]> icculus.org git repositories - divverent/darkplaces.git/blob - cl_particles.c
Makefiles cleanups: r_explosion.o was declared twice in all Makefiles; removed some...
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeamVerts (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 4] = org1[0] - width * right1[0];
65         vert[ 5] = org1[1] - width * right1[1];
66         vert[ 6] = org1[2] - width * right1[2];
67         vert[ 8] = org2[0] - width * right2[0];
68         vert[ 9] = org2[1] - width * right2[1];
69         vert[10] = org2[2] - width * right2[2];
70         vert[12] = org2[0] + width * right2[0];
71         vert[13] = org2[1] + width * right2[1];
72         vert[14] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
184 }
185 ptype_t;
186
187 #define PARTICLE_INVALID 0
188 #define PARTICLE_BILLBOARD 1
189 #define PARTICLE_SPARK 2
190 #define PARTICLE_ORIENTED_DOUBLESIDED 3
191 #define PARTICLE_BEAM 4
192
193 #define PBLEND_ALPHA 0
194 #define PBLEND_ADD 1
195 #define PBLEND_MOD 2
196
197 typedef struct particle_s
198 {
199         ptype_t         type;
200         int                     orientation;
201         int                     texnum;
202         int                     blendmode;
203         vec3_t          org;
204         vec3_t          vel;
205         float           die;
206         float           scalex;
207         float           scaley;
208         float           alpha; // 0-255
209         float           alphafade; // how much alpha reduces per second
210         float           time2; // used for various things (snow fluttering, for example)
211         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
212         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
213         vec3_t          oldorg;
214         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
215         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
216         float           pressure; // if non-zero, apply pressure to other particles
217         qbyte           color[4];
218 #ifndef WORKINGLQUAKE
219         entity_render_t *owner; // decal stuck to this entity
220         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
221         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
222         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
223 #endif
224 }
225 particle_t;
226
227 static int particlepalette[256] =
228 {
229         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
230         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
231         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
232         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
233         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
234         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
235         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
236         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
237         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
238         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
239         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
240         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
241         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
242         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
243         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
244         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
245         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
246         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
247         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
248         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
249         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
250         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
251         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
252         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
253         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
254         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
255         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
256         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
257         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
258         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
259         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
260         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
261 };
262
263 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
264
265 // texture numbers in particle font
266 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
267 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
268 static const int tex_particle = 24;
269 static const int tex_raindrop = 25;
270 static const int tex_bubble = 26;
271 static const int tex_beam = 27;
272 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
273
274 static int                      cl_maxparticles;
275 static int                      cl_numparticles;
276 static particle_t       *particles;
277 static particle_t       **freeparticles; // list used only in compacting particles array
278
279 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
280 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
281 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
282 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
283 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
284 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
285 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
286 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
287 cvar_t cl_particles_smoke_size = {CVAR_SAVE, "cl_particles_smoke_size", "7"};
288 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
289 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
290 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
291 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
292 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
293 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
294 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
295
296 #ifndef WORKINGLQUAKE
297 static mempool_t *cl_part_mempool;
298 #endif
299
300 void CL_Particles_Clear(void)
301 {
302         cl_numparticles = 0;
303 }
304
305 /*
306 ===============
307 CL_InitParticles
308 ===============
309 */
310 void CL_ReadPointFile_f (void);
311 void CL_Particles_Init (void)
312 {
313         int             i;
314
315         i = COM_CheckParm ("-particles");
316
317         if (i && i < com_argc - 1)
318         {
319                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
320                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
321                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
322         }
323         else
324                 cl_maxparticles = MAX_PARTICLES;
325
326         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
327
328         Cvar_RegisterVariable (&cl_particles);
329         Cvar_RegisterVariable (&cl_particles_size);
330         Cvar_RegisterVariable (&cl_particles_bloodshowers);
331         Cvar_RegisterVariable (&cl_particles_blood);
332         Cvar_RegisterVariable (&cl_particles_blood_size);
333         Cvar_RegisterVariable (&cl_particles_blood_alpha);
334         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
335         Cvar_RegisterVariable (&cl_particles_smoke);
336         Cvar_RegisterVariable (&cl_particles_smoke_size);
337         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
338         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
339         Cvar_RegisterVariable (&cl_particles_sparks);
340         Cvar_RegisterVariable (&cl_particles_bubbles);
341         Cvar_RegisterVariable (&cl_decals);
342         Cvar_RegisterVariable (&cl_decals_time);
343         Cvar_RegisterVariable (&cl_decals_fadetime);
344
345 #ifdef WORKINGLQUAKE
346         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
347         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
348 #else
349         cl_part_mempool = Mem_AllocPool("CL_Part");
350         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
351         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
352 #endif
353         cl_numparticles = 0;
354 }
