]> icculus.org git repositories - divverent/darkplaces.git/blob - cl_particles.c
decals added back due to popular demand, currently not at all optimized (they're...
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeamVerts (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 4] = org1[0] - width * right1[0];
65         vert[ 5] = org1[1] - width * right1[1];
66         vert[ 6] = org1[2] - width * right1[2];
67         vert[ 8] = org2[0] - width * right2[0];
68         vert[ 9] = org2[1] - width * right2[1];
69         vert[10] = org2[2] - width * right2[2];
70         vert[12] = org2[0] + width * right2[0];
71         vert[13] = org2[1] + width * right2[1];
72         vert[14] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #else
152 #include "cl_collision.h"
153 #endif
154
155 #define MAX_PARTICLES                   32768   // default max # of particles at one time
156 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
157
158 typedef enum
159 {
160         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
161 }
162 ptype_t;
163
164 #define PARTICLE_INVALID 0
165 #define PARTICLE_BILLBOARD 1
166 #define PARTICLE_SPARK 2
167 #define PARTICLE_ORIENTED_DOUBLESIDED 3
168 #define PARTICLE_BEAM 4
169
170 #define PBLEND_ALPHA 0
171 #define PBLEND_ADD 1
172 #define PBLEND_MOD 2
173
174 typedef struct particle_s
175 {
176         ptype_t         type;
177         int                     orientation;
178         int                     texnum;
179         int                     blendmode;
180         vec3_t          org;
181         vec3_t          vel;
182         float           die;
183         float           scalex;
184         float           scaley;
185         float           alpha; // 0-255
186         float           alphafade; // how much alpha reduces per second
187         float           time2; // used for various things (snow fluttering, for example)
188         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
189         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
190         vec3_t          oldorg;
191         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
192         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
193         float           pressure; // if non-zero, apply pressure to other particles
194         qbyte           color[4];
195 }
196 particle_t;
197
198 static int particlepalette[256] =
199 {
200         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
201         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
202         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
203         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
204         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
205         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
206         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
207         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
208         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
209         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
210         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
211         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
212         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
213         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
214         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
215         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
216         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
217         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
218         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
219         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
220         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
221         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
222         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
223         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
224         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
225         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
226         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
227         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
228         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
229         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
230         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
231         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
232 };
233
234 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
235
236 // texture numbers in particle font
237 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
238 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
239 static const int tex_particle = 24;
240 static const int tex_raindrop = 25;
241 static const int tex_bubble = 26;
242 static const int tex_beam = 27;
243 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
244
245 static int                      cl_maxparticles;
246 static int                      cl_numparticles;
247 static particle_t       *particles;
248 static particle_t       **freeparticles; // list used only in compacting particles array
249
250 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
251 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
252 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
253 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
254 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
255 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
256 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
257 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
258 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
259 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
260 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
