]> icculus.org git repositories - divverent/darkplaces.git/blob - cl_particles.c
fixed bugs with collision brush building, and added a great deal more error checking...
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define CL_PointQ1Contents(v) (Mod_PointInLeaf(v,cl.worldmodel)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_vieworigin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_vieworigin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 3] = org1[0] - width * right1[0];
65         vert[ 4] = org1[1] - width * right1[1];
66         vert[ 5] = org1[2] - width * right1[2];
67         vert[ 6] = org2[0] - width * right2[0];
68         vert[ 7] = org2[1] - width * right2[1];
69         vert[ 8] = org2[2] - width * right2[2];
70         vert[ 9] = org2[0] + width * right2[0];
71         vert[10] = org2[1] + width * right2[1];
72         vert[11] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int hitbmodels, void **hitent, int hitsupercontentsmask)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #include "image.h"
177 #endif
178
179 #define MAX_PARTICLES                   32768   // default max # of particles at one time
180 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
181
182 typedef enum
183 {
184         pt_dead, pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal, pt_decalfade, pt_ember
185 }
186 ptype_t;
187
188 typedef enum
189 {
190         PARTICLE_BILLBOARD = 0,
191         PARTICLE_SPARK = 1,
192         PARTICLE_ORIENTED_DOUBLESIDED = 2,
193         PARTICLE_BEAM = 3
194 }
195 porientation_t;
196
197 typedef enum
198 {
199         PBLEND_ALPHA = 0,
200         PBLEND_ADD = 1,
201         PBLEND_MOD = 2
202 }
203 pblend_t;
204
205 typedef struct particle_s
206 {
207         ptype_t         type;
208         int                     orientation;
209         int                     texnum;
210         int                     blendmode;
211         vec3_t          org;
212         vec3_t          vel;
213         float           die;
214         float           scalex;
215         float           scaley;
216         float           alpha; // 0-255
217         float           alphafade; // how much alpha reduces per second
218         float           time2; // used for various things (snow fluttering, for example)
219         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
220         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
221         vec3_t          oldorg;
222         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
223         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
224         float           pressure; // if non-zero, apply pressure to other particles
225         qbyte           color[4];
226 #ifndef WORKINGLQUAKE
227         entity_render_t *owner; // decal stuck to this entity
228         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
229         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
230         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
231 #endif
232 }
233 particle_t;
234
235 static int particlepalette[256] =
236 {
237         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
238         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
239         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
240         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
241         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
242         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
243         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
244         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
245         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
246         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
247         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
248         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
249         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
250         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
251         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
252         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
253         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
254         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
255         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
256         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
257         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
258         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
259         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
260         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
261         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
262         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
263         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
264         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
265         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
266         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
267         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
268         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
269 };
270
271 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
272
273 // texture numbers in particle font
274 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
275 static const int tex_bulletdecal[8] = {8, 9, 10, 11, 12, 13, 14, 15};
276 static const int tex_blooddecal[8] = {16, 17, 18, 19, 20, 21, 22, 23};
277 static const int tex_bloodparticle[8] = {24, 25, 26, 27, 28, 29, 30, 31};
278 static const int tex_rainsplash[16] = {32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47};
279 static const int tex_particle = 63;
280 static const int tex_bubble = 62;
281 static const int tex_raindrop = 61;
282 static const int tex_beam = 60;
283
284 static int                      cl_maxparticles;
285 static int                      cl_numparticles;
286 static int                      cl_freeparticle;
287 static particle_t       *particles;
288
289 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
290 cvar_t cl_particles_quality = {CVAR_SAVE, "cl_particles_quality", "1"};
291 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
292 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
293 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
294 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
295 cvar_t cl_particles_blood_bloodhack = {CVAR_SAVE, "cl_particles_blood_bloodhack", "1"};
296 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
297 cvar_t cl_particles_explosions_bubbles = {CVAR_SAVE, "cl_particles_explosions_bubbles", "1"};
298 cvar_t cl_particles_explosions_smoke = {CVAR_SAVE, "cl_particles_explosions_smokes", "0"};
299 cvar_t cl_particles_explosions_sparks = {CVAR_SAVE, "cl_particles_explosions_sparks", "1"};
300 cvar_t cl_particles_explosions_shell = {CVAR_SAVE, "cl_particles_explosions_shell", "0"};
301 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
302 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
303 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
304 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
305 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
306 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
307 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
308 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
309
310 #ifndef WORKINGLQUAKE
311 static mempool_t *cl_part_mempool;
312 #endif
313
314 void CL_Particles_Clear(void)
315 {
316         cl_numparticles = 0;
317         cl_freeparticle = 0;
318         memset(particles, 0, sizeof(particle_t) * cl_maxparticles);
319 }
320
321 /*
322 ===============
323 CL_InitParticles
324 ===============
325 */
326 void CL_ReadPointFile_f (void);
327 void CL_Particles_Init (void)
328 {
329         int             i;
330
331         i = COM_CheckParm ("-particles");
332
333         if (i && i < com_argc - 1)
334         {
335                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
336                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
337                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
338         }
339         else
340                 cl_maxparticles = MAX_PARTICLES;
341
342         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
343
344         Cvar_RegisterVariable (&cl_particles);
345         Cvar_RegisterVariable (&cl_particles_quality);
346         Cvar_RegisterVariable (&cl_particles_size);
347         Cvar_RegisterVariable (&cl_particles_bloodshowers);
348         Cvar_RegisterVariable (&cl_particles_blood);
349         Cvar_RegisterVariable (&cl_particles_blood_alpha);
350         Cvar_RegisterVariable (&cl_particles_blood_bloodhack);
351         Cvar_RegisterVariable (&cl_particles_explosions_bubbles);
352         Cvar_RegisterVariable (&cl_particles_explosions_smoke);
353         Cvar_RegisterVariable (&cl_particles_explosions_sparks);
354         Cvar_RegisterVariable (&cl_particles_explosions_shell);
355         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
356         Cvar_RegisterVariable (&cl_particles_smoke);
357         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
358         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
359         Cvar_RegisterVariable (&cl_particles_sparks);
360         Cvar_RegisterVariable (&cl_particles_bubbles);
361         Cvar_RegisterVariable (&cl_decals);
362         Cvar_RegisterVariable (&cl_decals_time);
363         Cvar_RegisterVariable (&cl_decals_fadetime);
364
365 #ifdef WORKINGLQUAKE
366         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
367 #else
368         cl_part_mempool = Mem_AllocPool("CL_Part", 0, NULL);
369         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
370 #endif
371         CL_Particles_Clear();
372 }
373
374 // list of all 26 parameters:
375 // ptype - any of the pt_ enum values (pt_static, pt_blood, etc), see ptype_t near the top of this file
376 // porientation - PARTICLE_ enum values (PARTICLE_BILLBOARD, PARTICLE_SPARK, etc)
