da6be2fa7cb02089b5bd825ec3fba9a41b93a1c5
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 3] = org1[0] - width * right1[0];
65         vert[ 4] = org1[1] - width * right1[1];
66         vert[ 5] = org1[2] - width * right1[2];
67         vert[ 6] = org2[0] - width * right2[0];
68         vert[ 7] = org2[1] - width * right2[1];
69         vert[ 8] = org2[2] - width * right2[2];
70         vert[ 9] = org2[0] + width * right2[0];
71         vert[10] = org2[1] + width * right2[1];
72         vert[11] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
184 }
185 ptype_t;
186
187 #define PARTICLE_INVALID 0
188 #define PARTICLE_BILLBOARD 1
189 #define PARTICLE_SPARK 2
190 #define PARTICLE_ORIENTED_DOUBLESIDED 3
191 #define PARTICLE_BEAM 4
192
193 #define PBLEND_ALPHA 0
194 #define PBLEND_ADD 1
195 #define PBLEND_MOD 2
196
197 typedef struct particle_s
198 {
199         ptype_t         type;
200         int                     orientation;
201         int                     texnum;
202         int                     blendmode;
203         vec3_t          org;
204         vec3_t          vel;
205         float           die;
206         float           scalex;
207         float           scaley;
208         float           alpha; // 0-255
209         float           alphafade; // how much alpha reduces per second
210         float           time2; // used for various things (snow fluttering, for example)
211         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
212         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
213         vec3_t          oldorg;
214         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
215         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
216         float           pressure; // if non-zero, apply pressure to other particles
217         qbyte           color[4];
218 #ifndef WORKINGLQUAKE
219         entity_render_t *owner; // decal stuck to this entity
220         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
221         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
222         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
223 #endif
224 }
225 particle_t;
226
227 static int particlepalette[256] =
228 {
229         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
230         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
231         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
232         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
233         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
234         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
235         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
236         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
237         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
238         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
239         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
240         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
241         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
242         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
243         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
244         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
245         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
246         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
247         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
248         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
249         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
250         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
251         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
252         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
253         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
254         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
255         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
256         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
257         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
258         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
259         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
260         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
261 };
262
263 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
264
265 // texture numbers in particle font
266 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
267 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
268 static const int tex_particle = 24;
269 static const int tex_raindrop = 25;
270 static const int tex_bubble = 26;
271 static const int tex_beam = 27;
272 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
273
274 static int                      cl_maxparticles;
275 static int                      cl_numparticles;
276 static particle_t       *particles;
277 static particle_t       **freeparticles; // list used only in compacting particles array
278
279 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
280 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
281 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
282 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
283 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
284 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
285 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
286 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
287 cvar_t cl_particles_smoke_size = {CVAR_SAVE, "cl_particles_smoke_size", "7"};
288 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
289 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
290 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
291 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
292 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
293 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
294 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
295
296 #ifndef WORKINGLQUAKE
297 static mempool_t *cl_part_mempool;
298 #endif
299
300 void CL_Particles_Clear(void)
301 {
302         cl_numparticles = 0;
303 }
304
305 /*
306 ===============
307 CL_InitParticles
308 ===============
309 */
310 void CL_ReadPointFile_f (void);
311 void CL_Particles_Init (void)
312 {
313         int             i;
314
315         i = COM_CheckParm ("-particles");
316
317         if (i && i < com_argc - 1)
318         {
319                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
320                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
321                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
322         }
323         else
324                 cl_maxparticles = MAX_PARTICLES;
325
326         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
327
328         Cvar_RegisterVariable (&cl_particles);
329         Cvar_RegisterVariable (&cl_particles_size);
330         Cvar_RegisterVariable (&cl_particles_bloodshowers);
331         Cvar_RegisterVariable (&cl_particles_blood);
332         Cvar_RegisterVariable (&cl_particles_blood_size);
333         Cvar_RegisterVariable (&cl_particles_blood_alpha);
334         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
335         Cvar_RegisterVariable (&cl_particles_smoke);
336         Cvar_RegisterVariable (&cl_particles_smoke_size);
337         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
338         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
339         Cvar_RegisterVariable (&cl_particles_sparks);
340         Cvar_RegisterVariable (&cl_particles_bubbles);
341         Cvar_RegisterVariable (&cl_decals);
342         Cvar_RegisterVariable (&cl_decals_time);
343         Cvar_RegisterVariable (&cl_decals_fadetime);
344
345 #ifdef WORKINGLQUAKE
346         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
347         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
348 #else
349         cl_part_mempool = Mem_AllocPool("CL_Part");
350         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
351         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
352 #endif
353         cl_numparticles = 0;
354 }
355
356 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
357 {\
358         if (cl_numparticles < cl_maxparticles)\
359         {\
360                 particle_t      *part;\
361                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
362                 ptempcolor = (pcolor1);\
363                 ptempcolor2 = (pcolor2);\
364                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