261 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
262 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
263
264 #ifndef WORKINGLQUAKE
265 static mempool_t *cl_part_mempool;
266 #endif
267
268 void CL_Particles_Clear(void)
269 {
270         cl_numparticles = 0;
271 }
272
273 /*
274 ===============
275 CL_InitParticles
276 ===============
277 */
278 void CL_ReadPointFile_f (void);
279 void CL_Particles_Init (void)
280 {
281         int             i;
282
283         i = COM_CheckParm ("-particles");
284
285         if (i && i < com_argc - 1)
286         {
287                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
288                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
289                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
290         }
291         else
292                 cl_maxparticles = MAX_PARTICLES;
293
294         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
295
296         Cvar_RegisterVariable (&cl_particles);
297         Cvar_RegisterVariable (&cl_particles_size);
298         Cvar_RegisterVariable (&cl_particles_bloodshowers);
299         Cvar_RegisterVariable (&cl_particles_blood);
300         Cvar_RegisterVariable (&cl_particles_blood_size);
301         Cvar_RegisterVariable (&cl_particles_blood_alpha);
302         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
303         Cvar_RegisterVariable (&cl_particles_smoke);
304         Cvar_RegisterVariable (&cl_particles_sparks);
305         Cvar_RegisterVariable (&cl_particles_bubbles);
306         Cvar_RegisterVariable (&cl_decals);
307         Cvar_RegisterVariable (&cl_decals_time);
308         Cvar_RegisterVariable (&cl_decals_fadetime);
309
310 #ifdef WORKINGLQUAKE
311         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
312         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
313 #else
314         cl_part_mempool = Mem_AllocPool("CL_Part");
315         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
316         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
317 #endif
318         cl_numparticles = 0;
319 }
320
321 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
322 {\
323         if (cl_numparticles < cl_maxparticles)\
324         {\
325                 particle_t      *part;\
326                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
327                 ptempcolor = (pcolor1);\
328                 ptempcolor2 = (pcolor2);\
329                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
330                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
331                 pcb2 = (ptempcolor2) & 0xFF;\
332                 if (ptempcolor != ptempcolor2)\
333                 {\
334                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
335                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
336                         pcb1 = (ptempcolor) & 0xFF;\
337                         ptempcolor = rand() & 0xFF;\
338                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
339                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
340                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
341                 }\
342                 part = &particles[cl_numparticles++];\
343                 part->type = (ptype);\
344                 part->color[0] = pcr2;\
345                 part->color[1] = pcg2;\
346                 part->color[2] = pcb2;\
347                 part->color[3] = 0xFF;\
348                 part->orientation = porientation;\
349                 part->texnum = ptex;\
350                 part->blendmode = pblendmode;\
351                 part->scalex = (pscalex);\
352                 part->scaley = (pscaley);\
353                 part->alpha = (palpha);\
354                 part->alphafade = (palphafade);\
355                 part->die = cl.time + (ptime);\
356                 part->gravity = (pgravity);\
357                 part->bounce = (pbounce);\
358                 part->org[0] = (px);\
359                 part->org[1] = (py);\
360                 part->org[2] = (pz);\
361                 part->vel[0] = (pvx);\
362                 part->vel[1] = (pvy);\
363                 part->vel[2] = (pvz);\
364                 part->time2 = (ptime2);\
365                 part->vel2[0] = (pvx2);\
366                 part->vel2[1] = (pvy2);\
367                 part->vel2[2] = (pvz2);\
368                 part->friction = (pfriction);\
369                 part->pressure = (ppressure);\
370         }\
371 }
372
373 /*
374 ===============
375 CL_EntityParticles
376 ===============
377 */
378 void CL_EntityParticles (entity_t *ent)
379 {
380         int                     i;
381         float           angle;
382         float           sp, sy, cp, cy;
383         vec3_t          forward;
384         float           dist;
385         float           beamlength;
386         static vec3_t avelocities[NUMVERTEXNORMALS];
387         if (!cl_particles.integer) return;
388
389         dist = 64;
390         beamlength = 16;
391
392         if (!avelocities[0][0])
393                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
394                         avelocities[0][i] = (rand()&255) * 0.01;
395
396         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
397         {
398                 angle = cl.time * avelocities[i][0];
399                 sy = sin(angle);
400                 cy = cos(angle);
401                 angle = cl.time * avelocities[i][1];
402                 sp = sin(angle);
403                 cp = cos(angle);
404
405                 forward[0] = cp*cy;
406                 forward[1] = cp*sy;
407                 forward[2] = -sp;
408
409 #ifdef WORKINGLQUAKE
410                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
411 #else
412                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