355
356 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
357 {\
358         if (cl_numparticles < cl_maxparticles)\
359         {\
360                 particle_t      *part;\
361                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
362                 ptempcolor = (pcolor1);\
363                 ptempcolor2 = (pcolor2);\
364                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
365                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
366                 pcb2 = (ptempcolor2) & 0xFF;\
367                 if (ptempcolor != ptempcolor2)\
368                 {\
369                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
370                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
371                         pcb1 = (ptempcolor) & 0xFF;\
372                         ptempcolor = rand() & 0xFF;\
373                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
374                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
375                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
376                 }\
377                 part = &particles[cl_numparticles++];\
378                 memset(part, 0, sizeof(*part));\
379                 part->type = (ptype);\
380                 part->color[0] = pcr2;\
381                 part->color[1] = pcg2;\
382                 part->color[2] = pcb2;\
383                 part->color[3] = 0xFF;\
384                 part->orientation = porientation;\
385                 part->texnum = ptex;\
386                 part->blendmode = pblendmode;\
387                 part->scalex = (pscalex);\
388                 part->scaley = (pscaley);\
389                 part->alpha = (palpha);\
390                 part->alphafade = (palphafade);\
391                 part->die = cl.time + (ptime);\
392                 part->gravity = (pgravity);\
393                 part->bounce = (pbounce);\
394                 part->org[0] = (px);\
395                 part->org[1] = (py);\
396                 part->org[2] = (pz);\
397                 part->vel[0] = (pvx);\
398                 part->vel[1] = (pvy);\
399                 part->vel[2] = (pvz);\
400                 part->time2 = (ptime2);\
401                 part->vel2[0] = (pvx2);\
402                 part->vel2[1] = (pvy2);\
403                 part->vel2[2] = (pvz2);\
404                 part->friction = (pfriction);\
405                 part->pressure = (ppressure);\
406         }\
407 }
408
409 /*
410 ===============
411 CL_EntityParticles
412 ===============
413 */
414 void CL_EntityParticles (entity_t *ent)
415 {
416         int                     i;
417         float           angle;
418         float           sp, sy, cp, cy;
419         vec3_t          forward;
420         float           dist;
421         float           beamlength;
422         static vec3_t avelocities[NUMVERTEXNORMALS];
423         if (!cl_particles.integer) return;
424
425         dist = 64;
426         beamlength = 16;
427
428         if (!avelocities[0][0])
429                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
430                         avelocities[0][i] = (rand()&255) * 0.01;
431
432         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
433         {
434                 angle = cl.time * avelocities[i][0];
435                 sy = sin(angle);
436                 cy = cos(angle);
437                 angle = cl.time * avelocities[i][1];
438                 sp = sin(angle);
439                 cp = cos(angle);
440
441                 forward[0] = cp*cy;
442                 forward[1] = cp*sy;
443                 forward[2] = -sp;
444
445 #ifdef WORKINGLQUAKE
446                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
447 #else
448                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
449 #endif
450         }
451 }
452
453
454 void CL_ReadPointFile_f (void)
455 {
456         vec3_t  org;
457         int             r, c;
458         char    *pointfile = NULL, *pointfilepos, *t, tchar;
459 #if WORKINGLQUAKE
460         char    name[MAX_OSPATH];
461
462         sprintf (name,"maps/%s.pts", cl.worldmodel->name);
463         COM_FOpenFile (name, &f);
464         if (f)
465         {
466                 int pointfilelength;
467                 fseek(f, 0, SEEK_END);
468                 pointfilelength = ftell(f);
469                 fseek(f, 0, SEEK_SET);
470                 pointfile = malloc(pointfilelength + 1);
471                 fread(pointfile, 1, pointfilelength, f);
472                 pointfile[pointfilelength] = 0;
473                 fclose(f);
474         }
475 #else
476         pointfile = COM_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true);
477 #endif
478         if (!pointfile)
479         {
480                 Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name);
481                 return;
482         }
483
484         Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name);
485         c = 0;
486         pointfilepos = pointfile;
487         while (*pointfilepos)
488         {
489                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
490                         pointfilepos++;
491                 if (!*pointfilepos)
492                         break;
493                 t = pointfilepos;
494                 while (*t && *t != '\n' && *t != '\r')
495                         t++;
496                 tchar = *t;
497                 *t = 0;
498                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
499                 *t = tchar;
500                 pointfilepos = t;
501                 if (r != 3)
502                         break;
503                 c++;
504
505                 if (cl_numparticles >= cl_maxparticles)
506                 {
507                         Con_Printf ("Not enough free particles\n");
508                         break;
509                 }
510                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
511         }
512
513 #ifdef WORKINGLQUAKE
514         free(pointfile);
515 #else
516         Mem_Free(pointfile);
517 #endif
518         Con_Printf ("%i points read\n", c);
519 }
520
521 /*
522 ===============
523 CL_ParseParticleEffect
524
525 Parse an effect out of the server message
526 ===============
527 */
528 void CL_ParseParticleEffect (void)
529 {
530         vec3_t org, dir;
531         int i, count, msgcount, color;
532
533         for (i=0 ; i<3 ; i++)
534                 org[i] = MSG_ReadCoord ();
535         for (i=0 ; i<3 ; i++)
536                 dir[i] = MSG_ReadChar () * (1.0/16);
537         msgcount = MSG_ReadByte ();
538         color = MSG_ReadByte ();
539
540         if (msgcount == 255)
541                 count = 1024;
542         else
543                 count = msgcount;
544
545         CL_RunParticleEffect (org, dir, color, count);
546 }
547
548 /*
549 ===============
550 CL_ParticleExplosion
551
552 ===============
553 */
554 void CL_ParticleExplosion (vec3_t org)
555 {
556         int i, k;
557         //vec3_t v;
558         //vec3_t v2;
559         if (cl_stainmaps.integer)
560                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
561
562         i = Mod_PointContents(org, cl.worldmodel);
563         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
564         {
565                 for (i = 0;i < 128;i++)
566                 {
567                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
568                 }
569         }
570         else
571         {
572                 /*
573                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
574                 // smoke puff
575                 if (cl_particles_smoke.integer)
576                 {
577                         for (i = 0;i < 64;i++)
578                         {
579 #ifdef WORKINGLQUAKE
580                                 v2[0] = lhrandom(-64, 64);
581                                 v2[1] = lhrandom(-64, 64);
582                                 v2[2] = lhrandom(-8, 24);
583 #else
584                                 for (k = 0;k < 16;k++)
585                                 {
586                                         v[0] = org[0] + lhrandom(-64, 64);
587                                         v[1] = org[1] + lhrandom(-64, 64);
588                                         v[2] = org[2] + lhrandom(-8, 24);