365                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
366                 pcb2 = (ptempcolor2) & 0xFF;\
367                 if (ptempcolor != ptempcolor2)\
368                 {\
369                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
370                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
371                         pcb1 = (ptempcolor) & 0xFF;\
372                         ptempcolor = rand() & 0xFF;\
373                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
374                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
375                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
376                 }\
377                 part = &particles[cl_numparticles++];\
378                 memset(part, 0, sizeof(*part));\
379                 part->type = (ptype);\
380                 part->color[0] = pcr2;\
381                 part->color[1] = pcg2;\
382                 part->color[2] = pcb2;\
383                 part->color[3] = 0xFF;\
384                 part->orientation = porientation;\
385                 part->texnum = ptex;\
386                 part->blendmode = pblendmode;\
387                 part->scalex = (pscalex);\
388                 part->scaley = (pscaley);\
389                 part->alpha = (palpha);\
390                 part->alphafade = (palphafade);\
391                 part->die = cl.time + (ptime);\
392                 part->gravity = (pgravity);\
393                 part->bounce = (pbounce);\
394                 part->org[0] = (px);\
395                 part->org[1] = (py);\
396                 part->org[2] = (pz);\
397                 part->vel[0] = (pvx);\
398                 part->vel[1] = (pvy);\
399                 part->vel[2] = (pvz);\
400                 part->time2 = (ptime2);\
401                 part->vel2[0] = (pvx2);\
402                 part->vel2[1] = (pvy2);\
403                 part->vel2[2] = (pvz2);\
404                 part->friction = (pfriction);\
405                 part->pressure = (ppressure);\
406         }\
407 }
408
409 /*
410 ===============
411 CL_EntityParticles
412 ===============
413 */
414 void CL_EntityParticles (entity_t *ent)
415 {
416         int                     i;
417         float           angle;
418         float           sp, sy, cp, cy;
419         vec3_t          forward;
420         float           dist;
421         float           beamlength;
422         static vec3_t avelocities[NUMVERTEXNORMALS];
423         if (!cl_particles.integer) return;
424
425         dist = 64;
426         beamlength = 16;
427
428         if (!avelocities[0][0])
429                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
430                         avelocities[0][i] = (rand()&255) * 0.01;
431
432         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
433         {
434                 angle = cl.time * avelocities[i][0];
435                 sy = sin(angle);
436                 cy = cos(angle);
437                 angle = cl.time * avelocities[i][1];
438                 sp = sin(angle);
439                 cp = cos(angle);
440
441                 forward[0] = cp*cy;
442                 forward[1] = cp*sy;
443                 forward[2] = -sp;
444
445 #ifdef WORKINGLQUAKE
446                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
447 #else
448                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
449 #endif
450         }
451 }
452
453
454 void CL_ReadPointFile_f (void)
455 {
456         vec3_t org, leakorg;
457         int r, c, s;
458         char *pointfile = NULL, *pointfilepos, *t, tchar;
459         char name[MAX_OSPATH];
460
461         if (!cl.worldmodel)
462                 return;
463
464         FS_StripExtension(cl.worldmodel->name, name);
465         strcat(name, ".pts");
466 #if WORKINGLQUAKE
467         pointfile = COM_LoadTempFile (name);
468 #else
469         pointfile = FS_LoadFile(name, true);
470 #endif
471         if (!pointfile)
472         {
473                 Con_Printf ("Could not open %s\n", name);
474                 return;
475         }
476
477         Con_Printf ("Reading %s...\n", name);
478         c = 0;
479         s = 0;
480         pointfilepos = pointfile;
481         while (*pointfilepos)
482         {
483                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
484                         pointfilepos++;
485                 if (!*pointfilepos)
486                         break;
487                 t = pointfilepos;
488                 while (*t && *t != '\n' && *t != '\r')
489                         t++;
490                 tchar = *t;
491                 *t = 0;
492                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
493                 *t = tchar;
494                 pointfilepos = t;
495                 if (r != 3)
496                         break;
497                 if (c == 0)
498                         VectorCopy(org, leakorg);
499                 c++;
500
501                 if (cl_numparticles < cl_maxparticles - 3)
502                 {
503                         s++;
504                         particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
505                 }
506         }
507 #ifndef WORKINGLQUAKE
508         Mem_Free(pointfile);
509 #endif
510         VectorCopy(leakorg, org);
511         Con_Printf ("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]);
512
513         particle(pt_static, PARTICLE_BEAM, 0xFF0000, 0xFF0000, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0] - 4096, org[1], org[2], 0, 0, 0, 0, org[0] + 4096, org[1], org[2], 0, 0);
514         particle(pt_static, PARTICLE_BEAM, 0x00FF00, 0x00FF00, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1] - 4096, org[2], 0, 0, 0, 0, org[0], org[1] + 4096, org[2], 0, 0);
515         particle(pt_static, PARTICLE_BEAM, 0x0000FF, 0x0000FF, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1], org[2] - 4096, 0, 0, 0, 0, org[0], org[1], org[2] + 4096, 0, 0);
516 }
517
518 /*
519 ===============
520 CL_ParseParticleEffect
521
522 Parse an effect out of the server message
523 ===============
524 */
525 void CL_ParseParticleEffect (void)
526 {
527         vec3_t org, dir;
528         int i, count, msgcount, color;
529
530         for (i=0 ; i<3 ; i++)
531                 org[i] = MSG_ReadCoord ();
532         for (i=0 ; i<3 ; i++)
533                 dir[i] = MSG_ReadChar () * (1.0/16);
534         msgcount = MSG_ReadByte ();
535         color = MSG_ReadByte ();
536
537         if (msgcount == 255)
538                 count = 1024;
539         else
540                 count = msgcount;
541
542         CL_RunParticleEffect (org, dir, color, count);
543 }
544
545 /*
546 ===============
547 CL_ParticleExplosion
548
549 ===============
550 */
551 void CL_ParticleExplosion (vec3_t org)
552 {
553         int i, k;
554         //vec3_t v;
555         //vec3_t v2;
556         if (cl_stainmaps.integer)
557                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
558
559         i = cl.worldmodel ? cl.worldmodel->PointContents(cl.worldmodel, org) : CONTENTS_EMPTY;
560         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
561         {
562                 for (i = 0;i < 128;i++)
563                 {
564                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
565                 }
566         }
567         else
568         {
569                 /*
570                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
571                 // smoke puff
572                 if (cl_particles.integer && cl_particles_smoke.integer)
573                 {
574                         for (i = 0;i < 64;i++)
575                         {
576 #ifdef WORKINGLQUAKE
577                                 v2[0] = lhrandom(-64, 64);
578                                 v2[1] = lhrandom(-64, 64);
579                                 v2[2] = lhrandom(-8, 24);
580 #else
581                                 for (k = 0;k < 16;k++)
582                                 {
583                                         v[0] = org[0] + lhrandom(-64, 64);
584                                         v[1] = org[1] + lhrandom(-64, 64);
585                                         v[2] = org[2] + lhrandom(-8, 24);
586                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
587                                                 break;
588                                 }
589                                 VectorSubtract(v2, org, v2);
590 #endif