413 #endif
414         }
415 }
416
417
418 void CL_ReadPointFile_f (void)
419 {
420         vec3_t  org;
421         int             r, c;
422         char    *pointfile = NULL, *pointfilepos, *t, tchar;
423 #if WORKINGLQUAKE
424         char    name[MAX_OSPATH];
425         
426         sprintf (name,"maps/%s.pts", cl.worldmodel->name);
427         COM_FOpenFile (name, &f);
428         if (f)
429         {
430                 int pointfilelength;
431                 fseek(f, 0, SEEK_END);
432                 pointfilelength = ftell(f);
433                 fseek(f, 0, SEEK_SET);
434                 pointfile = malloc(pointfilelength + 1);
435                 fread(pointfile, 1, pointfilelength, f);
436                 pointfile[pointfilelength] = 0;
437                 fclose(f);
438         }
439 #else
440         pointfile = COM_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true);
441 #endif
442         if (!pointfile)
443         {
444                 Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name);
445                 return;
446         }
447
448         Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name);
449         c = 0;
450         pointfilepos = pointfile;
451         while (*pointfilepos)
452         {
453                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
454                         pointfilepos++;
455                 if (!*pointfilepos)
456                         break;
457                 t = pointfilepos;
458                 while (*t && *t != '\n' && *t != '\r')
459                         t++;
460                 tchar = *t;
461                 *t = 0;
462                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
463                 *t = tchar;
464                 pointfilepos = t;
465                 if (r != 3)
466                         break;
467                 c++;
468
469                 if (cl_numparticles >= cl_maxparticles)
470                 {
471                         Con_Printf ("Not enough free particles\n");
472                         break;
473                 }
474                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
475         }
476
477 #ifdef WORKINGLQUAKE
478         free(pointfile);
479 #else
480         Mem_Free(pointfile);
481 #endif
482         Con_Printf ("%i points read\n", c);
483 }
484
485 /*
486 ===============
487 CL_ParseParticleEffect
488
489 Parse an effect out of the server message
490 ===============
491 */
492 void CL_ParseParticleEffect (void)
493 {
494         vec3_t org, dir;
495         int i, count, msgcount, color;
496
497         for (i=0 ; i<3 ; i++)
498                 org[i] = MSG_ReadCoord ();
499         for (i=0 ; i<3 ; i++)
500                 dir[i] = MSG_ReadChar () * (1.0/16);
501         msgcount = MSG_ReadByte ();
502         color = MSG_ReadByte ();
503
504         if (msgcount == 255)
505                 count = 1024;
506         else
507                 count = msgcount;
508
509         CL_RunParticleEffect (org, dir, color, count);
510 }
511
512 /*
513 ===============
514 CL_ParticleExplosion
515
516 ===============
517 */
518 void CL_ParticleExplosion (vec3_t org)
519 {
520         int i, k;
521         //vec3_t v;
522         //vec3_t v2;
523         if (cl_stainmaps.integer)
524                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
525
526         i = Mod_PointContents(org, cl.worldmodel);
527         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
528         {
529                 for (i = 0;i < 128;i++)
530                 {
531                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
532                 }
533         }
534         else
535         {
536                 /*
537                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
538                 // smoke puff
539                 if (cl_particles_smoke.integer)
540                 {
541                         for (i = 0;i < 64;i++)
542                         {
543 #ifdef WORKINGLQUAKE
544                                 v2[0] = lhrandom(-64, 64);
545                                 v2[1] = lhrandom(-64, 64);
546                                 v2[2] = lhrandom(-8, 24);
547 #else
548                                 for (k = 0;k < 16;k++)
549                                 {
550                                         v[0] = org[0] + lhrandom(-64, 64);
551                                         v[1] = org[1] + lhrandom(-64, 64);
552                                         v[2] = org[2] + lhrandom(-8, 24);
553                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
554                                                 break;
555                                 }
556                                 VectorSubtract(v2, org, v2);
557 #endif
558                                 VectorScale(v2, 2.0f, v2);
559                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
560                         }
561                 }
562                 */
563
564                 if (cl_particles_sparks.integer)
565                 {
566                         // sparks
567                         for (i = 0;i < 256;i++)
568                         {
569                                 k = particlepalette[0x68 + (rand() & 7)];
570                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
571                         }
572                 }
573         }
574
575         if (cl_explosions.integer)
576                 R_NewExplosion(org);
577 }
578
579 /*
580 ===============
581 CL_ParticleExplosion2
582
583 ===============
584 */
585 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
586 {
587         int i, k;
588         if (!cl_particles.integer) return;
589
590         for (i = 0;i < 512;i++)
591         {
592                 k = particlepalette[colorStart + (i % colorLength)];
