                 ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate,
229                 ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate,
230                 ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate);
231
232         R_LightModel(ent, model->numverts, colorr, colorg, colorb, false);
233
234         //R_AliasTransformVerts(model->numverts);
235 }
236
237 void R_DrawQ1Q2AliasModelCallback (const void *calldata1, int calldata2)
238 {
239         int c, pantsfullbright, shirtfullbright, colormapped;
240         float pantscolor[3], shirtcolor[3];
241         float fog;
242         vec3_t diff;
243         qbyte *bcolor;
244         rmeshbufferinfo_t m;
245         model_t *model;
246         skinframe_t *skinframe;
247         const entity_render_t *ent = calldata1;
248
249 //      softwaretransformforentity(ent);
250
251         fog = 0;
252         if (fogenabled)
253         {
254                 VectorSubtract(ent->origin, r_origin, diff);
255                 fog = DotProduct(diff,diff);
256                 if (fog < 0.01f)
257                         fog = 0.01f;
258                 fog = exp(fogdensity/fog);
259                 if (fog > 1)
260                         fog = 1;
261                 if (fog < 0.01f)
262                         fog = 0;
263                 // fog method: darken, additive fog
264                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
265                 // 2. render fog as additive
266         }
267
268         model = ent->model;
269
270         skinframe = R_FetchSkinFrame(ent);
271
272         colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt));
273         if (!colormapped && !fog && !skinframe->glow && !skinframe->fog)
274         {
275                 // fastpath for the normal situation (one texture)
276                 memset(&m, 0, sizeof(m));
277                 if (ent->effects & EF_ADDITIVE)
278                 {
279                         m.blendfunc1 = GL_SRC_ALPHA;
280                         m.blendfunc2 = GL_ONE;
281                 }
282                 else if (ent->alpha != 1.0 || skinframe->fog != NULL)
283                 {
284                         m.blendfunc1 = GL_SRC_ALPHA;
285                         m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
286                 }
287                 else
288                 {
289                         m.blendfunc1 = GL_ONE;
290                         m.blendfunc2 = GL_ZERO;
291                 }
292                 m.numtriangles = model->numtris;
293                 m.numverts = model->numverts;
294                 m.tex[0] = R_GetTexture(skinframe->merged);
295                 m.matrix = ent->matrix;
296
297                 c_alias_polys += m.numtriangles;
298                 if (R_Mesh_Draw_GetBuffer(&m, true))
299                 {
300                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
301                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
302
303                         aliasvert = m.vertex;
304                         aliasvertcolor = m.color;
305                         R_SetupMDLMD2Frames(ent, m.colorscale * (1 - fog), m.colorscale * (1 - fog), m.colorscale * (1 - fog));
306                         aliasvert = aliasvertbuf;
307                         aliasvertcolor = aliasvertcolorbuf;
308
309                         R_Mesh_Render();
310                 }
311                 return;
312         }
313
314         R_SetupMDLMD2Frames(ent, 1 - fog, 1 - fog, 1 - fog);
315
316         if (colormapped)
317         {
318                 // 128-224 are backwards ranges
319                 c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12;
320                 bcolor = (qbyte *) (&d_8to24table[c]);
321                 pantsfullbright = c >= 224;
322                 VectorScale(bcolor, (1.0f / 255.0f), pantscolor);
323                 c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12;
324                 bcolor = (qbyte *) (&d_8to24table[c]);
325                 shirtfullbright = c >= 224;
326                 VectorScale(bcolor, (1.0f / 255.0f), shirtcolor);
327         }
328         else
329         {
330                 pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1;
331                 pantsfullbright = shirtfullbright = false;
332         }
333
334         memset(&m, 0, sizeof(m));
335         if (ent->effects & EF_ADDITIVE)
336         {
337                 m.blendfunc1 = GL_SRC_ALPHA;
338                 m.blendfunc2 = GL_ONE;
339         }
340         else if (ent->alpha != 1.0 || skinframe->fog != NULL)
341         {
342                 m.blendfunc1 = GL_SRC_ALPHA;
343                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
344         }
345         else
346         {
347                 m.blendfunc1 = GL_ONE;
348                 m.blendfunc2 = GL_ZERO;
349         }
350         m.numtriangles = model->numtris;
351         m.numverts = model->numverts;
352         m.tex[0] = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged);
353         m.matrix = ent->matrix;
354         if (R_Mesh_Draw_GetBuffer(&m, true))
355         {
356                 c_alias_polys += m.numtriangles;
357                 R_ModulateColors(aliasvertcolor, m.color, m.numverts, m.colorscale, m.colorscale, m.colorscale);
358                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
359                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
360                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
361                 R_Mesh_Render();
362         }
363
364         if (colormapped)
365         {
366                 if (skinframe->pants)
367                 {
368                         memset(&m, 0, sizeof(m));
369                         m.blendfunc1 = GL_SRC_ALPHA;
370                         m.blendfunc2 = GL_ONE;
371                         m.numtriangles = model->numtris;