591                                 VectorScale(v2, 2.0f, v2);
592                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
593                         }
594                 }
595                 */
596
597                 if (cl_particles.integer && cl_particles_sparks.integer)
598                 {
599                         // sparks
600                         for (i = 0;i < 256;i++)
601                         {
602                                 k = particlepalette[0x68 + (rand() & 7)];
603                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
604                         }
605                 }
606         }
607
608         if (cl_explosions.integer)
609                 R_NewExplosion(org);
610 }
611
612 /*
613 ===============
614 CL_ParticleExplosion2
615
616 ===============
617 */
618 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
619 {
620         int i, k;
621         if (!cl_particles.integer) return;
622
623         for (i = 0;i < 512;i++)
624         {
625                 k = particlepalette[colorStart + (i % colorLength)];
626                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
627         }
628 }
629
630 /*
631 ===============
632 CL_BlobExplosion
633
634 ===============
635 */
636 void CL_BlobExplosion (vec3_t org)
637 {
638         if (cl_stainmaps.integer)
639                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
640
641         if (cl_explosions.integer)
642                 R_NewExplosion(org);
643 }
644
645 /*
646 ===============
647 CL_RunParticleEffect
648
649 ===============
650 */
651 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
652 {
653         int k;
654
655         if (count == 1024)
656         {
657                 CL_ParticleExplosion(org);
658                 return;
659         }
660         if (!cl_particles.integer) return;
661         while (count--)
662         {
663                 k = particlepalette[color + (rand()&7)];
664                 if (gamemode == GAME_GOODVSBAD2)
665                 {
666                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 5, 5, 255, 300, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-10, 10), lhrandom(-10, 10), lhrandom(-10, 10), 0, 0, 0, 0, 0, 0);
667                 }
668                 else
669                 {
670                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), dir[0] + lhrandom(-15, 15), dir[1] + lhrandom(-15, 15), dir[2] + lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
671                 }
672         }
673 }
674
675 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
676 /*
677 ===============
678 CL_SparkShower
679 ===============
680 */
681 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
682 {
683         vec3_t org2, org3;
684         int k;
685
686         if (cl_stainmaps.integer)
687                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
688
689         if (!cl_particles.integer) return;
690
691         if (cl_particles_bulletimpacts.integer)
692         {
693                 // smoke puff
694                 if (cl_particles_smoke.integer)
695                 {
696                         k = count / 4;
697                         while(k--)
698                         {
699                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
700                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
701                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
702                                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
703                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
704                         }
705                 }
706
707                 if (cl_particles_sparks.integer)
708                 {
709                         // sparks
710                         while(count--)
711                         {
712                                 k = particlepalette[0x68 + (rand() & 7)];
713                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
714                         }
715                 }
716         }
717 }
718
719 void CL_PlasmaBurn (vec3_t org)
720 {
721         if (cl_stainmaps.integer)
722                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
723 }
724
725 static float bloodcount = 0;
726 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
727 {
728         float s, r, a;
729         vec3_t org2, org3;
730         // bloodcount is used to accumulate counts too small to cause a blood particle
731         if (!cl_particles.integer) return;
732         if (!cl_particles_blood.integer) return;
733
734         s = count + 32.0f;
735         count *= 5.0f;
736         if (count > 1000)
737                 count = 1000;
738         bloodcount += count;
739         r = cl_particles_blood_size.value;
740         a = cl_particles_blood_alpha.value * 255;
741         while(bloodcount > 0)
742         {
743                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
744                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
745                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
746                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
747                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
748                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
749                 bloodcount -= r;
750         }
751 }
752
753 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
754 {
755         float r;
756         float a;
757         vec3_t diff, center, velscale;
758         if (!cl_particles.integer) return;
759         if (!cl_particles_bloodshowers.integer) return;
760         if (!cl_particles_blood.integer) return;
761
762         VectorSubtract(maxs, mins, diff);
763         center[0] = (mins[0] + maxs[0]) * 0.5;
764         center[1] = (mins[1] + maxs[1]) * 0.5;
765         center[2] = (mins[2] + maxs[2]) * 0.5;
766         // FIXME: change velspeed back to 2.0x after fixing mod
767         velscale[0] = velspeed * 2.0 / diff[0];
768         velscale[1] = velspeed * 2.0 / diff[1];
769         velscale[2] = velspeed * 2.0 / diff[2];
770
771         bloodcount += count * 5.0f;
772         r = cl_particles_blood_size.value;
773         a = cl_particles_blood_alpha.value * 255;
774         while (bloodcount > 0)
775         {
776                 vec3_t org, vel;
777                 org[0] = lhrandom(mins[0], maxs[0]);
778                 org[1] = lhrandom(mins[1], maxs[1]);
779                 org[2] = lhrandom(mins[2], maxs[2]);
780                 vel[0] = (org[0] - center[0]) * velscale[0];
781                 vel[1] = (org[1] - center[1]) * velscale[1];
782                 vel[2] = (org[2] - center[2]) * velscale[2];
783                 bloodcount -= r;
784                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
785                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
786         }
787 }
788
789 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
790 {
791         int k;
792         float t;
793         if (!cl_particles.integer) return;
794         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
795         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
796         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
797
798         while (count--)
799         {
800                 k = particlepalette[colorbase + (rand()&3)];
801                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
802         }
803 }
804
805 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
806 {
807         int k;
808         float t, z, minz, maxz;
809         if (!cl_particles.integer) return;
810         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
811         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
812         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
813         if (dir[2] < 0) // falling
814         {
815                 t = (maxs[2] - mins[2]) / -dir[2];
816                 z = maxs[2];
817         }
818         else // rising??
819         {
820                 t = (maxs[2] - mins[2]) / dir[2];
821                 z = mins[2];
822         }
823         if (t < 0 || t > 2) // sanity check
824                 t = 2;
825
826         minz = z - fabs(dir[2]) * 0.1;
827         maxz = z + fabs(dir[2]) * 0.1;
828         minz = bound(mins[2], minz, maxs[2]);
829         maxz = bound(mins[2], maxz, maxs[2]);
830
831         switch(type)
832         {
833         case 0:
834                 count *= 4; // ick, this should be in the mod or maps?