593                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
594         }
595 }
596
597 /*
598 ===============
599 CL_BlobExplosion
600
601 ===============
602 */
603 void CL_BlobExplosion (vec3_t org)
604 {
605         if (cl_stainmaps.integer)
606                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
607
608         if (cl_explosions.integer)
609                 R_NewExplosion(org);
610 }
611
612 /*
613 ===============
614 CL_RunParticleEffect
615
616 ===============
617 */
618 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
619 {
620         int k;
621
622         if (count == 1024)
623         {
624                 CL_ParticleExplosion(org);
625                 return;
626         }
627         if (!cl_particles.integer) return;
628         while (count--)
629         {
630                 k = particlepalette[color + (rand()&7)];
631                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
632         }
633 }
634
635 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
636 /*
637 ===============
638 CL_SparkShower
639 ===============
640 */
641 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
642 {
643         int k;
644         if (!cl_particles.integer) return;
645
646         if (cl_stainmaps.integer)
647                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
648
649         if (cl_particles_bulletimpacts.integer)
650         {
651                 // smoke puff
652                 if (cl_particles_smoke.integer)
653                 {
654                         k = count / 4;
655                         while(k--)
656                         {
657                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
658                         }
659                 }
660
661                 if (cl_particles_sparks.integer)
662                 {
663                         // sparks
664                         while(count--)
665                         {
666                                 k = particlepalette[0x68 + (rand() & 7)];
667                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
668                         }
669                 }
670         }
671 }
672
673 void CL_PlasmaBurn (vec3_t org)
674 {
675         if (cl_stainmaps.integer)
676                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
677 }
678
679 static float bloodcount = 0;
680 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
681 {
682         float s, r, a;
683         // bloodcount is used to accumulate counts too small to cause a blood particle
684         if (!cl_particles.integer) return;
685         if (!cl_particles_blood.integer) return;
686
687         s = count + 32.0f;
688         count *= 5.0f;
689         if (count > 1000)
690                 count = 1000;
691         bloodcount += count;
692         r = cl_particles_blood_size.value;
693         a = cl_particles_blood_alpha.value * 255;
694         while(bloodcount > 0)
695         {
696                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
697                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
698                 bloodcount -= r;
699         }
700 }
701
702 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
703 {
704         float r;
705         float a;
706         vec3_t diff, center, velscale;
707         if (!cl_particles.integer) return;
708         if (!cl_particles_bloodshowers.integer) return;
709         if (!cl_particles_blood.integer) return;
710
711         VectorSubtract(maxs, mins, diff);
712         center[0] = (mins[0] + maxs[0]) * 0.5;
713         center[1] = (mins[1] + maxs[1]) * 0.5;
714         center[2] = (mins[2] + maxs[2]) * 0.5;
715         // FIXME: change velspeed back to 2.0x after fixing mod
716         velscale[0] = velspeed * 2.0 / diff[0];
717         velscale[1] = velspeed * 2.0 / diff[1];
718         velscale[2] = velspeed * 2.0 / diff[2];
719
720         bloodcount += count * 5.0f;
721         r = cl_particles_blood_size.value;
722         a = cl_particles_blood_alpha.value * 255;
723         while (bloodcount > 0)
724         {
725                 vec3_t org, vel;
726                 org[0] = lhrandom(mins[0], maxs[0]);
727                 org[1] = lhrandom(mins[1], maxs[1]);
728                 org[2] = lhrandom(mins[2], maxs[2]);
729                 vel[0] = (org[0] - center[0]) * velscale[0];
730                 vel[1] = (org[1] - center[1]) * velscale[1];
731                 vel[2] = (org[2] - center[2]) * velscale[2];
732                 bloodcount -= r;
733                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
734                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
735         }
736 }
737
738 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
739 {
740         int k;
741         float t;
742         if (!cl_particles.integer) return;
743         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
744         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
745         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
746
747         while (count--)
748         {
749                 k = particlepalette[colorbase + (rand()&3)];
750                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
751         }
752 }
753
754 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
755 {
756         int k;
757         float t, z, minz, maxz;
758         if (!cl_particles.integer) return;
759         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
760         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
761         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
762         if (dir[2] < 0) // falling
763         {
764                 t = (maxs[2] - mins[2]) / -dir[2];
765                 z = maxs[2];
766         }
767         else // rising??