377 // pcolor1,pcolor2 - minimum and maximum ranges of color, randomly interpolated to decide particle color
378 // ptex - any of the tex_ values such as tex_smoke[rand()&7] or tex_particle
379 // plight - no longer used (this used to turn on particle lighting)
380 // pblendmode - PBLEND_ enum values (PBLEND_ALPHA, PBLEND_ADD, etc)
381 // pscalex,pscaley - width and height of particle (according to orientation), these are normally the same except when making sparks and beams
382 // palpha - opacity of particle as 0-255 (can be more than 255)
383 // palphafade - rate of fade per second (so 256 would mean a 256 alpha particle would fade to nothing in 1 second)
384 // ptime - how long the particle can live (note it is also removed if alpha drops to nothing)
385 // pgravity - how much effect gravity has on the particle (0-1)
386 // pbounce - how much bounce the particle has when it hits a surface (0-1), -1 makes a blood splat when it hits a surface, 0 does not even check for collisions
387 // px,py,pz - starting origin of particle
388 // pvx,pvy,pvz - starting velocity of particle
389 // ptime2 - extra time parameter for certain particle types (pt_decal delayed fades and pt_rain snowflutter use this)
390 // pvx2,pvy2,pvz2 - for PARTICLE_ORIENTED_DOUBLESIDED this is the surface normal of the orientation (forward vector), pt_rain uses this for snow fluttering
391 // pfriction - how much the particle slows down per second (0-1 typically, can slowdown faster than 1)
392 // ppressure - pushes other particles away if they are within 64 units distance, the force is based on scalex, this feature is supported but not currently used
393 particle_t *particle(ptype_t ptype, porientation_t porientation, int pcolor1, int pcolor2, int ptex, int plight, pblend_t pblendmode, float pscalex, float pscaley, float palpha, float palphafade, float ptime, float pgravity, float pbounce, float px, float py, float pz, float pvx, float pvy, float pvz, float ptime2, float pvx2, float pvy2, float pvz2, float pfriction, float ppressure)
394 {
395         particle_t *part;
396         int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;
397         ptempcolor = (pcolor1);
398         ptempcolor2 = (pcolor2);
399         pcr2 = ((ptempcolor2) >> 16) & 0xFF;
400         pcg2 = ((ptempcolor2) >> 8) & 0xFF;
401         pcb2 = (ptempcolor2) & 0xFF;
402         if (ptempcolor != ptempcolor2)
403         {
404                 pcr1 = ((ptempcolor) >> 16) & 0xFF;
405                 pcg1 = ((ptempcolor) >> 8) & 0xFF;
406                 pcb1 = (ptempcolor) & 0xFF;
407                 ptempcolor = rand() & 0xFF;
408                 pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;
409                 pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;
410                 pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;
411         }
412         for (;cl_freeparticle < cl_maxparticles && particles[cl_freeparticle].type;cl_freeparticle++);
413         if (cl_freeparticle >= cl_maxparticles)
414                 return NULL;
415         part = &particles[cl_freeparticle++];
416         if (cl_numparticles < cl_freeparticle)
417                 cl_numparticles = cl_freeparticle;
418         memset(part, 0, sizeof(*part));
419         part->type = (ptype);
420         part->color[0] = pcr2;
421         part->color[1] = pcg2;
422         part->color[2] = pcb2;
423         part->color[3] = 0xFF;
424         part->orientation = porientation;
425         part->texnum = ptex;
426         part->blendmode = pblendmode;
427         part->scalex = (pscalex);
428         part->scaley = (pscaley);
429         part->alpha = (palpha);
430         part->alphafade = (palphafade);
431         part->die = cl.time + (ptime);
432         part->gravity = (pgravity);
433         part->bounce = (pbounce);
434         part->org[0] = (px);
435         part->org[1] = (py);
436         part->org[2] = (pz);
437         part->vel[0] = (pvx);
438         part->vel[1] = (pvy);
439         part->vel[2] = (pvz);
440         part->time2 = (ptime2);
441         part->vel2[0] = (pvx2);
442         part->vel2[1] = (pvy2);
443         part->vel2[2] = (pvz2);
444         part->friction = (pfriction);
445         part->pressure = (ppressure);
446         return part;
447 }
448
449 void CL_SpawnDecalParticleForSurface(void *hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha)
450 {
451         particle_t *p;
452         if (!cl_decals.integer)
453                 return;
454         p = particle(pt_decal, PARTICLE_ORIENTED_DOUBLESIDED, color1, color2, texnum, false, PBLEND_MOD, size, size, alpha, 0, cl_decals_time.value + cl_decals_fadetime.value, 0, 0, org[0] + normal[0], org[1] + normal[1], org[2] + normal[2], 0, 0, 0, cl.time + cl_decals_time.value, normal[0], normal[1], normal[2], 0, 0);
455 #ifndef WORKINGLQUAKE
456         if (p)
457         {
458                 p->owner = hitent;
459                 p->ownermodel = p->owner->model;
460                 Matrix4x4_Transform(&p->owner->inversematrix, org, p->relativeorigin);
461                 Matrix4x4_Transform3x3(&p->owner->inversematrix, normal, p->relativedirection);
462                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
463         }
464 #endif
465 }
466
467 void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2)
468 {
469         int i;
470         float bestfrac, bestorg[3], bestnormal[3];
471         float frac, v[3], normal[3], org2[3];
472 #ifdef WORKINGLQUAKE
473         void *besthitent = NULL, *hitent;
474 #else
475         entity_render_t *besthitent = NULL, *hitent;
476 #endif
477         bestfrac = 10;
478         for (i = 0;i < 32;i++)
479         {
480                 VectorRandom(org2);
481                 VectorMA(org, maxdist, org2, org2);
482                 frac = CL_TraceLine(org, org2, v, normal, true, &hitent, SUPERCONTENTS_SOLID);
483                 if (bestfrac > frac)
484                 {
485                         bestfrac = frac;
486                         besthitent = hitent;
487                         VectorCopy(v, bestorg);
488                         VectorCopy(normal, bestnormal);
489                 }
490         }
491         if (bestfrac < 1)
492                 CL_SpawnDecalParticleForSurface(besthitent, bestorg, bestnormal, color1, color2, texnum, size, alpha);
493 }
494
495 /*
496 ===============
497 CL_EntityParticles
498 ===============
499 */
500 void CL_EntityParticles (entity_t *ent)
501 {
502         int                     i;
503         float           angle;
504         float           sp, sy, cp, cy;
505         vec3_t          forward;
506         float           dist;
507         float           beamlength;
508         static vec3_t avelocities[NUMVERTEXNORMALS];
509         if (!cl_particles.integer) return;
510
511         dist = 64;
512         beamlength = 16;
513
514         if (!avelocities[0][0])
515                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
516                         avelocities[0][i] = (rand()&255) * 0.01;
517
518         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
519         {
520                 angle = cl.time * avelocities[i][0];
521                 sy = sin(angle);
522                 cy = cos(angle);
523                 angle = cl.time * avelocities[i][1];
524                 sp = sin(angle);
525                 cp = cos(angle);
526
527                 forward[0] = cp*cy;
528                 forward[1] = cp*sy;
529                 forward[2] = -sp;
530
531 #ifdef WORKINGLQUAKE
532                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
533 #else
534                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
535 #endif
536         }
537 }
538
539
540 void CL_ReadPointFile_f (void)
541 {
542         vec3_t org, leakorg;
543         int r, c, s;
544         char *pointfile = NULL, *pointfilepos, *t, tchar;
545         char name[MAX_OSPATH];
546
547         if (!cl.worldmodel)
548                 return;
549
550         FS_StripExtension (cl.worldmodel->name, name, sizeof (name));
551         strlcat (name, ".pts", sizeof (name));
552 #if WORKINGLQUAKE
553         pointfile = COM_LoadTempFile (name);
554 #else
555         pointfile = FS_LoadFile(name, tempmempool, true);
556 #endif
557         if (!pointfile)
558         {
559                 Con_Printf("Could not open %s\n", name);
560                 return;
561         }
562
563         Con_Printf("Reading %s...\n", name);
564         c = 0;
565         s = 0;
566         pointfilepos = pointfile;
567         while (*pointfilepos)
568         {
569                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
570                         pointfilepos++;
571                 if (!*pointfilepos)
572                         break;
573                 t = pointfilepos;
574                 while (*t && *t != '\n' && *t != '\r')
575                         t++;
576                 tchar = *t;
577                 *t = 0;
578                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
579                 *t = tchar;
580                 pointfilepos = t;
581                 if (r != 3)
582                         break;
583                 if (c == 0)
584                         VectorCopy(org, leakorg);
585                 c++;
586
587                 if (cl_numparticles < cl_maxparticles - 3)
588                 {
589                         s++;
590                         particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
591                 }
592         }
593 #ifndef WORKINGLQUAKE
594         Mem_Free(pointfile);
595 #endif
596         VectorCopy(leakorg, org);
597         Con_Printf("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]);
598
599         particle(pt_static, PARTICLE_BEAM, 0xFF0000, 0xFF0000, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0] - 4096, org[1], org[2], 0, 0, 0, 0, org[0] + 4096, org[1], org[2], 0, 0);
600         particle(pt_static, PARTICLE_BEAM, 0x00FF00, 0x00FF00, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1] - 4096, org[2], 0, 0, 0, 0, org[0], org[1] + 4096, org[2], 0, 0);