835
836                 while(count--)
837                 {
838                         k = particlepalette[colorbase + (rand()&3)];
839                         if (gamemode == GAME_GOODVSBAD2)
840                         {
841                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 20, 20, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
842                         }
843                         else
844                         {
845                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
846                         }
847                 }
848                 break;
849         case 1:
850                 while(count--)
851                 {
852                         k = particlepalette[colorbase + (rand()&3)];
853                         if (gamemode == GAME_GOODVSBAD2)
854                         {
855                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 20, 20, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
856                         }
857                         else
858                         {
859                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
860                         }
861                 }
862                 break;
863         default:
864                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
865         }
866 }
867
868 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
869 {
870         int k;
871         float t;
872         vec3_t o, v, center;
873         if (!cl_particles.integer) return;
874
875         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
876         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
877         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
878
879         center[0] = (mins[0] + maxs[0]) * 0.5f;
880         center[1] = (mins[1] + maxs[1]) * 0.5f;
881         center[2] = (mins[2] + maxs[2]) * 0.5f;
882
883         while (count--)
884         {
885                 k = particlepalette[224 + (rand()&15)];
886                 o[0] = lhrandom(mins[0], maxs[0]);
887                 o[1] = lhrandom(mins[1], maxs[1]);
888                 o[2] = lhrandom(mins[2], maxs[2]);
889                 VectorSubtract(o, center, v);
890                 VectorNormalizeFast(v);
891                 VectorScale(v, 100, v);
892                 v[2] += sv_gravity.value * 0.15f;
893                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
894         }
895 }
896
897 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
898 {
899         int k;
900         float t;
901         if (!cl_particles.integer) return;
902         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
903         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
904         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
905
906         while (count--)
907         {
908                 k = particlepalette[224 + (rand()&15)];
909                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
910                 if (count & 1)
911                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
912         }
913 }
914
915 void CL_Flames (vec3_t org, vec3_t vel, int count)
916 {
917         int k;
918         if (!cl_particles.integer) return;
919
920         while (count--)
921         {
922                 k = particlepalette[224 + (rand()&15)];
923                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
924         }
925 }
926
927
928
929 /*
930 ===============
931 CL_LavaSplash
932
933 ===============
934 */
935 void CL_LavaSplash (vec3_t origin)
936 {
937         int                     i, j, k, l, inc;
938         float           vel;
939         vec3_t          dir, org;
940         if (!cl_particles.integer) return;
941
942         inc = 32;
943         for (i = -128;i < 128;i += inc)
944         {
945                 for (j = -128;j < 128;j += inc)
946                 {
947                         dir[0] = j + lhrandom(0, 8);
948                         dir[1] = i + lhrandom(0, 8);
949                         dir[2] = 256;
950                         org[0] = origin[0] + dir[0];
951                         org[1] = origin[1] + dir[1];
952                         org[2] = origin[2] + lhrandom(0, 64);
953                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
954                         if (gamemode == GAME_GOODVSBAD2)
955                         {
956                                 k = particlepalette[0 + (rand()&255)];
957                                 l = particlepalette[0 + (rand()&255)];
958                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, 255, 240, 9999, 0.05, 1, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
959                         }
960                         else
961                         {
962                                 k = l = particlepalette[224 + (rand()&7)];
963                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, 255, 240, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
964                         }
965                 }
966         }
967 }
968
969 /*
970 ===============
971 CL_TeleportSplash
972
973 ===============
974 */
975 #if WORKINGLQUAKE
976 void R_TeleportSplash (vec3_t org)
977 {
978         int i, j, k;
979         if (!cl_particles.integer) return;
980
981         for (i=-16 ; i<16 ; i+=8)
982                 for (j=-16 ; j<16 ; j+=8)
983                         for (k=-24 ; k<32 ; k+=8)
984                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
985 }
986 #endif
987
988 #ifdef WORKINGLQUAKE
989 void R_RocketTrail (vec3_t start, vec3_t end, int type)
990 #else
991 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
992 #endif
993 {
994         vec3_t vec, dir, vel, pos;
995         float len, dec, speed, r;
996         int contents, smoke, blood, bubbles;
997
998         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
999                 return;
1000
1001         VectorSubtract(end, start, dir);
1002         VectorNormalize(dir);
1003
1004         VectorSubtract (end, start, vec);
1005 #ifdef WORKINGLQUAKE
1006         len = VectorNormalize (vec);
1007         dec = 0;
1008         speed = 1.0f / cl.frametime;
1009         VectorSubtract(end, start, vel);
1010 #else
1011         len = VectorNormalizeLength (vec);
1012         dec = -ent->persistent.trail_time;
1013         ent->persistent.trail_time += len;
1014         if (ent->persistent.trail_time < 0.01f)
1015                 return;
1016
1017         // if we skip out, leave it reset
1018         ent->persistent.trail_time = 0.0f;
1019
1020         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
1021         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
1022 #endif
1023         VectorScale(vel, speed, vel);
1024
1025         // advance into this frame to reach the first puff location
1026         VectorMA(start, dec, vec, pos);
1027         len -= dec;
1028
1029         contents = cl.worldmodel ? cl.worldmodel->PointContents(cl.worldmodel, pos) : CONTENTS_EMPTY;
1030         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
1031                 return;
1032
1033         smoke = cl_particles.integer && cl_particles_smoke.integer;
1034         blood = cl_particles.integer && cl_particles_blood.integer;
1035         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1036
1037         while (len >= 0)
1038         {
1039                 switch (type)
1040                 {
1041                         case 0: // rocket trail
1042                                 dec = 3;
1043                                 if (smoke)
1044                                 {
1045                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*125, cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1046                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1047                                 }
1048                                 if (bubbles)
1049                                 {
1050                                         r = lhrandom(1, 2);