768         {
769                 t = (maxs[2] - mins[2]) / dir[2];
770                 z = mins[2];
771         }
772         if (t < 0 || t > 2) // sanity check
773                 t = 2;
774
775         minz = z - fabs(dir[2]) * 0.1;
776         maxz = z + fabs(dir[2]) * 0.1;
777         minz = bound(mins[2], minz, maxs[2]);
778         maxz = bound(mins[2], maxz, maxs[2]);
779
780         switch(type)
781         {
782         case 0:
783                 count *= 4; // ick, this should be in the mod or maps?
784
785                 while(count--)
786                 {
787                         k = particlepalette[colorbase + (rand()&3)];
788                         particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
789                 }
790                 break;
791         case 1:
792                 while(count--)
793                 {
794                         k = particlepalette[colorbase + (rand()&3)];
795                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
796                 }
797                 break;
798         default:
799                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
800         }
801 }
802
803 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
804 {
805         int k;
806         float t;
807         vec3_t o, v, center;
808         if (!cl_particles.integer) return;
809
810         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
811         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
812         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
813
814         center[0] = (mins[0] + maxs[0]) * 0.5f;
815         center[1] = (mins[1] + maxs[1]) * 0.5f;
816         center[2] = (mins[2] + maxs[2]) * 0.5f;
817
818         while (count--)
819         {
820                 k = particlepalette[224 + (rand()&15)];
821                 o[0] = lhrandom(mins[0], maxs[0]);
822                 o[1] = lhrandom(mins[1], maxs[1]);
823                 o[2] = lhrandom(mins[2], maxs[2]);
824                 VectorSubtract(o, center, v);
825                 VectorNormalizeFast(v);
826                 VectorScale(v, 100, v);
827                 v[2] += sv_gravity.value * 0.15f;
828                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
829         }
830 }
831
832 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
833 {
834         int k;
835         float t;
836         if (!cl_particles.integer) return;
837         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
838         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
839         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
840
841         while (count--)
842         {
843                 k = particlepalette[224 + (rand()&15)];
844                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
845                 if (count & 1)
846                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
847         }
848 }
849
850 void CL_Flames (vec3_t org, vec3_t vel, int count)
851 {
852         int k;
853         if (!cl_particles.integer) return;
854
855         while (count--)
856         {
857                 k = particlepalette[224 + (rand()&15)];
858                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
859         }
860 }
861
862
863
864 /*
865 ===============
866 CL_LavaSplash
867
868 ===============
869 */
870 void CL_LavaSplash (vec3_t origin)
871 {
872         int                     i, j, k;
873         float           vel;
874         vec3_t          dir, org;
875         if (!cl_particles.integer) return;
876
877         for (i=-128 ; i<128 ; i+=16)
878         {
879                 for (j=-128 ; j<128 ; j+=16)
880                 {
881                         dir[0] = j + lhrandom(0, 8);
882                         dir[1] = i + lhrandom(0, 8);
883                         dir[2] = 256;
884                         org[0] = origin[0] + dir[0];
885                         org[1] = origin[1] + dir[1];
886                         org[2] = origin[2] + lhrandom(0, 64);
887                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
888                         k = particlepalette[224 + (rand()&7)];
889                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
890                 }
891         }
892 }
893
894 /*
895 ===============
896 CL_TeleportSplash
897
898 ===============
899 */
900 #if WORKINGLQUAKE
901 void R_TeleportSplash (vec3_t org)
902 {
903         int i, j, k;
904         if (!cl_particles.integer) return;
905
906         for (i=-16 ; i<16 ; i+=8)
907                 for (j=-16 ; j<16 ; j+=8)
908                         for (k=-24 ; k<32 ; k+=8)
909                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
910 }
911 #endif
912
913 #ifdef WORKINGLQUAKE
914 void R_RocketTrail (vec3_t start, vec3_t end, int type)
915 #else
916 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
917 #endif
918 {
919         vec3_t vec, dir, vel, pos;
920         float len, dec, speed, r;
921         int contents, smoke, blood, bubbles;
922
923         VectorSubtract(end, start, dir);
924         VectorNormalize(dir);
925
926         VectorSubtract (end, start, vec);
927 #ifdef WORKINGLQUAKE
928         len = VectorNormalize (vec);
929         dec = 0;
930         speed = 1.0f / cl.frametime;
931         VectorSubtract(end, start, vel);
932 #else
933         len = VectorNormalizeLength (vec);
934         dec = -ent->persistent.trail_time;
935         ent->persistent.trail_time += len;
936         if (ent->persistent.trail_time < 0.01f)
937                 return;
938
939         // if we skip out, leave it reset
940         ent->persistent.trail_time = 0.0f;
941
942         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
943         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
944 #endif
945         VectorScale(vel, speed, vel);
946
947         // advance into this frame to reach the first puff location
948         VectorMA(start, dec, vec, pos);
949         len -= dec;
950
951         contents = Mod_PointContents(pos, cl.worldmodel);