589                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
590                                                 break;
591                                 }
592                                 VectorSubtract(v2, org, v2);
593 #endif
594                                 VectorScale(v2, 2.0f, v2);
595                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
596                         }
597                 }
598                 */
599
600                 if (cl_particles_sparks.integer)
601                 {
602                         // sparks
603                         for (i = 0;i < 256;i++)
604                         {
605                                 k = particlepalette[0x68 + (rand() & 7)];
606                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
607                         }
608                 }
609         }
610
611         if (cl_explosions.integer)
612                 R_NewExplosion(org);
613 }
614
615 /*
616 ===============
617 CL_ParticleExplosion2
618
619 ===============
620 */
621 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
622 {
623         int i, k;
624         if (!cl_particles.integer) return;
625
626         for (i = 0;i < 512;i++)
627         {
628                 k = particlepalette[colorStart + (i % colorLength)];
629                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
630         }
631 }
632
633 /*
634 ===============
635 CL_BlobExplosion
636
637 ===============
638 */
639 void CL_BlobExplosion (vec3_t org)
640 {
641         if (cl_stainmaps.integer)
642                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
643
644         if (cl_explosions.integer)
645                 R_NewExplosion(org);
646 }
647
648 /*
649 ===============
650 CL_RunParticleEffect
651
652 ===============
653 */
654 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
655 {
656         int k;
657
658         if (count == 1024)
659         {
660                 CL_ParticleExplosion(org);
661                 return;
662         }
663         if (!cl_particles.integer) return;
664         while (count--)
665         {
666                 k = particlepalette[color + (rand()&7)];
667                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
668         }
669 }
670
671 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
672 /*
673 ===============
674 CL_SparkShower
675 ===============
676 */
677 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
678 {
679         vec3_t org2, org3;
680         int k;
681         if (!cl_particles.integer) return;
682
683         if (cl_stainmaps.integer)
684                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
685
686         if (cl_particles_bulletimpacts.integer)
687         {
688                 // smoke puff
689                 if (cl_particles_smoke.integer)
690                 {
691                         k = count / 4;
692                         while(k--)
693                         {
694                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
695                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
696                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
697                                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
698                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
699                         }
700                 }
701
702                 if (cl_particles_sparks.integer)
703                 {
704                         // sparks
705                         while(count--)
706                         {
707                                 k = particlepalette[0x68 + (rand() & 7)];
708                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
709                         }
710                 }
711         }
712 }
713
714 void CL_PlasmaBurn (vec3_t org)
715 {
716         if (cl_stainmaps.integer)
717                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
718 }
719
720 static float bloodcount = 0;
721 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
722 {
723         float s, r, a;
724         vec3_t org2, org3;
725         // bloodcount is used to accumulate counts too small to cause a blood particle
726         if (!cl_particles.integer) return;
727         if (!cl_particles_blood.integer) return;
728
729         s = count + 32.0f;
730         count *= 5.0f;
731         if (count > 1000)
732                 count = 1000;
733         bloodcount += count;
734         r = cl_particles_blood_size.value;
735         a = cl_particles_blood_alpha.value * 255;
736         while(bloodcount > 0)
737         {
738                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
739                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
740                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
741                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
742                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
743                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
744                 bloodcount -= r;
745         }
746 }
747
748 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
749 {
750         float r;
751         float a;
752         vec3_t diff, center, velscale;
753         if (!cl_particles.integer) return;
754         if (!cl_particles_bloodshowers.integer) return;
755         if (!cl_particles_blood.integer) return;
756
757         VectorSubtract(maxs, mins, diff);
758         center[0] = (mins[0] + maxs[0]) * 0.5;
759         center[1] = (mins[1] + maxs[1]) * 0.5;
760         center[2] = (mins[2] + maxs[2]) * 0.5;
761         // FIXME: change velspeed back to 2.0x after fixing mod
762         velscale[0] = velspeed * 2.0 / diff[0];
763         velscale[1] = velspeed * 2.0 / diff[1];
764         velscale[2] = velspeed * 2.0 / diff[2];
765
766         bloodcount += count * 5.0f;
767         r = cl_particles_blood_size.value;
768         a = cl_particles_blood_alpha.value * 255;
769         while (bloodcount > 0)
770         {
771                 vec3_t org, vel;
772                 org[0] = lhrandom(mins[0], maxs[0]);
773                 org[1] = lhrandom(mins[1], maxs[1]);
774                 org[2] = lhrandom(mins[2], maxs[2]);
775                 vel[0] = (org[0] - center[0]) * velscale[0];
776                 vel[1] = (org[1] - center[1]) * velscale[1];
777                 vel[2] = (org[2] - center[2]) * velscale[2];
778                 bloodcount -= r;
779                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
780                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
781         }
782 }
783
784 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
785 {
786         int k;
787         float t;
788         if (!cl_particles.integer) return;
789         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
790         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
791         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
792
793         while (count--)
794         {
795                 k = particlepalette[colorbase + (rand()&3)];
796                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
797         }
798 }
799
800 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
801 {
802         int k;
803         float t, z, minz, maxz;
804         if (!cl_particles.integer) return;
805         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
806         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
807         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
808         if (dir[2] < 0) // falling
809         {
810                 t = (maxs[2] - mins[2]) / -dir[2];
811                 z = maxs[2];
812         }
813         else // rising??
814         {
815                 t = (maxs[2] - mins[2]) / dir[2];
816                 z = mins[2];
817         }
818         if (t < 0 || t > 2) // sanity check
819                 t = 2;
820
821         minz = z - fabs(dir[2]) * 0.1;
822         maxz = z + fabs(dir[2]) * 0.1;
823         minz = bound(mins[2], minz, maxs[2]);
824         maxz = bound(mins[2], maxz, maxs[2]);
825
826         switch(type)
827         {
828         case 0:
829                 count *= 4; // ick, this should be in the mod or maps?