1051                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1052                                 }
1053                                 break;
1054
1055                         case 1: // grenade trail
1056                                 // FIXME: make it gradually stop smoking
1057                                 dec = 3;
1058                                 if (smoke)
1059                                 {
1060                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*100, cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1061                                 }
1062                                 break;
1063
1064
1065                         case 2: // blood
1066                         case 4: // slight blood
1067                                 dec = cl_particles_blood_size.value;
1068                                 if (blood)
1069                                 {
1070                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1071                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1072                                 }
1073                                 break;
1074
1075                         case 3: // green tracer
1076                                 dec = 6;
1077                                 if (smoke)
1078                                 {
1079                                         if (gamemode == GAME_GOODVSBAD2)
1080                                         {
1081                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x00002E, 0x000030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1082                                         }
1083                                         else
1084                                         {
1085                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1086                                         }
1087                                 }
1088                                 break;
1089
1090                         case 5: // flame tracer
1091                                 dec = 6;
1092                                 if (smoke)
1093                                 {
1094                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1095                                 }
1096                                 break;
1097
1098                         case 6: // voor trail
1099                                 dec = 6;
1100                                 if (smoke)
1101                                 {
1102                                         if (gamemode == GAME_GOODVSBAD2)
1103                                         {
1104                                                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, false, PBLEND_ALPHA, dec, dec, 255, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1105                                         }
1106                                         else
1107                                         {
1108                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1109                                         }
1110                                 }
1111                                 break;
1112
1113                         case 7: // Nehahra smoke tracer
1114                                 dec = 7;
1115                                 if (smoke)
1116                                 {
1117                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1118                                 }
1119                                 break;
1120                         case 8: // Nexuiz plasma trail
1121                                 dec = 4;
1122                                 if (smoke)
1123                                 {
1124                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1125                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1126                                 }
1127                 }
1128
1129                 // advance to next time and position
1130                 len -= dec;
1131                 VectorMA (pos, dec, vec, pos);
1132         }
1133 #ifndef WORKINGLQUAKE
1134         ent->persistent.trail_time = len;
1135 #endif
1136 }
1137
1138 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1139 {
1140         vec3_t vec, pos;
1141         int len;
1142         if (!cl_particles.integer) return;
1143         if (!cl_particles_smoke.integer) return;
1144
1145         VectorCopy(start, pos);
1146         VectorSubtract (end, start, vec);
1147 #ifdef WORKINGLQUAKE
1148         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1149 #else
1150         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1151 #endif
1152         VectorScale(vec, 3, vec);
1153         color = particlepalette[color];
1154         while (len--)
1155         {
1156                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1157                 VectorAdd (pos, vec, pos);
1158         }
1159 }
1160
1161 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1162 {
1163         int tempcolor2, cr, cg, cb;
1164         cr = red * 255;
1165         cg = green * 255;
1166         cb = blue * 255;
1167         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1168         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1169 }
1170
1171 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1172 {
1173         int k;
1174         if (!cl_particles.integer) return;
1175
1176         // smoke puff
1177         if (cl_particles_smoke.integer)
1178         {
1179                 k = count / 4;
1180                 while(k--)
1181                 {
1182                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1183                 }
1184         }
1185 }
1186
1187 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1188 {
1189         int k;
1190         if (!cl_particles.integer) return;
1191
1192         if (cl_stainmaps.integer)
1193                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1194
1195         // smoke puff
1196         if (cl_particles_smoke.integer)
1197         {
1198                 k = count / 4;
1199                 while(k--)
1200                 {
1201                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1202                 }
1203         }
1204
1205         if (cl_particles_sparks.integer)
1206         {
1207                 // sparks
1208                 while(count--)
1209                 {
1210                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1211                 }
1212         }
1213 }
1214
1215 /*
1216 ===============
1217 CL_MoveParticles
1218 ===============
1219 */
1220 void CL_MoveParticles (void)
1221 {
1222         particle_t *p;
1223         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1224         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1225 #ifdef WORKINGLQUAKE
1226         void *hitent;
1227 #else
1228         entity_render_t *hitent;
1229 #endif
1230
1231         // LordHavoc: early out condition
1232         if (!cl_numparticles)
1233                 return;
1234
1235 #ifdef WORKINGLQUAKE
1236         frametime = cl.frametime;
1237 #else
1238         frametime = cl.time - cl.oldtime;
1239 #endif
1240         gravity = frametime * sv_gravity.value;
1241         dvel = 1+4*frametime;
1242         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1243
1244         activeparticles = 0;
1245         maxparticle = -1;
1246         j = 0;
1247         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1248         {
1249                 content = 0;
1250                 VectorCopy(p->org, p->oldorg);
1251                 VectorMA(p->org, frametime, p->vel, p->org);
1252                 VectorCopy(p->org, org);
1253                 if (p->bounce)
1254                 {
1255                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, &hitent) < 1)
1256                         {
1257                                 VectorCopy(v, p->org);
1258                                 if (p->bounce < 0)
1259                                 {
1260                                         // assume it's blood (lame, but...)