952         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
953                 return;
954
955         smoke = cl_particles.integer && cl_particles_smoke.integer;
956         blood = cl_particles.integer && cl_particles_blood.integer;
957         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
958
959         while (len >= 0)
960         {
961                 switch (type)
962                 {
963                         case 0: // rocket trail
964                                 dec = 3;
965                                 if (smoke)
966                                 {
967                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 32, 64, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 6, 0, 0, 0, 0, 0);
968                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 128, 768, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
969                                 }
970                                 if (bubbles)
971                                 {
972                                         r = lhrandom(1, 2);
973                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
974                                 }
975                                 break;
976
977                         case 1: // grenade trail
978                                 // FIXME: make it gradually stop smoking
979                                 dec = 3;
980                                 if (cl_particles.integer && cl_particles_smoke.integer)
981                                 {
982                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 32, 96, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0, 0, 0, 0, 0, 0);
983                                 }
984                                 break;
985
986
987                         case 2: // blood
988                         case 4: // slight blood
989                                 dec = cl_particles_blood_size.value;
990                                 if (blood)
991                                 {
992                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
993                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
994                                 }
995                                 break;
996
997                         case 3: // green tracer
998                                 dec = 6;
999                                 if (smoke)
1000                                 {
1001                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1002                                 }
1003                                 break;
1004
1005                         case 5: // flame tracer
1006                                 dec = 6;
1007                                 if (smoke)
1008                                 {
1009                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1010                                 }
1011                                 break;
1012
1013                         case 6: // voor trail
1014                                 dec = 6;
1015                                 if (smoke)
1016                                 {
1017                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1018                                 }
1019                                 break;
1020
1021                         case 7: // Nehahra smoke tracer
1022                                 dec = 7;
1023                                 if (smoke)
1024                                 {
1025                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1026                                 }
1027                                 break;
1028                         case 8: // Nexiuz plasma trail
1029                                 dec = 4;
1030                                 if (smoke)
1031                                 {
1032                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1033                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1034                                 }
1035                 }
1036
1037                 // advance to next time and position
1038                 len -= dec;
1039                 VectorMA (pos, dec, vec, pos);
1040         }
1041 #ifndef WORKINGLQUAKE
1042         ent->persistent.trail_time = len;
1043 #endif
1044 }
1045
1046 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1047 {
1048         vec3_t vec, pos;
1049         int len;
1050         if (!cl_particles.integer) return;
1051         if (!cl_particles_smoke.integer) return;
1052
1053         VectorCopy(start, pos);
1054         VectorSubtract (end, start, vec);
1055 #ifdef WORKINGLQUAKE
1056         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1057 #else
1058         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1059 #endif
1060         VectorScale(vec, 3, vec);
1061         color = particlepalette[color];
1062         while (len--)
1063         {
1064                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1065                 VectorAdd (pos, vec, pos);
1066         }
1067 }
1068
1069 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1070 {
1071         int tempcolor2, cr, cg, cb;
1072         cr = red * 255;
1073         cg = green * 255;
1074         cb = blue * 255;
1075         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1076         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1077 }
1078
1079 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1080 {
1081         int k;
1082         if (!cl_particles.integer) return;
1083
1084         // smoke puff
1085         if (cl_particles_smoke.integer)
1086         {
1087                 k = count / 4;
1088                 while(k--)
1089                 {
1090                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1091                 }
1092         }
1093 }
1094
1095 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1096 {
1097         int k;
1098         if (!cl_particles.integer) return;
1099
1100         if (cl_stainmaps.integer)
1101                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1102