601         particle(pt_static, PARTICLE_BEAM, 0x0000FF, 0x0000FF, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1], org[2] - 4096, 0, 0, 0, 0, org[0], org[1], org[2] + 4096, 0, 0);
602 }
603
604 /*
605 ===============
606 CL_ParseParticleEffect
607
608 Parse an effect out of the server message
609 ===============
610 */
611 void CL_ParseParticleEffect (void)
612 {
613         vec3_t org, dir;
614         int i, count, msgcount, color;
615
616         MSG_ReadVector(org);
617         for (i=0 ; i<3 ; i++)
618                 dir[i] = MSG_ReadChar () * (1.0/16);
619         msgcount = MSG_ReadByte ();
620         color = MSG_ReadByte ();
621
622         if (msgcount == 255)
623                 count = 1024;
624         else
625                 count = msgcount;
626
627         if (cl_particles_blood_bloodhack.integer)
628         {
629                 if (color == 73)
630                 {
631                         // regular blood
632                         CL_BloodPuff(org, dir, count / 2);
633                         return;
634                 }
635                 if (color == 225)
636                 {
637                         // lightning blood
638                         CL_BloodPuff(org, dir, count / 2);
639                         return;
640                 }
641         }
642         CL_RunParticleEffect (org, dir, color, count);
643 }
644
645 /*
646 ===============
647 CL_ParticleExplosion
648
649 ===============
650 */
651 void CL_ParticleExplosion (vec3_t org)
652 {
653         int i;
654         //vec3_t v;
655         //vec3_t v2;
656         if (cl_stainmaps.integer)
657                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
658         CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
659
660         i = CL_PointQ1Contents(org);
661         if (i == CONTENTS_SLIME || i == CONTENTS_WATER)
662         {
663                 if (cl_particles.integer && cl_particles_bubbles.integer && cl_particles_explosions_bubbles.integer)
664                         for (i = 0;i < 128 * cl_particles_quality.value;i++)
665                                 particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, (1.0f / cl_particles_quality.value) * lhrandom(128, 255), (1.0f / cl_particles_quality.value) * 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
666         }
667         else
668         {
669                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
670                 // smoke puff
671                 if (cl_particles.integer && cl_particles_smoke.integer && cl_particles_explosions_smoke.integer)
672                 {
673                         for (i = 0;i < 32;i++)
674                         {
675                                 int k;
676                                 vec3_t v, v2;
677 #ifdef WORKINGLQUAKE
678                                 v2[0] = lhrandom(-48, 48);
679                                 v2[1] = lhrandom(-48, 48);
680                                 v2[2] = lhrandom(-48, 48);
681 #else
682                                 for (k = 0;k < 16;k++)
683                                 {
684                                         v[0] = org[0] + lhrandom(-48, 48);
685                                         v[1] = org[1] + lhrandom(-48, 48);
686                                         v[2] = org[2] + lhrandom(-48, 48);
687                                         if (CL_TraceLine(org, v, v2, NULL, true, NULL, SUPERCONTENTS_SOLID) >= 0.1)
688                                                 break;
689                                 }
690                                 VectorSubtract(v2, org, v2);
691 #endif
692                                 VectorScale(v2, 2.0f, v2);
693                                 particle(pt_static, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 32, 64, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
694                         }
695                 }
696
697 #if 1
698                 if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer)
699                         for (i = 0;i < 128 * cl_particles_quality.value;i++)
700                                 particle(pt_static, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.0f, 0.02f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-256, 256), lhrandom(-256, 256), lhrandom(-256, 256) + 80, 0, 0, 0, 0, 0.2, 0);
701 #elif 1
702                 if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer)
703                         for (i = 0;i < 64 * cl_particles_quality.value;i++)
704                                 particle(pt_ember, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.0f, 0.01f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 256, 9999, 0.7, 0, org[0], org[1], org[2], lhrandom(-256, 256), lhrandom(-256, 256), lhrandom(-256, 256) + 80, cl.time, 0, 0, 0, 0, 0);
705 #else
706                 if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer)
707                         for (i = 0;i < 256 * cl_particles_quality.value;i++)
708                                 particle(pt_static, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0.2, 0);
709 #endif
710         }
711
712         if (cl_particles_explosions_shell.integer)
713                 R_NewExplosion(org);
714 }
715
716 /*
717 ===============
718 CL_ParticleExplosion2
719
720 ===============
721 */
722 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
723 {
724         vec3_t vel;
725         vec3_t offset;
726         int i, k;
727         float pscale;
728         if (!cl_particles.integer) return;
729
730         for (i = 0;i < 512 * cl_particles_quality.value;i++)
731         {
732                 VectorRandom (offset);
733                 VectorScale (offset, 192, vel);
734                 VectorScale (offset, 8, offset);
735                 k = particlepalette[colorStart + (i % colorLength)];
736                 pscale = lhrandom(0.5, 1.5);
737                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, pscale, pscale, (1.0f / cl_particles_quality.value) * 255, (1.0f/cl_particles_quality.value)*512, 9999, 0, 0, org[0] + offset[0], org[1] + offset[1], org[2] + offset[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, lhrandom(1.5, 3), 0);
738         }
739 }
740
741 /*
742 ===============
743 CL_BlobExplosion
744
745 ===============
746 */
747 void CL_BlobExplosion (vec3_t org)
748 {
749         CL_ParticleExplosion(org);
750 }
751
752 /*
753 ===============
754 CL_RunParticleEffect
755
756 ===============
757 */
758 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
759 {
760         int k;
761
762         if (count == 1024)
763         {
764                 CL_ParticleExplosion(org);
765                 return;
766         }
767         if (!cl_particles.integer) return;
768         count *= cl_particles_quality.value;
769         while (count--)
770         {
771                 k = particlepalette[color + (rand()&7)];
772                 if (gamemode == GAME_GOODVSBAD2)
773                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 5, 5, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 300, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-10, 10), lhrandom(-10, 10), lhrandom(-10, 10), 0, 0, 0, 0, 0, 0);
774                 else
775                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), dir[0] + lhrandom(-15, 15), dir[1] + lhrandom(-15, 15), dir[2] + lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
776         }
777 }
778
779 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
780 /*
781 ===============
782 CL_SparkShower
783 ===============
784 */
785 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
786 {
787         vec3_t org2, org3;
788         int k;
789
790         if (cl_stainmaps.integer)
791                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
792         CL_SpawnDecalParticleForPoint(org, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
793
794         if (!cl_particles.integer) return;
795
796         if (cl_particles_bulletimpacts.integer)
797         {
798                 // smoke puff
799                 if (cl_particles_smoke.integer)
800                 {
801                         k = count * 0.25 * cl_particles_quality.value;
802                         while(k--)
803                         {
804                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
805                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
806                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
807                                 CL_TraceLine(org, org2, org3, NULL, true, NULL, SUPERCONTENTS_SOLID);
808                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0.2, 0);
809                         }
810                 }
811
812                 if (cl_particles_sparks.integer)
813                 {
814                         // sparks
815                         count *= cl_particles_quality.value;
816                         while(count--)
817                         {
818                                 k = particlepalette[0x68 + (rand() & 7)];
819                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, (1.0f / cl_particles_quality.value) * lhrandom(64, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0.2, 0);
820                         }
821                 }
822         }
823 }
824
825 void CL_PlasmaBurn (vec3_t org)
826 {
827         if (cl_stainmaps.integer)
828                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
829         CL_SpawnDecalParticleForPoint(org, 6, 6, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
830 }
831
832 static float bloodcount = 0;
833 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
834 {
835         float s;
836         vec3_t org2, org3;
837         // bloodcount is used to accumulate counts too small to cause a blood particle
838         if (!cl_particles.integer) return;
839         if (!cl_particles_blood.integer) return;
840
841         s = count + 64.0f;
842         count *= 5.0f;
843         if (count > 1000)
844                 count = 1000;
845         bloodcount += count;
846         while(bloodcount > 0)
847         {
848                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