372                         m.numverts = model->numverts;
373                         m.tex[0] = R_GetTexture(skinframe->pants);
374                         m.matrix = ent->matrix;
375                         if (R_Mesh_Draw_GetBuffer(&m, true))
376                         {
377                                 c_alias_polys += m.numtriangles;
378                                 if (pantsfullbright)
379                                         R_FillColors(m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale, ent->alpha);
380                                 else
381                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale);
382                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
383                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
384                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
385                                 R_Mesh_Render();
386                         }
387                 }
388                 if (skinframe->shirt)
389                 {
390                         memset(&m, 0, sizeof(m));
391                         m.blendfunc1 = GL_SRC_ALPHA;
392                         m.blendfunc2 = GL_ONE;
393                         m.numtriangles = model->numtris;
394                         m.numverts = model->numverts;
395                         m.tex[0] = R_GetTexture(skinframe->shirt);
396                         m.matrix = ent->matrix;
397                         if (R_Mesh_Draw_GetBuffer(&m, true))
398                         {
399                                 c_alias_polys += m.numtriangles;
400                                 if (shirtfullbright)
401                                         R_FillColors(m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale, ent->alpha);
402                                 else
403                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale);
404                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
405                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
406                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
407                                 R_Mesh_Render();
408                         }
409                 }
410         }
411         if (skinframe->glow)
412         {
413                 memset(&m, 0, sizeof(m));
414                 m.blendfunc1 = GL_SRC_ALPHA;
415                 m.blendfunc2 = GL_ONE;
416                 m.numtriangles = model->numtris;
417                 m.numverts = model->numverts;
418                 m.tex[0] = R_GetTexture(skinframe->glow);
419                 m.matrix = ent->matrix;
420                 if (R_Mesh_Draw_GetBuffer(&m, true))
421                 {
422                         c_alias_polys += m.numtriangles;
423                         R_FillColors(m.color, m.numverts, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, ent->alpha);
424                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
425                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
426                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
427                         R_Mesh_Render();
428                 }
429         }
430         if (fog)
431         {
432                 memset(&m, 0, sizeof(m));
433                 m.blendfunc1 = GL_SRC_ALPHA;
434                 m.blendfunc2 = GL_ONE;
435                 m.numtriangles = model->numtris;
436                 m.numverts = model->numverts;
437                 m.tex[0] = R_GetTexture(skinframe->fog);
438                 m.matrix = ent->matrix;
439                 if (R_Mesh_Draw_GetBuffer(&m, false))
440                 {
441                         c_alias_polys += m.numtriangles;
442                         R_FillColors(m.color, m.numverts, fog * m.colorscale, fog * m.colorscale, fog * m.colorscale, ent->alpha);
443                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
444                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
445                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
446                         R_Mesh_Render();
447                 }
448         }
449 }
450
451 int ZymoticLerpBones(int count, const zymbonematrix *bonebase, const frameblend_t *blend, const zymbone_t *bone)
452 {
453         int i;
454         float lerp1, lerp2, lerp3, lerp4;
455         zymbonematrix *out, rootmatrix, m;
456         const zymbonematrix *bone1, *bone2, *bone3, *bone4;
457
458         /*
459         // LordHavoc: combine transform from zym coordinate space to quake coordinate space with model to world transform matrix
460         rootmatrix.m[0][0] = softwaretransform_matrix[0][1];
461         rootmatrix.m[0][1] = -softwaretransform_matrix[0][0];
462         rootmatrix.m[0][2] = softwaretransform_matrix[0][2];
463         rootmatrix.m[0][3] = softwaretransform_matrix[0][3];
464         rootmatrix.m[1][0] = softwaretransform_matrix[1][1];
465         rootmatrix.m[1][1] = -softwaretransform_matrix[1][0];
466         rootmatrix.m[1][2] = softwaretransform_matrix[1][2];
467         rootmatrix.m[1][3] = softwaretransform_matrix[1][3];
468         rootmatrix.m[2][0] = softwaretransform_matrix[2][1];
469         rootmatrix.m[2][1] = -softwaretransform_matrix[2][0];
470         rootmatrix.m[2][2] = softwaretransform_matrix[2][2];
471         rootmatrix.m[2][3] = softwaretransform_matrix[2][3];
472         */
473         rootmatrix.m[0][0] = 1;
474         rootmatrix.m[0][1] = 0;
475         rootmatrix.m[0][2] = 0;
476         rootmatrix.m[0][3] = 0;
477         rootmatrix.m[1][0] = 0;
478         rootmatrix.m[1][1] = 1;
479         rootmatrix.m[1][2] = 0;
480         rootmatrix.m[1][3] = 0;
481         rootmatrix.m[2][0] = 0;
482         rootmatrix.m[2][1] = 0;
483         rootmatrix.m[2][2] = 1;
484         rootmatrix.m[2][3] = 0;
485
486         bone1 = bonebase + blend[0].frame * count;
487         lerp1 = blend[0].lerp;