830
831                 while(count--)
832                 {
833                         k = particlepalette[colorbase + (rand()&3)];
834                         particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
835                 }
836                 break;
837         case 1:
838                 while(count--)
839                 {
840                         k = particlepalette[colorbase + (rand()&3)];
841                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
842                 }
843                 break;
844         default:
845                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
846         }
847 }
848
849 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
850 {
851         int k;
852         float t;
853         vec3_t o, v, center;
854         if (!cl_particles.integer) return;
855
856         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
857         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
858         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
859
860         center[0] = (mins[0] + maxs[0]) * 0.5f;
861         center[1] = (mins[1] + maxs[1]) * 0.5f;
862         center[2] = (mins[2] + maxs[2]) * 0.5f;
863
864         while (count--)
865         {
866                 k = particlepalette[224 + (rand()&15)];
867                 o[0] = lhrandom(mins[0], maxs[0]);
868                 o[1] = lhrandom(mins[1], maxs[1]);
869                 o[2] = lhrandom(mins[2], maxs[2]);
870                 VectorSubtract(o, center, v);
871                 VectorNormalizeFast(v);
872                 VectorScale(v, 100, v);
873                 v[2] += sv_gravity.value * 0.15f;
874                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
875         }
876 }
877
878 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
879 {
880         int k;
881         float t;
882         if (!cl_particles.integer) return;
883         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
884         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
885         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
886
887         while (count--)
888         {
889                 k = particlepalette[224 + (rand()&15)];
890                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
891                 if (count & 1)
892                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
893         }
894 }
895
896 void CL_Flames (vec3_t org, vec3_t vel, int count)
897 {
898         int k;
899         if (!cl_particles.integer) return;
900
901         while (count--)
902         {
903                 k = particlepalette[224 + (rand()&15)];
904                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
905         }
906 }
907
908
909
910 /*
911 ===============
912 CL_LavaSplash
913
914 ===============
915 */
916 void CL_LavaSplash (vec3_t origin)
917 {
918         int                     i, j, k;
919         float           vel;
920         vec3_t          dir, org;
921         if (!cl_particles.integer) return;
922
923         for (i=-128 ; i<128 ; i+=16)
924         {
925                 for (j=-128 ; j<128 ; j+=16)
926                 {
927                         dir[0] = j + lhrandom(0, 8);
928                         dir[1] = i + lhrandom(0, 8);
929                         dir[2] = 256;
930                         org[0] = origin[0] + dir[0];
931                         org[1] = origin[1] + dir[1];
932                         org[2] = origin[2] + lhrandom(0, 64);
933                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
934                         k = particlepalette[224 + (rand()&7)];
935                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
936                 }
937         }
938 }
939
940 /*
941 ===============
942 CL_TeleportSplash
943
944 ===============
945 */
946 #if WORKINGLQUAKE
947 void R_TeleportSplash (vec3_t org)
948 {
949         int i, j, k;
950         if (!cl_particles.integer) return;
951
952         for (i=-16 ; i<16 ; i+=8)
953                 for (j=-16 ; j<16 ; j+=8)
954                         for (k=-24 ; k<32 ; k+=8)
955                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
956 }
957 #endif
958
959 #ifdef WORKINGLQUAKE
960 void R_RocketTrail (vec3_t start, vec3_t end, int type)
961 #else
962 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
963 #endif
964 {
965         vec3_t vec, dir, vel, pos;
966         float len, dec, speed, r;
967         int contents, smoke, blood, bubbles;
968
969         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
970                 return;
971
972         VectorSubtract(end, start, dir);
973         VectorNormalize(dir);
974
975         VectorSubtract (end, start, vec);
976 #ifdef WORKINGLQUAKE
977         len = VectorNormalize (vec);
978         dec = 0;
979         speed = 1.0f / cl.frametime;
980         VectorSubtract(end, start, vel);
981 #else
982         len = VectorNormalizeLength (vec);
983         dec = -ent->persistent.trail_time;
984         ent->persistent.trail_time += len;
985         if (ent->persistent.trail_time < 0.01f)
986                 return;
987
988         // if we skip out, leave it reset
989         ent->persistent.trail_time = 0.0f;
990
991         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
992         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
993 #endif
994         VectorScale(vel, speed, vel);
995
996         // advance into this frame to reach the first puff location
997         VectorMA(start, dec, vec, pos);
998         len -= dec;
999
1000         contents = Mod_PointContents(pos, cl.worldmodel);
1001         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
1002                 return;
1003
1004         smoke = cl_particles.integer && cl_particles_smoke.integer;
1005         blood = cl_particles.integer && cl_particles_blood.integer;
1006         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1007
1008         while (len >= 0)
1009         {
1010                 switch (type)
1011                 {
1012                         case 0: // rocket trail
1013                                 dec = 3;
1014                                 if (smoke)
1015                                 {
1016                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*125, cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1017                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1018                                 }
1019                                 if (bubbles)
1020                                 {
1021                                         r = lhrandom(1, 2);
1022                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1023                                 }
1024                                 break;
1025
1026                         case 1: // grenade trail
1027                                 // FIXME: make it gradually stop smoking
1028                                 dec = 3;
1029                                 if (cl_particles.integer && cl_particles_smoke.integer)
1030                                 {
1031                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*100, cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1032                                 }
1033                                 break;
1034
1035
1036                         case 2: // blood
1037                         case 4: // slight blood
1038                                 dec = cl_particles_blood_size.value;
1039                                 if (blood)
1040                                 {
1041                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1042                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1043                                 }
1044                                 break;
1045
1046                         case 3: // green tracer
1047                                 dec = 6;
1048                                 if (smoke)
1049                                 {
1050                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1051                                 }
1052                                 break;
1053
1054                         case 5: // flame tracer
1055                                 dec = 6;
1056                                 if (smoke)
1057                                 {
1058                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1059                                 }
1060                                 break;
1061
1062                         case 6: // voor trail
1063                                 dec = 6;