849                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
850                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
851                 CL_TraceLine(org, org2, org3, NULL, true, NULL, SUPERCONTENTS_SOLID);
852                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
853                 bloodcount -= 16 / cl_particles_quality.value;
854         }
855 }
856
857 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
858 {
859         vec3_t org, vel, diff, center, velscale;
860         if (!cl_particles.integer) return;
861         if (!cl_particles_bloodshowers.integer) return;
862         if (!cl_particles_blood.integer) return;
863
864         VectorSubtract(maxs, mins, diff);
865         center[0] = (mins[0] + maxs[0]) * 0.5;
866         center[1] = (mins[1] + maxs[1]) * 0.5;
867         center[2] = (mins[2] + maxs[2]) * 0.5;
868         velscale[0] = velspeed * 2.0 / diff[0];
869         velscale[1] = velspeed * 2.0 / diff[1];
870         velscale[2] = velspeed * 2.0 / diff[2];
871
872         bloodcount += count * 5.0f;
873         while (bloodcount > 0)
874         {
875                 org[0] = lhrandom(mins[0], maxs[0]);
876                 org[1] = lhrandom(mins[1], maxs[1]);
877                 org[2] = lhrandom(mins[2], maxs[2]);
878                 vel[0] = (org[0] - center[0]) * velscale[0];
879                 vel[1] = (org[1] - center[1]) * velscale[1];
880                 vel[2] = (org[2] - center[2]) * velscale[2];
881                 bloodcount -= 16 / cl_particles_quality.value;
882                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
883         }
884 }
885
886 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
887 {
888         int k;
889         float t;
890         if (!cl_particles.integer) return;
891         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
892         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
893         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
894
895         count *= cl_particles_quality.value;
896         while (count--)
897         {
898                 k = particlepalette[colorbase + (rand()&3)];
899                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255 / cl_particles_quality.value, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
900         }
901 }
902
903 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
904 {
905         int k;
906         float t, z, minz, maxz;
907         if (!cl_particles.integer) return;
908         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
909         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
910         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
911         if (dir[2] < 0) // falling
912         {
913                 t = (maxs[2] - mins[2]) / -dir[2];
914                 z = maxs[2];
915         }
916         else // rising??
917         {
918                 t = (maxs[2] - mins[2]) / dir[2];
919                 z = mins[2];
920         }
921         if (t < 0 || t > 2) // sanity check
922                 t = 2;
923
924         minz = z - fabs(dir[2]) * 0.1;
925         maxz = z + fabs(dir[2]) * 0.1;
926         minz = bound(mins[2], minz, maxs[2]);
927         maxz = bound(mins[2], maxz, maxs[2]);
928
929         count *= cl_particles_quality.value;
930
931         switch(type)
932         {
933         case 0:
934                 count *= 4; // ick, this should be in the mod or maps?
935
936                 while(count--)
937                 {
938                         k = particlepalette[colorbase + (rand()&3)];
939                         if (gamemode == GAME_GOODVSBAD2)
940                         {
941                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 20, 20, lhrandom(8, 16) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
942                         }
943                         else
944                         {
945                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
946                         }
947                 }
948                 break;
949         case 1:
950                 while(count--)
951                 {
952                         k = particlepalette[colorbase + (rand()&3)];
953                         if (gamemode == GAME_GOODVSBAD2)
954                         {
955                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 20, 20, lhrandom(64, 128) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
956                         }
957                         else
958                         {
959                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
960                         }
961                 }
962                 break;
963         default:
964                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
965         }
966 }
967
968 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
969 {
970         int k;
971         float t;
972         vec3_t o, v, center;
973         if (!cl_particles.integer) return;
974
975         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
976         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
977         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
978
979         center[0] = (mins[0] + maxs[0]) * 0.5f;
980         center[1] = (mins[1] + maxs[1]) * 0.5f;
981         center[2] = (mins[2] + maxs[2]) * 0.5f;
982
983         count *= cl_particles_quality.value;
984         while (count--)
985         {
986                 k = particlepalette[224 + (rand()&15)];
987                 o[0] = lhrandom(mins[0], maxs[0]);
988                 o[1] = lhrandom(mins[1], maxs[1]);
989                 o[2] = lhrandom(mins[2], maxs[2]);
990                 VectorSubtract(o, center, v);
991                 VectorNormalizeFast(v);
992                 VectorScale(v, 100, v);
993                 v[2] += sv_gravity.value * 0.15f;
994                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128) / cl_particles_quality.value, 128 / cl_particles_quality.value, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0.2, 0);
995         }
996 }
997
998 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
999 {
1000         int k;
1001         float t;
1002         if (!cl_particles.integer) return;
1003         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
1004         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
1005         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
1006
1007         count *= cl_particles_quality.value;
1008         while (count--)
1009         {
1010                 k = particlepalette[224 + (rand()&15)];
1011                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
1012                 if (count & 1)
1013                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96) / cl_particles_quality.value, 64 / cl_particles_quality.value, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
1014         }
1015 }
1016
1017 void CL_Flames (vec3_t org, vec3_t vel, int count)
1018 {
1019         int k;
1020         if (!cl_particles.integer) return;
1021
1022         count *= cl_particles_quality.value;
1023         while (count--)
1024         {
1025                 k = particlepalette[224 + (rand()&15)];
1026                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
1027         }
1028 }
1029
1030
1031
1032 /*
1033 ===============
1034 CL_LavaSplash
1035
1036 ===============
1037 */
1038 void CL_LavaSplash (vec3_t origin)
1039 {
1040         float i, j, inc, vel;
1041         int k, l;
1042         vec3_t          dir, org;
1043         if (!cl_particles.integer) return;
1044
1045         inc = 32 / cl_particles_quality.value;
1046         for (i = -128;i < 128;i += inc)
1047         {
1048                 for (j = -128;j < 128;j += inc)
1049                 {
1050                         dir[0] = j + lhrandom(0, 8);
1051                         dir[1] = i + lhrandom(0, 8);
1052                         dir[2] = 256;
1053                         org[0] = origin[0] + dir[0];
1054                         org[1] = origin[1] + dir[1];
1055                         org[2] = origin[2] + lhrandom(0, 64);
1056                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
1057                         if (gamemode == GAME_GOODVSBAD2)
1058                         {
1059                                 k = particlepalette[0 + (rand()&255)];
1060                                 l = particlepalette[0 + (rand()&255)];
1061                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, inc * 8, inc * 8, 9999, 0.05, 1, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
1062                         }
1063                         else
1064                         {
1065                                 k = l = particlepalette[224 + (rand()&7)];
1066                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, inc * 8, inc * 8, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
1067                         }
1068                 }
1069         }
1070 }
1071
1072 /*
1073 ===============
1074 CL_TeleportSplash
1075
1076 ===============
1077 */
1078 #if WORKINGLQUAKE
1079 void R_TeleportSplash (vec3_t org)
1080 {
1081         float i, j, k, inc;
1082         if (!cl_particles.integer) return;
1083
1084         inc = 8 / cl_particles_quality.value;
1085         for (i = -16;i < 16;i += inc)
1086                 for (j = -16;j < 16;j += inc)
1087                         for (k = -24;k < 32;k += inc)
1088                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, inc * 32, inc * lhrandom(8, 16), inc * 32, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
1089 }
1090 #endif
1091
1092 #ifdef WORKINGLQUAKE
1093 void R_RocketTrail (vec3_t start, vec3_t end, int type)
1094 #else
1095 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
1096 #endif
1097 {
1098         vec3_t vec, dir, vel, pos;
1099         float len, dec, speed, qd;
1100         int contents, smoke, blood, bubbles;
1101
1102         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
1103                 return;