488         if (blend[1].lerp)
489         {
490                 bone2 = bonebase + blend[1].frame * count;
491                 lerp2 = blend[1].lerp;
492                 if (blend[2].lerp)
493                 {
494                         bone3 = bonebase + blend[2].frame * count;
495                         lerp3 = blend[2].lerp;
496                         if (blend[3].lerp)
497                         {
498                                 // 4 poses
499                                 bone4 = bonebase + blend[3].frame * count;
500                                 lerp4 = blend[3].lerp;
501                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
502                                 {
503                                         // interpolate matrices
504                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4;
505                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4;
506                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4;
507                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4;
508                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4;
509                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4;
510                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4;
511                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4;
512                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4;
513                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4;
514                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4;
515                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4;
516                                         if (bone->parent >= 0)
517                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
518                                         else
519                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
520                                         bone1++;
521                                         bone2++;
522                                         bone3++;
523                                         bone4++;
524                                         bone++;
525                                 }
526                         }
527                         else
528                         {
529                                 // 3 poses
530                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
531                                 {
532                                         // interpolate matrices
533                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3;
534                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3;
535                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3;
536                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3;
537                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3;
538                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3;
539                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3;
540                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3;
541                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3;
542                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3;
543                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3;
544                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3;
545                                         if (bone->parent >= 0)
546                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
547                                         else
548                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
549                                         bone1++;
550                                         bone2++;
551                                         bone3++;
552                                         bone++;
553                                 }
554                         }
555                 }
556                 else
557                 {
558                         // 2 poses
559                         for (i = 0, out = zymbonepose;i < count;i++, out++)
560                         {
561                                 // interpolate matrices
562                                 m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2;
563                                 m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2;
564                                 m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2;
565                                 m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2;
566                                 m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2;
567                                 m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2;
568                                 m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2;
569                                 m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2;
570                                 m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2;
571                                 m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2;
572                                 m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2;
573                                 m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2;
574                                 if (bone->parent >= 0)
575                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
576                                 else
577                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
578                                 bone1++;
579                                 bone2++;
580                                 bone++;
581                         }
582                 }
583         }
584         else
585         {
586                 // 1 pose
587                 if (lerp1 != 1)