1261 #ifndef WORKINGLQUAKE
1262                                         if (cl_stainmaps.integer)
1263                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1264 #endif
1265                                         if (cl_decals.integer)
1266                                         {
1267                                                 p->type = pt_decal;
1268                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1269 #ifndef WORKINGLQUAKE
1270                                                 p->owner = hitent;
1271                                                 p->ownermodel = hitent->model;
1272                                                 Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1273                                                 Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1274                                                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1275 #endif
1276                                                 p->time2 = cl.time + cl_decals_time.value;
1277                                                 p->die = p->time2 + cl_decals_fadetime.value;
1278                                                 p->alphafade = 0;
1279                                                 VectorCopy(normal, p->vel2);
1280                                                 VectorClear(p->vel);
1281                                                 VectorAdd(p->org, normal, p->org);
1282                                                 p->bounce = 0;
1283                                                 p->friction = 0;
1284                                                 p->gravity = 0;
1285                                                 p->scalex *= 1.25f;
1286                                                 p->scaley *= 1.25f;
1287                                         }
1288                                         else
1289                                         {
1290                                                 p->die = -1;
1291                                                 freeparticles[j++] = p;
1292                                                 continue;
1293                                         }
1294                                 }
1295                                 else
1296                                 {
1297                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1298                                         VectorMA(p->vel, dist, normal, p->vel);
1299                                         if (DotProduct(p->vel, p->vel) < 0.03)
1300                                                 VectorClear(p->vel);
1301                                 }
1302                         }
1303                 }
1304                 p->vel[2] -= p->gravity * gravity;
1305                 p->alpha -= p->alphafade * frametime;
1306                 if (p->friction)
1307                 {
1308                         f = p->friction * frametime;
1309                         if (!content)
1310                                 content = cl.worldmodel ? cl.worldmodel->PointContents(cl.worldmodel, p->org) : CONTENTS_EMPTY;
1311                         if (content != CONTENTS_EMPTY)
1312                                 f *= 4;
1313                         f = 1.0f - f;
1314                         VectorScale(p->vel, f, p->vel);
1315                 }
1316
1317                 if (p->type != pt_static)
1318                 {
1319                         switch (p->type)
1320                         {
1321                         case pt_blood:
1322                                 if (!content)
1323                                         content = cl.worldmodel ? cl.worldmodel->PointContents(cl.worldmodel, p->org) : CONTENTS_EMPTY;
1324                                 a = content;
1325                                 if (a != CONTENTS_EMPTY)
1326                                 {
1327                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1328                                         {
1329                                                 p->scalex += frametime * cl_particles_blood_size.value;
1330                                                 p->scaley += frametime * cl_particles_blood_size.value;
1331                                                 //p->alpha -= bloodwaterfade;
1332                                         }
1333                                         else
1334                                                 p->die = -1;
1335                                 }
1336                                 else
1337                                         p->vel[2] -= gravity;
1338                                 break;
1339                         case pt_bubble:
1340                                 if (!content)
1341                                         content = cl.worldmodel ? cl.worldmodel->PointContents(cl.worldmodel, p->org) : CONTENTS_EMPTY;
1342                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1343                                 {
1344                                         p->die = -1;
1345                                         break;
1346                                 }
1347                                 break;
1348                         case pt_rain:
1349                                 if (cl.time > p->time2)
1350                                 {
1351                                         // snow flutter
1352                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1353                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1354                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1355                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1356                                 }
1357                                 if (!content)
1358                                         content = cl.worldmodel ? cl.worldmodel->PointContents(cl.worldmodel, p->org) : CONTENTS_EMPTY;
1359                                 a = content;
1360                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1361                                         p->die = -1;
1362                                 break;
1363                         case pt_grow:
1364                                 p->scalex += frametime * p->time2;
1365                                 p->scaley += frametime * p->time2;
1366                                 break;
1367                         case pt_decal:
1368 #ifndef WORKINGLQUAKE
1369                                 if (p->owner->model == p->ownermodel)
1370                                 {
1371                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1372                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1373                                 }
1374                                 else
1375                                         p->die = -1;
1376 #endif
1377                                 if (cl.time > p->time2)
1378                                 {
1379                                         p->alphafade = p->alpha / (p->die - cl.time);
1380                                         p->time2 += 10000;
1381                                 }
1382                                 break;
1383                         default:
1384                                 Con_Printf("unknown particle type %i\n", p->type);
1385                                 p->die = -1;
1386                                 break;
1387                         }
1388                 }
1389
1390                 // remove dead particles
1391                 if (p->alpha < 1 || p->die < cl.time)
1392                         freeparticles[j++] = p;
1393                 else
1394                 {
1395                         maxparticle = i;
1396                         activeparticles++;
1397                         if (p->pressure)
1398                                 pressureused = true;
1399                 }
1400         }
1401         // fill in gaps to compact the array
1402         i = 0;
1403         while (maxparticle >= activeparticles)
1404         {
1405                 *freeparticles[i++] = particles[maxparticle--];
1406                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1407                         maxparticle--;
1408         }
1409         cl_numparticles = activeparticles;
1410
1411         if (pressureused)
1412         {
1413                 activeparticles = 0;
1414                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1415                         if (p->pressure)
1416                                 freeparticles[activeparticles++] = p;
1417
1418                 if (activeparticles)
1419                 {
1420                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1421                         {
1422                                 for (j = 0;j < activeparticles;j++)
1423                                 {
1424                                         if (freeparticles[j] != p)
1425                                         {
1426                                                 float dist, diff[3];
1427                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1428                                                 dist = DotProduct(diff, diff);
1429                                                 if (dist < 4096 && dist >= 1)
1430                                                 {
1431                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1432                                                         VectorMA(p->vel, dist, diff, p->vel);
1433                                                 }