1104
1105         VectorSubtract(end, start, dir);
1106         VectorNormalize(dir);
1107
1108         VectorSubtract (end, start, vec);
1109 #ifdef WORKINGLQUAKE
1110         len = VectorNormalize (vec);
1111         dec = 0;
1112         speed = 1.0f / cl.frametime;
1113         VectorSubtract(end, start, vel);
1114 #else
1115         len = VectorNormalizeLength (vec);
1116         dec = -ent->persistent.trail_time;
1117         ent->persistent.trail_time += len;
1118         if (ent->persistent.trail_time < 0.01f)
1119                 return;
1120
1121         // if we skip out, leave it reset
1122         ent->persistent.trail_time = 0.0f;
1123
1124         speed = ent->state_current.time - ent->state_previous.time;
1125         if (speed)
1126                 speed = 1.0f / speed;
1127         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
1128 #endif
1129         VectorScale(vel, speed, vel);
1130
1131         // advance into this frame to reach the first puff location
1132         VectorMA(start, dec, vec, pos);
1133         len -= dec;
1134
1135         contents = CL_PointQ1Contents(pos);
1136         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
1137                 return;
1138
1139         smoke = cl_particles.integer && cl_particles_smoke.integer;
1140         blood = cl_particles.integer && cl_particles_blood.integer;
1141         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1142         qd = 1.0f / cl_particles_quality.value;
1143
1144         while (len >= 0)
1145         {
1146                 switch (type)
1147                 {
1148                         case 0: // rocket trail
1149                                 dec = qd*3;
1150                                 if (smoke)
1151                                 {
1152                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*125, qd*cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 7, 0, 0, 0, 0, 0);
1153                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*288, qd*cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1154                                 }
1155                                 if (bubbles)
1156                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, qd*lhrandom(64, 255), qd*256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1157                                 break;
1158
1159                         case 1: // grenade trail
1160                                 // FIXME: make it gradually stop smoking
1161                                 dec = qd*3;
1162                                 if (smoke)
1163                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*100, qd*cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 7, 0, 0, 0, 0, 0);
1164                                 break;
1165
1166
1167                         case 2: // blood
1168                         case 4: // slight blood
1169                                 dec = qd*16;
1170                                 if (blood)
1171                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1172                                 break;
1173
1174                         case 3: // green tracer
1175                                 dec = qd*6;
1176                                 if (smoke)
1177                                 {
1178                                         if (gamemode == GAME_GOODVSBAD2)
1179                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x00002E, 0x000030, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1180                                         else
1181                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1182                                 }
1183                                 break;
1184
1185                         case 5: // flame tracer
1186                                 dec = qd*6;
1187                                 if (smoke)
1188                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1189                                 break;
1190
1191                         case 6: // voor trail
1192                                 dec = qd*6;
1193                                 if (smoke)
1194                                 {
1195                                         if (gamemode == GAME_GOODVSBAD2)
1196                                                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, false, PBLEND_ALPHA, 6, 6, qd*255, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1197                                         else if (gamemode == GAME_PRYDON)
1198                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x103040, 0x204050, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1199                                         else
1200                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1201                                 }
1202                                 break;
1203
1204                         case 7: // Nehahra smoke tracer
1205                                 dec = qd*7;
1206                                 if (smoke)
1207                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, 7, 7, qd*64, qd*320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1208                                 break;
1209                         case 8: // Nexuiz plasma trail
1210                                 dec = qd*4;
1211                                 if (smoke)
1212                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, 4, 4, qd*255, qd*1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1213                                 break;
1214                 }
1215
1216                 // advance to next time and position
1217                 len -= dec;
1218                 VectorMA (pos, dec, vec, pos);
1219         }
1220 #ifndef WORKINGLQUAKE
1221         ent->persistent.trail_time = len;
1222 #endif
1223 }
1224
1225 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1226 {
1227         float dec, len;
1228         vec3_t vec, pos;
1229         if (!cl_particles.integer) return;
1230         if (!cl_particles_smoke.integer) return;
1231
1232         VectorCopy(start, pos);
1233         VectorSubtract(end, start, vec);
1234 #ifdef WORKINGLQUAKE
1235         len = VectorNormalize(vec);
1236 #else
1237         len = VectorNormalizeLength(vec);
1238 #endif
1239         color = particlepalette[color];
1240         dec = 3.0f / cl_particles_quality.value;
1241         while (len > 0)
1242         {
1243                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128 / cl_particles_quality.value, 320 / cl_particles_quality.value, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1244                 len -= dec;
1245                 VectorMA(pos, dec, vec, pos);
1246         }
1247 }
1248
1249 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1250 {
1251         int tempcolor2, cr, cg, cb;
1252         cr = red * 255;
1253         cg = green * 255;
1254         cb = blue * 255;
1255         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1256         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1257 }
1258
1259 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1260 {
1261         float f;
1262         if (!cl_particles.integer) return;
1263
1264         // smoke puff
1265         if (cl_particles_smoke.integer)
1266                 for (f = 0;f < count;f += 4.0f / cl_particles_quality.value)
1267                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1268 }
1269
1270 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1271 {
1272         float f;
1273         if (!cl_particles.integer) return;
1274
1275         if (cl_stainmaps.integer)
1276                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1277         CL_SpawnDecalParticleForPoint(org, 6, 8, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
1278
1279         // smoke puff
1280         if (cl_particles_smoke.integer)
1281                 for (f = 0;f < count;f += 4.0f / cl_particles_quality.value)
1282                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1283
1284         // sparks
1285         if (cl_particles_sparks.integer)
1286                 for (f = 0;f < count;f += 1.0f / cl_particles_quality.value)
1287                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255) / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1288 }
1289
1290 /*
1291 ===============
1292 CL_MoveParticles
1293 ===============
1294 */
1295 void CL_MoveParticles (void)
1296 {
1297         particle_t *p;
1298         int i, maxparticle, j, a, content;
1299         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1300 #ifdef WORKINGLQUAKE
1301         void *hitent;
1302 #else
1303         entity_render_t *hitent;
1304 #endif
1305
1306         // LordHavoc: early out condition
1307         if (!cl_numparticles)
1308         {
1309                 cl_freeparticle = 0;
1310                 return;
1311         }
1312
1313 #ifdef WORKINGLQUAKE
1314         frametime = cl.frametime;
1315 #else
1316         frametime = cl.time - cl.oldtime;
1317 #endif
1318         gravity = frametime * sv_gravity.value;
1319         dvel = 1+4*frametime;
1320         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1321
1322         maxparticle = -1;
1323         j = 0;
1324         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1325         {
1326                 if (!p->type)
1327                         continue;
1328                 maxparticle = i;
1329                 content = 0;
1330                 VectorCopy(p->org, p->oldorg);
1331                 VectorMA(p->org, frametime, p->vel, p->org);
1332                 VectorCopy(p->org, org);
1333                 if (p->bounce)
1334                 {
1335                         if (CL_TraceLine(p->oldorg, p->org, v, normal, true, &hitent, SUPERCONTENTS_SOLID) < 1)
1336                         {
1337                                 VectorCopy(v, p->org);
1338                                 if (p->bounce < 0)
1339                                 {
1340                                         // assume it's blood (lame, but...)