588                 {
589                         // lerp != 1.0
590                         for (i = 0, out = zymbonepose;i < count;i++, out++)
591                         {
592                                 // interpolate matrices
593                                 m.m[0][0] = bone1->m[0][0] * lerp1;
594                                 m.m[0][1] = bone1->m[0][1] * lerp1;
595                                 m.m[0][2] = bone1->m[0][2] * lerp1;
596                                 m.m[0][3] = bone1->m[0][3] * lerp1;
597                                 m.m[1][0] = bone1->m[1][0] * lerp1;
598                                 m.m[1][1] = bone1->m[1][1] * lerp1;
599                                 m.m[1][2] = bone1->m[1][2] * lerp1;
600                                 m.m[1][3] = bone1->m[1][3] * lerp1;
601                                 m.m[2][0] = bone1->m[2][0] * lerp1;
602                                 m.m[2][1] = bone1->m[2][1] * lerp1;
603                                 m.m[2][2] = bone1->m[2][2] * lerp1;
604                                 m.m[2][3] = bone1->m[2][3] * lerp1;
605                                 if (bone->parent >= 0)
606                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
607                                 else
608                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
609                                 bone1++;
610                                 bone++;
611                         }
612                 }
613                 else
614                 {
615                         // lerp == 1.0
616                         for (i = 0, out = zymbonepose;i < count;i++, out++)
617                         {
618                                 if (bone->parent >= 0)
619                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]);
620                                 else
621                                         R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]);
622                                 bone1++;
623                                 bone++;
624                         }
625                 }
626         }
627         return true;
628 }
629
630 void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert)
631 {
632         int c;
633         float *out = aliasvert;
634         zymbonematrix *matrix;
635         while(vertcount--)
636         {
637                 c = *bonecounts++;
638                 // FIXME: validate bonecounts at load time (must be >= 1)
639                 // FIXME: need 4th component in origin, for how much of the translate to blend in
640                 if (c == 1)
641                 {
642                         matrix = &zymbonepose[vert->bonenum];
643                         out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
644                         out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
645                         out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
646                         vert++;
647                 }
648                 else
649                 {
650                         VectorClear(out);
651                         while(c--)
652                         {
653                                 matrix = &zymbonepose[vert->bonenum];
654                                 out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
655                                 out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
656                                 out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
657                                 vert++;
658                         }
659                 }
660                 out += 4;
661         }
662 }
663
664 void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist)
665 {
666         int a, b, c, d;
667         float *out, v1[3], v2[3], normal[3], s;
668         int *u;
669         // clear normals
670         memset(aliasvertnorm, 0, sizeof(float) * vertcount * 3);
671         memset(aliasvertusage, 0, sizeof(int) * vertcount);
672         // parse render list and accumulate surface normals
673         while(shadercount--)
674         {
675                 d = *renderlist++;
676                 while (d--)
677                 {
678                         a = renderlist[0]*4;
679                         b = renderlist[1]*4;
680                         c = renderlist[2]*4;
681                         v1[0] = aliasvert[a+0] - aliasvert[b+0];
682                         v1[1] = aliasvert[a+1] - aliasvert[b+1];
683                         v1[2] = aliasvert[a+2] - aliasvert[b+2];
684                         v2[0] = aliasvert[c+0] - aliasvert[b+0];
685                         v2[1] = aliasvert[c+1] - aliasvert[b+1];
686                         v2[2] = aliasvert[c+2] - aliasvert[b+2];
687                         CrossProduct(v1, v2, normal);
688                         VectorNormalizeFast(normal);
689                         // add surface normal to vertices
690                         a = renderlist[0] * 3;
691                         aliasvertnorm[a+0] += normal[0];
692                         aliasvertnorm[a+1] += normal[1];
693                         aliasvertnorm[a+2] += normal[2];
694                         aliasvertusage[renderlist[0]]++;
695                         a = renderlist[1] * 3;
696                         aliasvertnorm[a+0] += normal[0];
697                         aliasvertnorm[a+1] += normal[1];
698                         aliasvertnorm[a+2] += normal[2];
699                         aliasvertusage[renderlist[1]]++;
700                         a = renderlist[2] * 3;
701                         aliasvertnorm[a+0] += normal[0];
702                         aliasvertnorm[a+1] += normal[1];
703                         aliasvertnorm[a+2] += normal[2];
704                         aliasvertusage[renderlist[2]]++;
705                         renderlist += 3;
706                 }
707         }
708         // FIXME: precalc this