1434                                         }
1435                                 }
1436                         }
1437                 }
1438         }
1439 }
1440
1441 #define MAX_PARTICLETEXTURES 64
1442 // particletexture_t is a rectangle in the particlefonttexture
1443 typedef struct
1444 {
1445         rtexture_t *texture;
1446         float s1, t1, s2, t2;
1447 }
1448 particletexture_t;
1449
1450 #if WORKINGLQUAKE
1451 static int particlefonttexture;
1452 #else
1453 static rtexturepool_t *particletexturepool;
1454 static rtexture_t *particlefonttexture;
1455 #endif
1456 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1457
1458 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1459
1460 static qbyte shadebubble(float dx, float dy, vec3_t light)
1461 {
1462         float dz, f, dot;
1463         vec3_t normal;
1464         dz = 1 - (dx*dx+dy*dy);
1465         if (dz > 0) // it does hit the sphere
1466         {
1467                 f = 0;
1468                 // back side
1469                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1470                 VectorNormalize(normal);
1471                 dot = DotProduct(normal, light);
1472                 if (dot > 0.5) // interior reflection
1473                         f += ((dot *  2) - 1);
1474                 else if (dot < -0.5) // exterior reflection
1475                         f += ((dot * -2) - 1);
1476                 // front side
1477                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1478                 VectorNormalize(normal);
1479                 dot = DotProduct(normal, light);
1480                 if (dot > 0.5) // interior reflection
1481                         f += ((dot *  2) - 1);
1482                 else if (dot < -0.5) // exterior reflection
1483                         f += ((dot * -2) - 1);
1484                 f *= 128;
1485                 f += 16; // just to give it a haze so you can see the outline
1486                 f = bound(0, f, 255);
1487                 return (qbyte) f;
1488         }
1489         else
1490                 return 0;
1491 }
1492
1493 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1494 {
1495         int basex, basey, y;
1496         basex = ((texnum >> 0) & 7) * 32;
1497         basey = ((texnum >> 3) & 7) * 32;
1498         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1499         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1500         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1501         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1502         for (y = 0;y < 32;y++)
1503                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1504 }
1505
1506 static void R_InitParticleTexture (void)
1507 {
1508         int x, y, d, i, j, k, m;
1509         float cx, cy, dx, dy, radius, f, f2;
1510         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1511         vec3_t light;
1512         qbyte particletexturedata[256*256*4];
1513
1514         memset(particletexturedata, 255, sizeof(particletexturedata));
1515
1516         // smoke/blood
1517         for (i = 0;i < 8;i++)
1518         {
1519                 do
1520                 {
1521                         fractalnoise(&noise1[0][0], 64, 4);
1522                         fractalnoise(&noise2[0][0], 64, 8);
1523                         m = 0;
1524                         for (y = 0;y < 32;y++)
1525                         {
1526                                 dy = y - 16;
1527                                 for (x = 0;x < 32;x++)
1528                                 {
1529                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1530                                         dx = x - 16;
1531                                         d = (noise2[y][x] - 128) * 3 + 192;
1532                                         if (d > 0)
1533                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1534                                         d = (d * noise1[y][x]) >> 7;
1535                                         d = bound(0, d, 255);
1536                                         data[y][x][3] = (qbyte) d;
1537                                         if (m < d)
1538                                                 m = d;
1539                                 }
1540                         }
1541                 }
1542                 while (m < 224);
1543
1544                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1545         }
1546
1547         // rain splash
1548         for (i = 0;i < 16;i++)
1549         {
1550                 radius = i * 3.0f / 16.0f;
1551                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1552                 for (y = 0;y < 32;y++)
1553                 {
1554                         dy = (y - 16) * 0.25f;
1555                         for (x = 0;x < 32;x++)
1556                         {
1557                                 dx = (x - 16) * 0.25f;
1558                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1559                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1560                                 f = bound(0.0f, f, 255.0f);
1561                                 data[y][x][3] = (int) f;
1562                         }
1563                 }
1564                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1565         }
1566
1567         // normal particle
1568         for (y = 0;y < 32;y++)
1569         {
1570                 dy = y - 16;
1571                 for (x = 0;x < 32;x++)
1572                 {
1573                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1574                         dx = x - 16;
1575                         d = (256 - (dx*dx+dy*dy));
1576                         d = bound(0, d, 255);
1577                         data[y][x][3] = (qbyte) d;
1578                 }
1579         }
1580         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1581
1582         // rain
1583         light[0] = 1;light[1] = 1;light[2] = 1;
1584         VectorNormalize(light);
1585         for (y = 0;y < 32;y++)
1586         {
1587                 for (x = 0;x < 32;x++)
1588                 {
1589                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1590                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1591                 }
1592         }
1593         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1594
1595         // bubble
1596         light[0] = 1;light[1] = 1;light[2] = 1;
1597         VectorNormalize(light);
1598         for (y = 0;y < 32;y++)
1599         {
1600                 for (x = 0;x < 32;x++)
1601                 {
1602                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1603                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1604                 }
1605         }
1606         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1607
1608         // smoke/blood
1609         for (i = 0;i < 8;i++)
1610         {
1611                 memset(&data[0][0][0], 255, sizeof(data));
1612                 for (j = 1;j < 8;j++)
1613                 {
1614                         for (k = 0;k < 3;k++)
1615                         {
1616                                 cx = lhrandom(j + 1, 30 - j);
1617                                 cy = lhrandom(j + 1, 30 - j);
1618                                 for (y = 0;y < 32;y++)
1619                                 {
1620                                         for (x = 0;x < 32;x++)
1621                                         {
1622                                                 dx = (x - cx);
1623                                                 dy = (y - cy);
1624                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1625                                                 if (f > 0)
1626                                                 {
1627                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1628                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1629                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1630                                                 }
1631                                         }
1632                                 }
1633                         }
1634                 }
1635                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1636                 for (y = 0;y < 32;y++)
1637                 {
1638                         for (x = 0;x < 32;x++)
1639                         {
1640                                 data[y][x][0] = 255 - data[y][x][0];
1641                                 data[y][x][1] = 255 - data[y][x][1];
1642                                 data[y][x][2] = 255 - data[y][x][2];
1643                         }
1644                 }
1645                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1646         }
1647
1648 #if WORKINGLQUAKE
1649         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1650         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1651         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1652 #else
1653         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1654         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1655                 particletexture[i].texture = particlefonttexture;
1656
1657         // beam
1658         fractalnoise(&noise1[0][0], 64, 4);
1659         m = 0;
1660         for (y = 0;y < 64;y++)
1661         {
1662                 for (x = 0;x < 16;x++)
1663                 {
1664                         if (x < 8)
1665                                 d = x;