1103         // smoke puff
1104         if (cl_particles_smoke.integer)
1105         {
1106                 k = count / 4;
1107                 while(k--)
1108                 {
1109                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1110                 }
1111         }
1112
1113         if (cl_particles_sparks.integer)
1114         {
1115                 // sparks
1116                 while(count--)
1117                 {
1118                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1119                 }
1120         }
1121 }
1122
1123 /*
1124 ===============
1125 CL_MoveParticles
1126 ===============
1127 */
1128 void CL_MoveParticles (void)
1129 {
1130         particle_t *p;
1131         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1132         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1133
1134         // LordHavoc: early out condition
1135         if (!cl_numparticles)
1136                 return;
1137
1138 #ifdef WORKINGLQUAKE
1139         frametime = cl.frametime;
1140 #else
1141         frametime = cl.time - cl.oldtime;
1142 #endif
1143         gravity = frametime * sv_gravity.value;
1144         dvel = 1+4*frametime;
1145         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1146
1147         activeparticles = 0;
1148         maxparticle = -1;
1149         j = 0;
1150         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1151         {
1152                 content = 0;
1153                 VectorCopy(p->org, p->oldorg);
1154                 VectorMA(p->org, frametime, p->vel, p->org);
1155                 VectorCopy(p->org, org);
1156 #ifndef WORKINGLQUAKE
1157                 if (p->bounce)
1158                 {
1159                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, NULL) < 1)
1160                         {
1161                                 VectorCopy(v, p->org);
1162                                 if (p->bounce < 0)
1163                                 {
1164                                         // assume it's blood (lame, but...)
1165                                         if (cl_stainmaps.integer)
1166                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1167                                         if (cl_decals.integer)
1168                                         {
1169                                                 p->type = pt_decal;
1170                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1171                                                 p->time2 = cl.time + cl_decals_time.value;
1172                                                 p->die = p->time2 + cl_decals_fadetime.value;
1173                                                 p->alphafade = 0;
1174                                                 VectorCopy(normal, p->vel2);
1175                                                 VectorClear(p->vel);
1176                                                 VectorAdd(p->org, normal, p->org);
1177                                                 p->bounce = 0;
1178                                                 p->friction = 0;
1179                                                 p->gravity = 0;
1180                                                 p->scalex *= 1.25f;
1181                                                 p->scaley *= 1.25f;
1182                                         }
1183                                         else
1184                                         {
1185                                                 p->die = -1;
1186                                                 freeparticles[j++] = p;
1187                                                 continue;
1188                                         }
1189                                 }
1190                                 else
1191                                 {
1192                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1193                                         VectorMA(p->vel, dist, normal, p->vel);
1194                                         if (DotProduct(p->vel, p->vel) < 0.03)
1195                                                 VectorClear(p->vel);
1196                                 }
1197                         }
1198                 }
1199 #endif
1200                 p->vel[2] -= p->gravity * gravity;
1201                 p->alpha -= p->alphafade * frametime;
1202                 if (p->friction)
1203                 {
1204                         f = p->friction * frametime;
1205                         if (!content)
1206                                 content = Mod_PointContents(p->org, cl.worldmodel);
1207                         if (content != CONTENTS_EMPTY)
1208                                 f *= 4;
1209                         f = 1.0f - f;
1210                         VectorScale(p->vel, f, p->vel);
1211                 }
1212
1213                 if (p->type != pt_static)
1214                 {
1215                         switch (p->type)
1216                         {
1217                         case pt_blood:
1218                                 if (!content)
1219                                         content = Mod_PointContents(p->org, cl.worldmodel);
1220                                 a = content;
1221                                 if (a != CONTENTS_EMPTY)
1222                                 {
1223                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1224                                         {
1225                                                 p->scalex += frametime * cl_particles_blood_size.value;
1226                                                 p->scaley += frametime * cl_particles_blood_size.value;
1227                                                 //p->alpha -= bloodwaterfade;
1228                                         }
1229                                         else
1230                                                 p->die = -1;
1231                                 }
1232                                 else
1233                                         p->vel[2] -= gravity;