709         // average surface normals
710         out = aliasvertnorm;
711         u = aliasvertusage;
712         while(vertcount--)
713         {
714                 if (*u > 1)
715                 {
716                         s = ixtable[*u];
717                         out[0] *= s;
718                         out[1] *= s;
719                         out[2] *= s;
720                 }
721                 u++;
722                 out += 3;
723         }
724 }
725
726 void R_DrawZymoticModelMeshCallback (const void *calldata1, int calldata2)
727 {
728         float fog;
729         vec3_t diff;
730         int i, *renderlist;
731         zymtype1header_t *m;
732         rtexture_t *texture;
733         rmeshbufferinfo_t mbuf;
734         const entity_render_t *ent = calldata1;
735         int shadernum = calldata2;
736
737         // find the vertex index list and texture
738         m = ent->model->zymdata_header;
739         renderlist = (int *)(m->lump_render.start + (int) m);
740         for (i = 0;i < shadernum;i++)
741                 renderlist += renderlist[0] * 3 + 1;
742         texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum];
743
744         fog = 0;
745         if (fogenabled)
746         {
747                 VectorSubtract(ent->origin, r_origin, diff);
748                 fog = DotProduct(diff,diff);
749                 if (fog < 0.01f)
750                         fog = 0.01f;
751                 fog = exp(fogdensity/fog);
752                 if (fog > 1)
753                         fog = 1;
754                 if (fog < 0.01f)
755                         fog = 0;
756                 // fog method: darken, additive fog
757                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
758                 // 2. render fog as additive
759         }
760
761         ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m));
762         ZymoticTransformVerts(m->numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m));
763         ZymoticCalcNormals(m->numverts, m->numshaders, (int *)(m->lump_render.start + (int) m));
764
765         R_LightModel(ent, m->numverts, 1 - fog, 1 - fog, 1 - fog, false);
766
767         memset(&mbuf, 0, sizeof(mbuf));
768         mbuf.numverts = m->numverts;
769         mbuf.numtriangles = renderlist[0];
770         if (ent->effects & EF_ADDITIVE)
771         {
772                 mbuf.blendfunc1 = GL_SRC_ALPHA;
773                 mbuf.blendfunc2 = GL_ONE;
774         }
775         else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture))
776         {
777                 mbuf.blendfunc1 = GL_SRC_ALPHA;
778                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
779         }
780         else
781         {
782                 mbuf.blendfunc1 = GL_ONE;
783                 mbuf.blendfunc2 = GL_ZERO;
784         }
785         mbuf.tex[0] = R_GetTexture(texture);
786         mbuf.matrix = ent->matrix;
787         if (R_Mesh_Draw_GetBuffer(&mbuf, true))
788         {
789                 c_alias_polys += mbuf.numtriangles;
790                 memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
791                 memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
792                 R_ModulateColors(aliasvertcolor, mbuf.color, mbuf.numverts, mbuf.colorscale, mbuf.colorscale, mbuf.colorscale);
793                 //memcpy(mbuf.color, aliasvertcolor, mbuf.numverts * sizeof(float[4]));
794                 memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
795                 R_Mesh_Render();
796         }
797
798         if (fog)
799         {
800                 memset(&mbuf, 0, sizeof(mbuf));
801                 mbuf.numverts = m->numverts;
802                 mbuf.numtriangles = renderlist[0];
803                 mbuf.blendfunc1 = GL_SRC_ALPHA;
804                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
805                 // FIXME: need alpha mask for fogging...
806                 //mbuf.tex[0] = R_GetTexture(texture);
807                 mbuf.matrix = ent->matrix;
808                 if (R_Mesh_Draw_GetBuffer(&mbuf, false))
809                 {
810                         c_alias_polys += mbuf.numtriangles;
811                         memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
812                         memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
813                         R_FillColors(mbuf.color, mbuf.numverts, fogcolor[0] * mbuf.colorscale, fogcolor[1] * mbuf.colorscale, fogcolor[2] * mbuf.colorscale, ent->alpha * fog);
814                         //memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
815                         R_Mesh_Render();
816                 }
817         }
818 }
819
820 void R_DrawZymoticModel (entity_render_t *ent)
821 {
822         int i;
823         zymtype1header_t *m;
824         rtexture_t *texture;
825
826         if (ent->alpha < (1.0f / 64.0f))
827                 return; // basically completely transparent
828
829         c_models++;
830
831         m = ent->model->zymdata_header;
832         for (i = 0;i < m->numshaders;i++)
833         {
834                 texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i];
835                 if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture))
836                         R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i);
837                 else
838                         R_MeshQueue_Add(R_DrawZymoticModelMeshCallback, ent, i);
839         }
840 }
841
842 void R_DrawQ1Q2AliasModel(entity_render_t *ent)
843 {
844         if (ent->alpha < (1.0f / 64.0f))
845                 return; // basically completely transparent
846
847         c_models++;
848
849         if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL)
850                 R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0);
851         else
852                 R_MeshQueue_Add(R_DrawQ1Q2AliasModelCallback, ent, 0);
853 }
854