1341 #ifndef WORKINGLQUAKE
1342                                         if (cl_stainmaps.integer)
1343                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1344 #endif
1345                                         if (!cl_decals.integer)
1346                                         {
1347                                                 p->type = pt_dead;
1348                                                 continue;
1349                                         }
1350
1351                                         p->type = pt_decal;
1352                                         p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1353                                         // convert from a blood particle to a blood decal
1354                                         p->texnum = tex_blooddecal[rand()&7];
1355 #ifndef WORKINGLQUAKE
1356                                         p->owner = hitent;
1357                                         p->ownermodel = hitent->model;
1358                                         Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1359                                         Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1360                                         VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1361 #endif
1362                                         p->time2 = cl.time + cl_decals_time.value;
1363                                         p->die = p->time2 + cl_decals_fadetime.value;
1364                                         p->alphafade = 0;
1365                                         VectorCopy(normal, p->vel2);
1366                                         VectorClear(p->vel);
1367                                         VectorAdd(p->org, normal, p->org);
1368                                         p->bounce = 0;
1369                                         p->friction = 0;
1370                                         p->gravity = 0;
1371                                         p->scalex *= 1.25f;
1372                                         p->scaley *= 1.25f;
1373                                 }
1374                                 else
1375                                 {
1376                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1377                                         VectorMA(p->vel, dist, normal, p->vel);
1378                                         if (DotProduct(p->vel, p->vel) < 0.03)
1379                                                 VectorClear(p->vel);
1380                                 }
1381                         }
1382                 }
1383
1384                 p->vel[2] -= p->gravity * gravity;
1385
1386                 p->alpha -= p->alphafade * frametime;
1387
1388                 if (p->alpha <= 0 || cl.time > p->die)
1389                 {
1390                         p->type = pt_dead;
1391                         continue;
1392                 }
1393
1394                 if (p->friction)
1395                 {
1396                         f = p->friction * frametime;
1397                         if (!content)
1398                                 content = CL_PointQ1Contents(p->org);
1399                         if (content != CONTENTS_EMPTY)
1400                                 f *= 4;
1401                         f = 1.0f - f;
1402                         VectorScale(p->vel, f, p->vel);
1403                 }
1404
1405                 if (p->type != pt_static)
1406                 {
1407                         switch (p->type)
1408                         {
1409                         case pt_blood:
1410                                 if (!content)
1411                                         content = CL_PointQ1Contents(p->org);
1412                                 a = content;
1413                                 if (a != CONTENTS_EMPTY)
1414                                 {
1415                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1416                                         {
1417                                                 p->scalex += frametime * 8;
1418                                                 p->scaley += frametime * 8;
1419                                                 //p->alpha -= bloodwaterfade;
1420                                         }
1421                                         else
1422                                                 p->type = pt_dead;
1423                                 }
1424                                 else
1425                                         p->vel[2] -= gravity;
1426                                 break;
1427                         case pt_bubble:
1428                                 if (!content)
1429                                         content = CL_PointQ1Contents(p->org);
1430                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1431                                 {
1432                                         p->type = pt_dead;
1433                                         break;
1434                                 }
1435                                 break;
1436                         case pt_rain:
1437                                 if (cl.time > p->time2)
1438                                 {
1439                                         // snow flutter
1440                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1441                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1442                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1443                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1444                                 }
1445                                 if (!content)
1446                                         content = CL_PointQ1Contents(p->org);
1447                                 a = content;
1448                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1449                                         p->type = pt_dead;
1450                                 break;
1451                         case pt_grow:
1452                                 p->scalex += frametime * p->time2;
1453                                 p->scaley += frametime * p->time2;
1454                                 break;
1455                         case pt_decal:
1456 #ifndef WORKINGLQUAKE
1457                                 if (p->owner->model == p->ownermodel)
1458                                 {
1459                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1460                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1461                                         if (cl.time > p->time2)
1462                                         {
1463                                                 p->alphafade = p->alpha / (p->die - cl.time);
1464                                                 p->type = pt_decalfade;
1465                                         }
1466                                 }
1467                                 else
1468                                         p->type = pt_dead;
1469 #endif
1470                                 break;
1471                         case pt_decalfade:
1472 #ifndef WORKINGLQUAKE
1473                                 if (p->owner->model == p->ownermodel)
1474                                 {
1475                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1476                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1477                                 }
1478                                 else
1479                                         p->type = pt_dead;
1480 #endif
1481                                 break;
1482                         case pt_ember:
1483                                 while (cl.time > p->time2)
1484                                 {
1485                                         p->time2 += 0.025;
1486                                         particle(pt_static, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, p->scalex * 0.75, p->scaley * 0.75, p->alpha, p->alphafade, 9999, 0.5, 0, p->org[0], p->org[1], p->org[2], p->vel[0] * lhrandom(0.4, 0.6), p->vel[1] * lhrandom(0.4, 0.6), p->vel[2] * lhrandom(0.4, 0.6), 0, 0, 0, 0, 0, 0);
1487                                 }
1488                                 break;
1489                         default:
1490                                 Con_Printf("unknown particle type %i\n", p->type);
1491                                 p->type = pt_dead;
1492                                 break;
1493                         }
1494                 }
1495         }
1496         cl_numparticles = maxparticle + 1;
1497         cl_freeparticle = 0;
1498 }
1499
1500 #define MAX_PARTICLETEXTURES 64
1501 // particletexture_t is a rectangle in the particlefonttexture
1502 typedef struct
1503 {
1504         rtexture_t *texture;
1505         float s1, t1, s2, t2;
1506 }
1507 particletexture_t;
1508
1509 #if WORKINGLQUAKE
1510 static int particlefonttexture;
1511 #else
1512 static rtexturepool_t *particletexturepool;
1513 static rtexture_t *particlefonttexture;
1514 #endif
1515 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1516
1517 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1518
1519 static qbyte shadebubble(float dx, float dy, vec3_t light)
1520 {
1521         float dz, f, dot;
1522         vec3_t normal;
1523         dz = 1 - (dx*dx+dy*dy);
1524         if (dz > 0) // it does hit the sphere
1525         {
1526                 f = 0;
1527                 // back side
1528                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1529                 VectorNormalize(normal);
1530                 dot = DotProduct(normal, light);
1531                 if (dot > 0.5) // interior reflection
1532                         f += ((dot *  2) - 1);
1533                 else if (dot < -0.5) // exterior reflection
1534                         f += ((dot * -2) - 1);
1535                 // front side
1536                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1537                 VectorNormalize(normal);
1538                 dot = DotProduct(normal, light);
1539                 if (dot > 0.5) // interior reflection
1540                         f += ((dot *  2) - 1);
1541                 else if (dot < -0.5) // exterior reflection
1542                         f += ((dot * -2) - 1);
1543                 f *= 128;
1544                 f += 16; // just to give it a haze so you can see the outline
1545                 f = bound(0, f, 255);
1546                 return (qbyte) f;
1547         }
1548         else
1549                 return 0;
1550 }
1551
1552 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1553 {
1554         int basex, basey, y;
1555         basex = ((texnum >> 0) & 7) * 32;
1556         basey = ((texnum >> 3) & 7) * 32;
1557         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1558         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1559         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1560         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1561         for (y = 0;y < 32;y++)
1562                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1563 }
1564
1565 void particletextureblotch(qbyte *data, float radius, float red, float green, float blue, float alpha)
1566 {
1567         int x, y;
1568         float cx, cy, dx, dy, f, iradius;
1569         qbyte *d;
1570         cx = lhrandom(radius + 1, 30 - radius);
1571         cy = lhrandom(radius + 1, 30 - radius);
1572         iradius = 1.0f / radius;
1573         alpha *= (1.0f / 255.0f);
1574         for (y = 0;y < 32;y++)
1575         {
1576                 for (x = 0;x < 32;x++)
1577                 {
1578                         dx = (x - cx);
1579                         dy = (y - cy);
1580                         f = (1.0f - sqrt(dx * dx + dy * dy) * iradius) * alpha;
1581                         if (f > 0)
1582                         {
1583                                 d = data + (y * 32 + x) * 4;
1584                                 d[0] += f * (red   - d[0]);
1585                                 d[1] += f * (green - d[1]);
1586                                 d[2] += f * (blue  - d[2]);
1587                         }
1588                 }
1589         }
1590 }
1591
1592 void particletextureclamp(qbyte *data, int minr, int ming, int minb, int maxr, int maxg, int maxb)
1593 {
1594         int i;
1595         for (i = 0;i < 32*32;i++, data += 4)
1596         {
1597                 data[0] = bound(minr, data[0], maxr);
1598                 data[1] = bound(ming, data[1], maxg);
1599                 data[2] = bound(minb, data[2], maxb);
1600         }
1601 }
1602
1603 void particletextureinvert(qbyte *data)
1604 {
1605         int i;
1606         for (i = 0;i < 32*32;i++, data += 4)
1607         {
1608                 data[0] = 255 - data[0];
1609                 data[1] = 255 - data[1];
1610                 data[2] = 255 - data[2];
1611         }
1612 }
1613
1614 static void R_InitParticleTexture (void)
1615 {
1616         int x, y, d, i, j, k, m;
1617         float dx, dy, radius, f, f2;
1618         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1619         vec3_t light;
1620         qbyte particletexturedata[256*256*4];
1621
1622         // a note: decals need to modulate (multiply) the background color to
1623         // properly darken it (stain), and they need to be able to alpha fade,
1624         // this is a very difficult challenge because it means fading to white
1625         // (no change to background) rather than black (darkening everything
1626         // behind the whole decal polygon), and to accomplish this the texture is
1627         // inverted (dark red blood on white background becomes brilliant cyan
1628         // and white on black background) so we can alpha fade it to black, then
1629         // we invert it again during the blendfunc to make it work...