1064                                 if (smoke)
1065                                 {
1066                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1067                                 }
1068                                 break;
1069
1070                         case 7: // Nehahra smoke tracer
1071                                 dec = 7;
1072                                 if (smoke)
1073                                 {
1074                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1075                                 }
1076                                 break;
1077                         case 8: // Nexiuz plasma trail
1078                                 dec = 4;
1079                                 if (smoke)
1080                                 {
1081                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1082                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1083                                 }
1084                 }
1085
1086                 // advance to next time and position
1087                 len -= dec;
1088                 VectorMA (pos, dec, vec, pos);
1089         }
1090 #ifndef WORKINGLQUAKE
1091         ent->persistent.trail_time = len;
1092 #endif
1093 }
1094
1095 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1096 {
1097         vec3_t vec, pos;
1098         int len;
1099         if (!cl_particles.integer) return;
1100         if (!cl_particles_smoke.integer) return;
1101
1102         VectorCopy(start, pos);
1103         VectorSubtract (end, start, vec);
1104 #ifdef WORKINGLQUAKE
1105         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1106 #else
1107         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1108 #endif
1109         VectorScale(vec, 3, vec);
1110         color = particlepalette[color];
1111         while (len--)
1112         {
1113                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1114                 VectorAdd (pos, vec, pos);
1115         }
1116 }
1117
1118 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1119 {
1120         int tempcolor2, cr, cg, cb;
1121         cr = red * 255;
1122         cg = green * 255;
1123         cb = blue * 255;
1124         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1125         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1126 }
1127
1128 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1129 {
1130         int k;
1131         if (!cl_particles.integer) return;
1132
1133         // smoke puff
1134         if (cl_particles_smoke.integer)
1135         {
1136                 k = count / 4;
1137                 while(k--)
1138                 {
1139                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1140                 }
1141         }
1142 }
1143
1144 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1145 {
1146         int k;
1147         if (!cl_particles.integer) return;
1148
1149         if (cl_stainmaps.integer)
1150                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1151
1152         // smoke puff
1153         if (cl_particles_smoke.integer)
1154         {
1155                 k = count / 4;
1156                 while(k--)
1157                 {
1158                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1159                 }
1160         }
1161
1162         if (cl_particles_sparks.integer)
1163         {
1164                 // sparks
1165                 while(count--)
1166                 {
1167                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1168                 }
1169         }
1170 }
1171
1172 /*
1173 ===============
1174 CL_MoveParticles
1175 ===============
1176 */
1177 void CL_MoveParticles (void)
1178 {
1179         particle_t *p;
1180         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1181         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1182 #ifdef WORKINGLQUAKE
1183         void *hitent;
1184 #else
1185         entity_render_t *hitent;
1186 #endif
1187
1188         // LordHavoc: early out condition
1189         if (!cl_numparticles)
1190                 return;
1191
1192 #ifdef WORKINGLQUAKE
1193         frametime = cl.frametime;
1194 #else
1195         frametime = cl.time - cl.oldtime;
1196 #endif
1197         gravity = frametime * sv_gravity.value;
1198         dvel = 1+4*frametime;
1199         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1200
1201         activeparticles = 0;
1202         maxparticle = -1;
1203         j = 0;
1204         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1205         {
1206                 content = 0;
1207                 VectorCopy(p->org, p->oldorg);
1208                 VectorMA(p->org, frametime, p->vel, p->org);
1209                 VectorCopy(p->org, org);
1210                 if (p->bounce)
1211                 {
1212                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, &hitent) < 1)
1213                         {
1214                                 VectorCopy(v, p->org);
1215                                 if (p->bounce < 0)
1216                                 {
1217                                         // assume it's blood (lame, but...)
1218 #ifndef WORKINGLQUAKE
1219                                         if (cl_stainmaps.integer)
1220                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1221 #endif
1222                                         if (cl_decals.integer)
1223                                         {
1224                                                 p->type = pt_decal;
1225                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1226 #ifndef WORKINGLQUAKE
1227                                                 p->owner = hitent;
1228                                                 p->ownermodel = hitent->model;
1229                                                 Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1230                                                 Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1231                                                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1232 #endif
1233                                                 p->time2 = cl.time + cl_decals_time.value;
1234                                                 p->die = p->time2 + cl_decals_fadetime.value;
1235                                                 p->alphafade = 0;
1236                                                 VectorCopy(normal, p->vel2);
1237                                                 VectorClear(p->vel);
1238                                                 VectorAdd(p->org, normal, p->org);
1239                                                 p->bounce = 0;
1240                                                 p->friction = 0;
1241                                                 p->gravity = 0;
1242                                                 p->scalex *= 1.25f;
1243                                                 p->scaley *= 1.25f;
1244                                         }
1245                                         else
1246                                         {
1247                                                 p->die = -1;
1248                                                 freeparticles[j++] = p;
1249                                                 continue;
1250                                         }
1251                                 }
1252                                 else
1253                                 {
1254                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1255                                         VectorMA(p->vel, dist, normal, p->vel);
1256                                         if (DotProduct(p->vel, p->vel) < 0.03)
1257                                                 VectorClear(p->vel);
1258                                 }
1259                         }
1260                 }
1261                 p->vel[2] -= p->gravity * gravity;
1262                 p->alpha -= p->alphafade * frametime;
1263                 if (p->friction)
1264                 {
1265                         f = p->friction * frametime;
1266                         if (!content)
1267                                 content = Mod_PointContents(p->org, cl.worldmodel);
1268                         if (content != CONTENTS_EMPTY)
1269                                 f *= 4;
1270                         f = 1.0f - f;
1271                         VectorScale(p->vel, f, p->vel);
1272                 }
1273
1274                 if (p->type != pt_static)
1275                 {
1276                         switch (p->type)