1666                         else
1667                                 d = (15 - x);
1668                         d = d * d * noise1[y][x] / (7 * 7);
1669                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1670                         data2[y][x][3] = 255;
1671                 }
1672         }
1673
1674         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1675         particletexture[tex_beam].s1 = 0;
1676         particletexture[tex_beam].t1 = 0;
1677         particletexture[tex_beam].s2 = 1;
1678         particletexture[tex_beam].t2 = 1;
1679 #endif
1680 }
1681
1682 static void r_part_start(void)
1683 {
1684         particletexturepool = R_AllocTexturePool();
1685         R_InitParticleTexture ();
1686 }
1687
1688 static void r_part_shutdown(void)
1689 {
1690         R_FreeTexturePool(&particletexturepool);
1691 }
1692
1693 static void r_part_newmap(void)
1694 {
1695         cl_numparticles = 0;
1696 }
1697
1698 void R_Particles_Init (void)
1699 {
1700         Cvar_RegisterVariable(&r_drawparticles);
1701 #ifdef WORKINGLQUAKE
1702         r_part_start();
1703 #else
1704         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1705 #endif
1706 }
1707
1708 #ifdef WORKINGLQUAKE
1709 void R_InitParticles(void)
1710 {
1711         CL_Particles_Init();
1712         R_Particles_Init();
1713 }
1714 #endif
1715
1716 float particle_vertex3f[12], particle_texcoord2f[8];
1717
1718 #ifdef WORKINGLQUAKE
1719 void R_DrawParticle(particle_t *p)
1720 {
1721 #else
1722 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1723 {
1724         const particle_t *p = calldata1;
1725         rmeshstate_t m;
1726 #endif
1727         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1728         particletexture_t *tex;
1729
1730         VectorCopy(p->org, org);
1731
1732         tex = &particletexture[p->texnum];
1733         cr = p->color[0] * (1.0f / 255.0f);
1734         cg = p->color[1] * (1.0f / 255.0f);
1735         cb = p->color[2] * (1.0f / 255.0f);
1736         ca = p->alpha * (1.0f / 255.0f);
1737         if (p->blendmode == PBLEND_MOD)
1738         {
1739                 cr *= ca;
1740                 cg *= ca;
1741                 cb *= ca;
1742                 cr = min(cr, 1);
1743                 cg = min(cg, 1);
1744                 cb = min(cb, 1);
1745                 ca = 1;
1746         }
1747
1748 #ifndef WORKINGLQUAKE
1749         if (fogenabled && p->blendmode != PBLEND_MOD)
1750         {
1751                 VectorSubtract(org, r_origin, fogvec);
1752                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1753                 ifog = 1 - fog;
1754                 cr = cr * ifog;
1755                 cg = cg * ifog;
1756                 cb = cb * ifog;
1757                 if (p->blendmode == 0)
1758                 {
1759                         cr += fogcolor[0] * fog;
1760                         cg += fogcolor[1] * fog;
1761                         cb += fogcolor[2] * fog;
1762                 }
1763         }
1764         cr *= r_colorscale;
1765         cg *= r_colorscale;
1766         cb *= r_colorscale;
1767
1768         GL_Color(cr, cg, cb, ca);
1769
1770         R_Mesh_Matrix(&r_identitymatrix);
1771
1772         memset(&m, 0, sizeof(m));
1773         m.tex[0] = R_GetTexture(tex->texture);
1774         m.pointer_texcoord[0] = particle_texcoord2f;
1775         R_Mesh_State_Texture(&m);
1776
1777         if (p->blendmode == 0)
1778                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1779         else if (p->blendmode == 1)
1780                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1781         else
1782                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1783         GL_DepthMask(false);
1784         GL_DepthTest(true);
1785         GL_VertexPointer(particle_vertex3f);
1786 #endif
1787         if (p->orientation == PARTICLE_BILLBOARD || p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1788         {
1789                 if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1790                 {
1791                         // double-sided
1792                         if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1793                         {
1794                                 VectorNegate(p->vel2, v);
1795                                 VectorVectors(v, right, up);
1796                         }
1797                         else
1798                                 VectorVectors(p->vel2, right, up);
1799                         VectorScale(right, p->scalex, right);
1800                         VectorScale(up, p->scaley, up);
1801                 }
1802                 else
1803                 {
1804                         VectorScale(vright, p->scalex, right);
1805                         VectorScale(vup, p->scaley, up);
1806                 }
1807                 particle_vertex3f[ 0] = org[0] - right[0] - up[0];
1808                 particle_vertex3f[ 1] = org[1] - right[1] - up[1];
1809                 particle_vertex3f[ 2] = org[2] - right[2] - up[2];
1810                 particle_vertex3f[ 3] = org[0] - right[0] + up[0];
1811                 particle_vertex3f[ 4] = org[1] - right[1] + up[1];
1812                 particle_vertex3f[ 5] = org[2] - right[2] + up[2];
1813                 particle_vertex3f[ 6] = org[0] + right[0] + up[0];
1814                 particle_vertex3f[ 7] = org[1] + right[1] + up[1];
1815                 particle_vertex3f[ 8] = org[2] + right[2] + up[2];
1816                 particle_vertex3f[ 9] = org[0] + right[0] - up[0];
1817                 particle_vertex3f[10] = org[1] + right[1] - up[1];
1818                 particle_vertex3f[11] = org[2] + right[2] - up[2];
1819                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1820                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1821                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1822                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1823         }
1824         else if (p->orientation == PARTICLE_SPARK)
1825         {
1826                 VectorMA(p->org, -p->scaley, p->vel, v);
1827                 VectorMA(p->org, p->scaley, p->vel, up2);
1828                 R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, p->scalex);
1829                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1830                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1831                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1832                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1833         }
1834         else if (p->orientation == PARTICLE_BEAM)
1835         {
1836                 R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel2, p->scalex);
1837                 VectorSubtract(p->vel2, p->org, up);
1838                 VectorNormalizeFast(up);
1839                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1840                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1841                 particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0];
1842                 particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0];
1843                 particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1];
1844                 particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1];
1845         }
1846         else
1847                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1848
1849 #if WORKINGLQUAKE
1850         if (p->blendmode == 0)
1851                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1852         else if (p->blendmode == 1)
1853                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1854         else
1855                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1856         glColor4f(cr, cg, cb, ca);
1857         glBegin(GL_QUADS);
1858         glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]);
1859         glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]);
1860         glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]);
1861         glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]);
1862         glEnd();
1863 #else
1864         R_Mesh_Draw(4, 2, polygonelements);
1865 #endif
1866 }
1867
1868 void R_DrawParticles (void)
1869 {
1870         int i;
1871         float minparticledist;
1872         particle_t *p;
1873
1874 #ifdef WORKINGLQUAKE
1875         CL_MoveParticles();
1876 #endif
1877
1878         // LordHavoc: early out conditions
1879         if ((!cl_numparticles) || (!r_drawparticles.integer))
1880                 return;
1881
1882         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1883
1884 #ifdef WORKINGLQUAKE
1885         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1886         glEnable(GL_BLEND);
1887         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1888         glDepthMask(0);
1889         // LordHavoc: only render if not too close
1890         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1891                 if (DotProduct(p->org, vpn) >= minparticledist)
1892                         R_DrawParticle(p);
1893         glDepthMask(1);
1894         glDisable(GL_BLEND);
1895         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1896 #else
1897         // LordHavoc: only render if not too close
1898         c_particles += cl_numparticles;
1899         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1900                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1901                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1902 #endif
1903 }
1904