1630
1631         memset(particletexturedata, 255, sizeof(particletexturedata));
1632
1633         // smoke
1634         for (i = 0;i < 8;i++)
1635         {
1636                 memset(&data[0][0][0], 255, sizeof(data));
1637                 do
1638                 {
1639                         fractalnoise(&noise1[0][0], 64, 4);
1640                         fractalnoise(&noise2[0][0], 64, 8);
1641                         m = 0;
1642                         for (y = 0;y < 32;y++)
1643                         {
1644                                 dy = y - 16;
1645                                 for (x = 0;x < 32;x++)
1646                                 {
1647                                         dx = x - 16;
1648                                         d = (noise2[y][x] - 128) * 3 + 192;
1649                                         if (d > 0)
1650                                                 d = d * (256 - (int) (dx*dx+dy*dy)) / 256;
1651                                         d = (d * noise1[y][x]) >> 7;
1652                                         d = bound(0, d, 255);
1653                                         data[y][x][3] = (qbyte) d;
1654                                         if (m < d)
1655                                                 m = d;
1656                                 }
1657                         }
1658                 }
1659                 while (m < 224);
1660                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1661         }
1662
1663         // rain splash
1664         for (i = 0;i < 16;i++)
1665         {
1666                 memset(&data[0][0][0], 255, sizeof(data));
1667                 radius = i * 3.0f / 16.0f;
1668                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1669                 for (y = 0;y < 32;y++)
1670                 {
1671                         dy = (y - 16) * 0.25f;
1672                         for (x = 0;x < 32;x++)
1673                         {
1674                                 dx = (x - 16) * 0.25f;
1675                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1676                                 data[y][x][3] = (int) (bound(0.0f, f, 255.0f));
1677                         }
1678                 }
1679                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1680         }
1681
1682         // normal particle
1683         memset(&data[0][0][0], 255, sizeof(data));
1684         for (y = 0;y < 32;y++)
1685         {
1686                 dy = y - 16;
1687                 for (x = 0;x < 32;x++)
1688                 {
1689                         dx = x - 16;
1690                         d = (256 - (dx*dx+dy*dy));
1691                         d = bound(0, d, 255);
1692                         data[y][x][3] = (qbyte) d;
1693                 }
1694         }
1695         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1696
1697         // rain
1698         memset(&data[0][0][0], 255, sizeof(data));
1699         light[0] = 1;light[1] = 1;light[2] = 1;
1700         VectorNormalize(light);
1701         for (y = 0;y < 32;y++)
1702                 for (x = 0;x < 32;x++)
1703                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1704         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1705
1706         // bubble
1707         memset(&data[0][0][0], 255, sizeof(data));
1708         light[0] = 1;light[1] = 1;light[2] = 1;
1709         VectorNormalize(light);
1710         for (y = 0;y < 32;y++)
1711                 for (x = 0;x < 32;x++)
1712                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1713         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1714
1715         // blood particles
1716         for (i = 0;i < 8;i++)
1717         {
1718                 memset(&data[0][0][0], 255, sizeof(data));
1719                 for (k = 0;k < 24;k++)
1720                         particletextureblotch(&data[0][0][0], 2, 96, 0, 0, 160);
1721                 //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255);
1722                 particletextureinvert(&data[0][0][0]);
1723                 setuptex(tex_bloodparticle[i], &data[0][0][0], particletexturedata);
1724         }
1725
1726         // blood decals
1727         for (i = 0;i < 8;i++)
1728         {
1729                 memset(&data[0][0][0], 255, sizeof(data));
1730                 for (k = 0;k < 24;k++)
1731                         particletextureblotch(&data[0][0][0], 2, 96, 0, 0, 96);
1732                 for (j = 3;j < 7;j++)
1733                         for (k = 0, m = rand() % 12;k < m;k++)
1734                                 particletextureblotch(&data[0][0][0], j, 96, 0, 0, 192);
1735                 //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255);
1736                 particletextureinvert(&data[0][0][0]);
1737                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1738         }
1739
1740         // bullet decals
1741         for (i = 0;i < 8;i++)
1742         {
1743                 memset(&data[0][0][0], 255, sizeof(data));
1744                 for (k = 0;k < 12;k++)
1745                         particletextureblotch(&data[0][0][0], 2, 0, 0, 0, 128);
1746                 for (k = 0;k < 3;k++)
1747                         particletextureblotch(&data[0][0][0], 14, 0, 0, 0, 160);
1748                 //particletextureclamp(&data[0][0][0], 64, 64, 64, 255, 255, 255);
1749                 particletextureinvert(&data[0][0][0]);
1750                 setuptex(tex_bulletdecal[i], &data[0][0][0], particletexturedata);
1751         }
1752
1753 #if WORKINGLQUAKE
1754         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1755         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1756         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1757 #else
1758         particlefonttexture = loadtextureimage(particletexturepool, "particles/particlefont.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE);
1759         if (!particlefonttexture)
1760                 particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1761         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1762                 particletexture[i].texture = particlefonttexture;
1763
1764         // nexbeam
1765         fractalnoise(&noise1[0][0], 64, 4);
1766         m = 0;
1767         for (y = 0;y < 64;y++)
1768         {
1769                 for (x = 0;x < 16;x++)
1770                 {
1771                         if (x < 8)
1772                                 d = x;
1773                         else
1774                                 d = (15 - x);
1775                         d = d * d * noise1[y][x] / (7 * 7);
1776                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1777                         data2[y][x][3] = 255;
1778                 }
1779         }
1780
1781         particletexture[tex_beam].texture = loadtextureimage(particletexturepool, "particles/nexbeam.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE);
1782         if (!particletexture[tex_beam].texture)
1783                 particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "nexbeam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1784         particletexture[tex_beam].s1 = 0;
1785         particletexture[tex_beam].t1 = 0;
1786         particletexture[tex_beam].s2 = 1;
1787         particletexture[tex_beam].t2 = 1;
1788 #endif
1789 }
1790
1791 static void r_part_start(void)
1792 {
1793         particletexturepool = R_AllocTexturePool();
1794         R_InitParticleTexture ();
1795 }
1796
1797 static void r_part_shutdown(void)
1798 {
1799         R_FreeTexturePool(&particletexturepool);
1800 }
1801
1802 static void r_part_newmap(void)
1803 {
1804         cl_numparticles = 0;
1805         cl_freeparticle = 0;
1806 }
1807
1808 void R_Particles_Init (void)
1809 {
1810         Cvar_RegisterVariable(&r_drawparticles);
1811 #ifdef WORKINGLQUAKE
1812         r_part_start();
1813 #else
1814         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1815 #endif
1816 }
1817
1818 #ifdef WORKINGLQUAKE
1819 void R_InitParticles(void)
1820 {
1821         CL_Particles_Init();
1822         R_Particles_Init();
1823 }
1824 #endif
1825
1826 float particle_vertex3f[12], particle_texcoord2f[8];
1827
1828 #ifdef WORKINGLQUAKE