1277                         {
1278                         case pt_blood:
1279                                 if (!content)
1280                                         content = Mod_PointContents(p->org, cl.worldmodel);
1281                                 a = content;
1282                                 if (a != CONTENTS_EMPTY)
1283                                 {
1284                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1285                                         {
1286                                                 p->scalex += frametime * cl_particles_blood_size.value;
1287                                                 p->scaley += frametime * cl_particles_blood_size.value;
1288                                                 //p->alpha -= bloodwaterfade;
1289                                         }
1290                                         else
1291                                                 p->die = -1;
1292                                 }
1293                                 else
1294                                         p->vel[2] -= gravity;
1295                                 break;
1296                         case pt_bubble:
1297                                 if (!content)
1298                                         content = Mod_PointContents(p->org, cl.worldmodel);
1299                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1300                                 {
1301                                         p->die = -1;
1302                                         break;
1303                                 }
1304                                 break;
1305                         case pt_rain:
1306                                 if (cl.time > p->time2)
1307                                 {
1308                                         // snow flutter
1309                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1310                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1311                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1312                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1313                                 }
1314                                 if (!content)
1315                                         content = Mod_PointContents(p->org, cl.worldmodel);
1316                                 a = content;
1317                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1318                                         p->die = -1;
1319                                 break;
1320                         case pt_grow:
1321                                 p->scalex += frametime * p->time2;
1322                                 p->scaley += frametime * p->time2;
1323                                 break;
1324                         case pt_decal:
1325 #ifndef WORKINGLQUAKE
1326                                 if (p->owner->model == p->ownermodel)
1327                                 {
1328                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1329                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1330                                 }
1331                                 else
1332                                         p->die = -1;
1333 #endif
1334                                 if (cl.time > p->time2)
1335                                 {
1336                                         p->alphafade = p->alpha / (p->die - cl.time);
1337                                         p->time2 += 10000;
1338                                 }
1339                                 break;
1340                         default:
1341                                 Con_Printf("unknown particle type %i\n", p->type);
1342                                 p->die = -1;
1343                                 break;
1344                         }
1345                 }
1346
1347                 // remove dead particles
1348                 if (p->alpha < 1 || p->die < cl.time)
1349                         freeparticles[j++] = p;
1350                 else
1351                 {
1352                         maxparticle = i;
1353                         activeparticles++;
1354                         if (p->pressure)
1355                                 pressureused = true;
1356                 }
1357         }
1358         // fill in gaps to compact the array
1359         i = 0;
1360         while (maxparticle >= activeparticles)
1361         {
1362                 *freeparticles[i++] = particles[maxparticle--];
1363                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1364                         maxparticle--;
1365         }
1366         cl_numparticles = activeparticles;
1367
1368         if (pressureused)
1369         {
1370                 activeparticles = 0;
1371                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1372                         if (p->pressure)
1373                                 freeparticles[activeparticles++] = p;
1374
1375                 if (activeparticles)
1376                 {
1377                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1378                         {
1379                                 for (j = 0;j < activeparticles;j++)
1380                                 {
1381                                         if (freeparticles[j] != p)
1382                                         {
1383                                                 float dist, diff[3];
1384                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1385                                                 dist = DotProduct(diff, diff);
1386                                                 if (dist < 4096 && dist >= 1)
1387                                                 {
1388                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1389                                                         VectorMA(p->vel, dist, diff, p->vel);
1390                                                 }
1391                                         }
1392                                 }
1393                         }
1394                 }
1395         }
1396 }
1397
1398 #define MAX_PARTICLETEXTURES 64
1399 // particletexture_t is a rectangle in the particlefonttexture
1400 typedef struct
1401 {
1402         rtexture_t *texture;
1403         float s1, t1, s2, t2;
1404 }
1405 particletexture_t;
1406
1407 #if WORKINGLQUAKE
1408 static int particlefonttexture;
1409 #else
1410 static rtexturepool_t *particletexturepool;
1411 static rtexture_t *particlefonttexture;
1412 #endif
1413 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1414
1415 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1416
1417 static qbyte shadebubble(float dx, float dy, vec3_t light)
1418 {
1419         float dz, f, dot;
1420         vec3_t normal;
1421         dz = 1 - (dx*dx+dy*dy);
1422         if (dz > 0) // it does hit the sphere
1423         {
1424                 f = 0;
1425                 // back side
1426                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1427                 VectorNormalize(normal);
1428                 dot = DotProduct(normal, light);
1429                 if (dot > 0.5) // interior reflection
1430                         f += ((dot *  2) - 1);
1431                 else if (dot < -0.5) // exterior reflection
1432                         f += ((dot * -2) - 1);
1433                 // front side
1434                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1435                 VectorNormalize(normal);
1436                 dot = DotProduct(normal, light);
1437                 if (dot > 0.5) // interior reflection
1438                         f += ((dot *  2) - 1);
1439                 else if (dot < -0.5) // exterior reflection
1440                         f += ((dot * -2) - 1);
1441                 f *= 128;
1442                 f += 16; // just to give it a haze so you can see the outline
1443                 f = bound(0, f, 255);
1444                 return (qbyte) f;
1445         }
1446         else
1447                 return 0;
1448 }
1449
1450 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1451 {
1452         int basex, basey, y;
1453         basex = ((texnum >> 0) & 7) * 32;
1454         basey = ((texnum >> 3) & 7) * 32;
1455         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1456         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1457         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1458         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1459         for (y = 0;y < 32;y++)
1460                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1461 }
1462
1463 static void R_InitParticleTexture (void)
1464 {
1465         int x, y, d, i, j, k, m;
1466         float cx, cy, dx, dy, radius, f, f2;
1467         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1468         vec3_t light;
1469         qbyte particletexturedata[256*256*4];
1470
1471         memset(particletexturedata, 255, sizeof(particletexturedata));
1472
1473         // smoke/blood
1474         for (i = 0;i < 8;i++)
1475         {
1476                 do
1477                 {
1478                         fractalnoise(&noise1[0][0], 64, 4);
1479                         fractalnoise(&noise2[0][0], 64, 8);
1480                         m = 0;
1481                         for (y = 0;y < 32;y++)
1482                         {
1483                                 dy = y - 16;
1484                                 for (x = 0;x < 32;x++)
1485                                 {
1486                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1487                                         dx = x - 16;
1488                                         d = (noise2[y][x] - 128) * 3 + 192;
1489                                         if (d > 0)
1490                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1491                                         d = (d * noise1[y][x]) >> 7;
1492                                         d = bound(0, d, 255);
1493                                         data[y][x][3] = (qbyte) d;
1494                                         if (m < d)
1495                                                 m = d;
1496                                 }
1497                         }
1498                 }
1499                 while (m < 224);
1500
1501                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1502         }
1503
1504         // rain splash
1505         for (i = 0;i < 16;i++)
1506         {
1507                 radius = i * 3.0f / 16.0f;
1508                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1509                 for (y = 0;y < 32;y++)
1510                 {
1511                         dy = (y - 16) * 0.25f;
1512                         for (x = 0;x < 32;x++)
1513                         {
1514                                 dx = (x - 16) * 0.25f;
1515                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1516                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1517                                 f = bound(0.0f, f, 255.0f);
1518                                 data[y][x][3] = (int) f;
1519                         }
1520                 }
1521                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1522         }
1523
1524         // normal particle
1525         for (y = 0;y < 32;y++)
1526         {
1527                 dy = y - 16;
1528                 for (x = 0;x < 32;x++)
1529                 {
1530                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1531                         dx = x - 16;
1532                         d = (256 - (dx*dx+dy*dy));
1533                         d = bound(0, d, 255);
1534                         data[y][x][3] = (qbyte) d;
1535                 }
1536         }
1537         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1538
1539         // rain
1540         light[0] = 1;light[1] = 1;light[2] = 1;
1541         VectorNormalize(light);
1542         for (y = 0;y < 32;y++)
1543         {
1544                 for (x = 0;x < 32;x++)
1545                 {
1546                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1547                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1548                 }
1549         }
1550         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1551
1552         // bubble
1553         light[0] = 1;light[1] = 1;light[2] = 1;
1554         VectorNormalize(light);
1555         for (y = 0;y < 32;y++)
1556         {
1557                 for (x = 0;x < 32;x++)
1558                 {
1559                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1560                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1561                 }
1562         }
1563         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1564
1565         // smoke/blood
1566         for (i = 0;i < 8;i++)
1567         {
1568                 memset(&data[0][0][0], 255, sizeof(data));
1569                 for (j = 1;j < 8;j++)
1570                 {
1571                         for (k = 0;k < 3;k++)
1572                         {
1573                                 cx = lhrandom(j + 1, 30 - j);
1574                                 cy = lhrandom(j + 1, 30 - j);
1575                                 for (y = 0;y < 32;y++)
1576                                 {
1577                                         for (x = 0;x < 32;x++)
1578                                         {
1579                                                 dx = (x - cx);
1580                                                 dy = (y - cy);
1581                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1582                                                 if (f > 0)
1583                                                 {
1584                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1585                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1586                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1587                                                 }
1588                                         }
1589                                 }
1590                         }
1591                 }
1592                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1593                 for (y = 0;y < 32;y++)
1594                 {
1595                         for (x = 0;x < 32;x++)
1596                         {
1597                                 data[y][x][0] = 255 - data[y][x][0];
1598                                 data[y][x][1] = 255 - data[y][x][1];
1599                                 data[y][x][2] = 255 - data[y][x][2];
1600                         }
1601                 }
1602                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1603         }
1604
1605 #if WORKINGLQUAKE
1606         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1607         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1608         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1609 #else
1610         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1611         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1612                 particletexture[i].texture = particlefonttexture;
1613
1614         // beam
1615         fractalnoise(&noise1[0][0], 64, 4);
1616         m = 0;
1617         for (y = 0;y < 64;y++)
1618         {
1619                 for (x = 0;x < 16;x++)
1620                 {
1621                         if (x < 8)
1622                                 d = x;
1623                         else
1624                                 d = (15 - x);
1625                         d = d * d * noise1[y][x] / (7 * 7);
1626                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1627                         data2[y][x][3] = 255;
1628                 }
1629         }
1630
1631         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1632         particletexture[tex_beam].s1 = 0;
1633         particletexture[tex_beam].t1 = 0;
1634         particletexture[tex_beam].s2 = 1;
1635         particletexture[tex_beam].t2 = 1;
1636 #endif
1637 }
1638
1639 static void r_part_start(void)
1640 {
1641         particletexturepool = R_AllocTexturePool();
1642         R_InitParticleTexture ();
1643 }
1644
1645 static void r_part_shutdown(void)
1646 {
1647         R_FreeTexturePool(&particletexturepool);
1648 }
1649
1650 static void r_part_newmap(void)
1651 {
1652         cl_numparticles = 0;
1653 }
1654
1655 void R_Particles_Init (void)
1656 {
1657         Cvar_RegisterVariable(&r_drawparticles);
1658 #ifdef WORKINGLQUAKE
1659         r_part_start();
1660 #else
1661         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1662 #endif
1663 }
1664
1665 #ifdef WORKINGLQUAKE
1666 void R_InitParticles(void)
1667 {
1668         CL_Particles_Init();
1669         R_Particles_Init();
1670 }
1671
1672 float varray_vertex[16], varray_texcoord[1][16];
1673 #endif
1674
1675 #ifdef WORKINGLQUAKE
1676 void R_DrawParticle(particle_t *p)
1677 {
1678 #else
1679 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1680 {
1681         const particle_t *p = calldata1;
1682         rmeshstate_t m;
1683 #endif
1684         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1685         particletexture_t *tex;