1829 void R_DrawParticle(particle_t *p)
1830 {
1831 #else
1832 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1833 {
1834         const particle_t *p = calldata1;
1835         rmeshstate_t m;
1836 #endif
1837         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1838         particletexture_t *tex;
1839
1840         VectorCopy(p->org, org);
1841
1842         tex = &particletexture[p->texnum];
1843         cr = p->color[0] * (1.0f / 255.0f);
1844         cg = p->color[1] * (1.0f / 255.0f);
1845         cb = p->color[2] * (1.0f / 255.0f);
1846         ca = p->alpha * (1.0f / 255.0f);
1847         if (p->blendmode == PBLEND_MOD)
1848         {
1849                 cr *= ca;
1850                 cg *= ca;
1851                 cb *= ca;
1852                 cr = min(cr, 1);
1853                 cg = min(cg, 1);
1854                 cb = min(cb, 1);
1855                 ca = 1;
1856         }
1857
1858 #ifndef WORKINGLQUAKE
1859         if (fogenabled && p->blendmode != PBLEND_MOD)
1860         {
1861                 VectorSubtract(org, r_vieworigin, fogvec);
1862                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1863                 ifog = 1 - fog;
1864                 cr = cr * ifog;
1865                 cg = cg * ifog;
1866                 cb = cb * ifog;
1867                 if (p->blendmode == 0)
1868                 {
1869                         cr += fogcolor[0] * fog;
1870                         cg += fogcolor[1] * fog;
1871                         cb += fogcolor[2] * fog;
1872                 }
1873         }
1874
1875         R_Mesh_Matrix(&r_identitymatrix);
1876
1877         memset(&m, 0, sizeof(m));
1878         m.tex[0] = R_GetTexture(tex->texture);
1879         m.pointer_texcoord[0] = particle_texcoord2f;
1880         m.pointer_vertex = particle_vertex3f;
1881         R_Mesh_State(&m);
1882
1883         GL_Color(cr, cg, cb, ca);
1884
1885         if (p->blendmode == 0)
1886                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1887         else if (p->blendmode == 1)
1888                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1889         else
1890                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1891         GL_DepthMask(false);
1892         GL_DepthTest(true);
1893 #endif
1894         if (p->orientation == PARTICLE_BILLBOARD || p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1895         {
1896                 if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1897                 {
1898                         // double-sided
1899                         if (DotProduct(p->vel2, r_vieworigin) > DotProduct(p->vel2, org))
1900                         {
1901                                 VectorNegate(p->vel2, v);
1902                                 VectorVectors(v, right, up);
1903                         }
1904                         else
1905                                 VectorVectors(p->vel2, right, up);
1906                         VectorScale(right, p->scalex, right);
1907                         VectorScale(up, p->scaley, up);
1908                 }
1909                 else
1910                 {
1911                         VectorScale(r_viewleft, -p->scalex, right);
1912                         VectorScale(r_viewup, p->scaley, up);
1913                 }
1914                 particle_vertex3f[ 0] = org[0] - right[0] - up[0];
1915                 particle_vertex3f[ 1] = org[1] - right[1] - up[1];
1916                 particle_vertex3f[ 2] = org[2] - right[2] - up[2];
1917                 particle_vertex3f[ 3] = org[0] - right[0] + up[0];
1918                 particle_vertex3f[ 4] = org[1] - right[1] + up[1];
1919                 particle_vertex3f[ 5] = org[2] - right[2] + up[2];
1920                 particle_vertex3f[ 6] = org[0] + right[0] + up[0];
1921                 particle_vertex3f[ 7] = org[1] + right[1] + up[1];
1922                 particle_vertex3f[ 8] = org[2] + right[2] + up[2];
1923                 particle_vertex3f[ 9] = org[0] + right[0] - up[0];
1924                 particle_vertex3f[10] = org[1] + right[1] - up[1];
1925                 particle_vertex3f[11] = org[2] + right[2] - up[2];
1926                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1927                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1928                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1929                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1930         }
1931         else if (p->orientation == PARTICLE_SPARK)
1932         {
1933                 VectorMA(p->org, -p->scaley, p->vel, v);
1934                 VectorMA(p->org, p->scaley, p->vel, up2);
1935                 R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, p->scalex);
1936                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1937                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1938                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1939                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1940         }
1941         else if (p->orientation == PARTICLE_BEAM)
1942         {
1943                 R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel2, p->scalex);
1944                 VectorSubtract(p->vel2, p->org, up);
1945                 VectorNormalizeFast(up);
1946                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1947                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1948                 particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0];
1949                 particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0];
1950                 particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1];
1951                 particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1];
1952         }
1953         else
1954                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1955
1956 #if WORKINGLQUAKE
1957         if (p->blendmode == 0)
1958                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1959         else if (p->blendmode == 1)
1960                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1961         else
1962                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1963         glColor4f(cr, cg, cb, ca);
1964         glBegin(GL_QUADS);
1965         glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]);
1966         glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]);
1967         glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]);
1968         glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]);
1969         glEnd();
1970 #else
1971         R_Mesh_Draw(4, 2, polygonelements);
1972 #endif
1973 }
1974
1975 void R_DrawParticles (void)
1976 {
1977         int i;
1978         float minparticledist;
1979         particle_t *p;
1980
1981 #ifdef WORKINGLQUAKE
1982         CL_MoveParticles();
1983 #endif
1984
1985         // LordHavoc: early out conditions
1986         if ((!cl_numparticles) || (!r_drawparticles.integer))
1987                 return;
1988
1989         minparticledist = DotProduct(r_vieworigin, r_viewforward) + 4.0f;
1990
1991 #ifdef WORKINGLQUAKE
1992         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1993         glEnable(GL_BLEND);
1994         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1995         glDepthMask(0);
1996         // LordHavoc: only render if not too close
1997         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1998                 if (p->type && DotProduct(p->org, r_viewforward) >= minparticledist)
1999                         R_DrawParticle(p);
2000         glDepthMask(1);
2001         glDisable(GL_BLEND);
2002         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
2003 #else
2004         // LordHavoc: only render if not too close
2005         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
2006         {
2007                 if (p->type)
2008                 {
2009                         c_particles++;
2010                         if (DotProduct(p->org, r_viewforward) >= minparticledist || p->orientation == PARTICLE_BEAM)
2011                                 R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
2012                 }
2013         }
2014 #endif
2015 }
2016