1686
1687         VectorCopy(p->org, org);
1688
1689         tex = &particletexture[p->texnum];
1690         cr = p->color[0] * (1.0f / 255.0f);
1691         cg = p->color[1] * (1.0f / 255.0f);
1692         cb = p->color[2] * (1.0f / 255.0f);
1693         ca = p->alpha * (1.0f / 255.0f);
1694         if (p->blendmode == PBLEND_MOD)
1695         {
1696                 cr *= ca;
1697                 cg *= ca;
1698                 cb *= ca;
1699                 cr = min(cr, 1);
1700                 cg = min(cg, 1);
1701                 cb = min(cb, 1);
1702                 ca = 1;
1703         }
1704
1705 #ifndef WORKINGLQUAKE
1706         memset(&m, 0, sizeof(m));
1707         if (p->blendmode == 0)
1708         {
1709                 m.blendfunc1 = GL_SRC_ALPHA;
1710                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
1711         }
1712         else if (p->blendmode == 1)
1713         {
1714                 m.blendfunc1 = GL_SRC_ALPHA;
1715                 m.blendfunc2 = GL_ONE;
1716         }
1717         else
1718         {
1719                 m.blendfunc1 = GL_ZERO;
1720                 m.blendfunc2 = GL_ONE_MINUS_SRC_COLOR;
1721         }
1722         m.tex[0] = R_GetTexture(tex->texture);
1723         R_Mesh_Matrix(&r_identitymatrix);
1724         R_Mesh_State(&m);
1725
1726         if (fogenabled && p->blendmode != PBLEND_MOD)
1727         {
1728                 VectorSubtract(org, r_origin, fogvec);
1729                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1730                 ifog = 1 - fog;
1731                 cr = cr * ifog;
1732                 cg = cg * ifog;
1733                 cb = cb * ifog;
1734                 if (p->blendmode == 0)
1735                 {
1736                         cr += fogcolor[0] * fog;
1737                         cg += fogcolor[1] * fog;
1738                         cb += fogcolor[2] * fog;
1739                 }
1740         }
1741         cr *= r_colorscale;
1742         cg *= r_colorscale;
1743         cb *= r_colorscale;
1744
1745         GL_Color(cr, cg, cb, ca);
1746
1747         R_Mesh_GetSpace(4);
1748 #endif
1749         if (p->orientation == PARTICLE_BILLBOARD)
1750         {
1751                 VectorScale(vright, p->scalex, right);
1752                 VectorScale(vup, p->scaley, up);
1753                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1754                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1755                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1756                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1757                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1758                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1759                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1760                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1761                 varray_vertex[10] = org[2] - right[2] + up[2];
1762                 varray_vertex[12] = org[0] + right[0] + up[0];
1763                 varray_vertex[13] = org[1] + right[1] + up[1];
1764                 varray_vertex[14] = org[2] + right[2] + up[2];
1765         }
1766         else if (p->orientation == PARTICLE_SPARK)
1767         {
1768                 VectorMA(p->org, -p->scaley, p->vel, v);
1769                 VectorMA(p->org, p->scaley, p->vel, up2);
1770                 R_CalcBeamVerts(varray_vertex, v, up2, p->scalex);
1771         }
1772         else if (p->orientation == PARTICLE_BEAM)
1773                 R_CalcBeamVerts(varray_vertex, p->org, p->vel2, p->scalex);
1774         else if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1775         {
1776                 // double-sided
1777                 if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1778                 {
1779                         VectorNegate(p->vel2, v);
1780                         VectorVectors(v, right, up);
1781                 }
1782                 else
1783                         VectorVectors(p->vel2, right, up);
1784                 VectorScale(right, p->scalex, right);
1785                 VectorScale(up, p->scaley, up);
1786                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1787                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1788                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1789                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1790                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1791                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1792                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1793                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1794                 varray_vertex[10] = org[2] - right[2] + up[2];
1795                 varray_vertex[12] = org[0] + right[0] + up[0];
1796                 varray_vertex[13] = org[1] + right[1] + up[1];
1797                 varray_vertex[14] = org[2] + right[2] + up[2];
1798         }
1799         else
1800                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1801
1802         if (p->orientation == PARTICLE_BEAM)
1803         {
1804                 VectorSubtract(p->vel2, p->org, up);
1805                 VectorNormalizeFast(up);
1806                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1807                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1808                 varray_texcoord[0][0] = 1;varray_texcoord[0][1] = v[0];
1809                 varray_texcoord[0][4] = 0;varray_texcoord[0][5] = v[0];
1810                 varray_texcoord[0][8] = 0;varray_texcoord[0][9] = v[1];
1811                 varray_texcoord[0][12] = 1;varray_texcoord[0][13] = v[1];
1812         }
1813         else
1814         {
1815                 varray_texcoord[0][0] = tex->s2;varray_texcoord[0][1] = tex->t1;
1816                 varray_texcoord[0][4] = tex->s1;varray_texcoord[0][5] = tex->t1;
1817                 varray_texcoord[0][8] = tex->s1;varray_texcoord[0][9] = tex->t2;
1818                 varray_texcoord[0][12] = tex->s2;varray_texcoord[0][13] = tex->t2;
1819         }
1820
1821 #if WORKINGLQUAKE
1822         if (p->blendmode == 0)
1823                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1824         else if (p->blendmode == 1)
1825                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1826         else
1827                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1828         glColor4f(cr, cg, cb, ca);
1829         glBegin(GL_QUADS);
1830         glTexCoord2f(varray_texcoord[0][ 0], varray_texcoord[0][ 1]);glVertex3f(varray_vertex[ 0], varray_vertex[ 1], varray_vertex[ 2]);
1831         glTexCoord2f(varray_texcoord[0][ 4], varray_texcoord[0][ 5]);glVertex3f(varray_vertex[ 4], varray_vertex[ 5], varray_vertex[ 6]);
1832         glTexCoord2f(varray_texcoord[0][ 8], varray_texcoord[0][ 9]);glVertex3f(varray_vertex[ 8], varray_vertex[ 9], varray_vertex[10]);
1833         glTexCoord2f(varray_texcoord[0][12], varray_texcoord[0][13]);glVertex3f(varray_vertex[12], varray_vertex[13], varray_vertex[14]);
1834         glEnd();
1835 #else
1836         R_Mesh_Draw(4, 2, polygonelements);
1837 #endif
1838 }
1839
1840 void R_DrawParticles (void)
1841 {
1842         int i;
1843         float minparticledist;
1844         particle_t *p;
1845
1846 #ifdef WORKINGLQUAKE
1847         CL_MoveParticles();
1848 #endif
1849
1850         // LordHavoc: early out conditions
1851         if ((!cl_numparticles) || (!r_drawparticles.integer))
1852                 return;
1853
1854         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1855
1856 #ifdef WORKINGLQUAKE
1857         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1858         glEnable(GL_BLEND);
1859         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1860         glDepthMask(0);
1861         // LordHavoc: only render if not too close
1862         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1863                 if (DotProduct(p->org, vpn) >= minparticledist)
1864                         R_DrawParticle(p);
1865         glDepthMask(1);
1866         glDisable(GL_BLEND);
1867         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1868 #else
1869         // LordHavoc: only render if not too close
1870         c_particles += cl_numparticles;
1871         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1872                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1873                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1874 #endif
1875 }
1876