1234                                 break;
1235                         case pt_bubble:
1236                                 if (!content)
1237                                         content = Mod_PointContents(p->org, cl.worldmodel);
1238                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1239                                 {
1240                                         p->die = -1;
1241                                         break;
1242                                 }
1243                                 break;
1244                         case pt_rain:
1245                                 if (cl.time > p->time2)
1246                                 {
1247                                         // snow flutter
1248                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1249                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1250                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1251                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1252                                 }
1253                                 if (!content)
1254                                         content = Mod_PointContents(p->org, cl.worldmodel);
1255                                 a = content;
1256                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1257                                         p->die = -1;
1258                                 break;
1259                         case pt_grow:
1260                                 p->scalex += frametime * p->time2;
1261                                 p->scaley += frametime * p->time2;
1262                                 break;
1263                         case pt_decal:
1264                                 if (cl.time > p->time2)
1265                                 {
1266                                         p->alphafade = p->alpha / (p->die - cl.time);
1267                                         p->time2 += 10000;
1268                                 }
1269                                 break;
1270                         default:
1271                                 printf("unknown particle type %i\n", p->type);
1272                                 p->die = -1;
1273                                 break;
1274                         }
1275                 }
1276
1277                 // remove dead particles
1278                 if (p->alpha < 1 || p->die < cl.time)
1279                         freeparticles[j++] = p;
1280                 else
1281                 {
1282                         maxparticle = i;
1283                         activeparticles++;
1284                         if (p->pressure)
1285                                 pressureused = true;
1286                 }
1287         }
1288         // fill in gaps to compact the array
1289         i = 0;
1290         while (maxparticle >= activeparticles)
1291         {
1292                 *freeparticles[i++] = particles[maxparticle--];
1293                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1294                         maxparticle--;
1295         }
1296         cl_numparticles = activeparticles;
1297
1298         if (pressureused)
1299         {
1300                 activeparticles = 0;
1301                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1302                         if (p->pressure)
1303                                 freeparticles[activeparticles++] = p;
1304
1305                 if (activeparticles)
1306                 {
1307                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1308                         {
1309                                 for (j = 0;j < activeparticles;j++)
1310                                 {
1311                                         if (freeparticles[j] != p)
1312                                         {
1313                                                 float dist, diff[3];
1314                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1315                                                 dist = DotProduct(diff, diff);
1316                                                 if (dist < 4096 && dist >= 1)
1317                                                 {
1318                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1319                                                         VectorMA(p->vel, dist, diff, p->vel);
1320                                                 }
1321                                         }
1322                                 }
1323                         }
1324                 }
1325         }
1326 }
1327
1328 #define MAX_PARTICLETEXTURES 64
1329 // particletexture_t is a rectangle in the particlefonttexture
1330 typedef struct
1331 {
1332         rtexture_t *texture;
1333         float s1, t1, s2, t2;
1334 }
1335 particletexture_t;
1336
1337 #if WORKINGLQUAKE
1338 static int particlefonttexture;
1339 #else
1340 static rtexturepool_t *particletexturepool;
1341 static rtexture_t *particlefonttexture;
1342 #endif
1343 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1344
1345 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1346
1347 static qbyte shadebubble(float dx, float dy, vec3_t light)
1348 {
1349         float dz, f, dot;
1350         vec3_t normal;
1351         dz = 1 - (dx*dx+dy*dy);
1352         if (dz > 0) // it does hit the sphere
1353         {
1354                 f = 0;
1355                 // back side
1356                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1357                 VectorNormalize(normal);
1358                 dot = DotProduct(normal, light);
1359                 if (dot > 0.5) // interior reflection
1360                         f += ((dot *  2) - 1);
1361                 else if (dot < -0.5) // exterior reflection
1362                         f += ((dot * -2) - 1);
1363                 // front side
1364                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1365                 VectorNormalize(normal);
1366                 dot = DotProduct(normal, light);
1367                 if (dot > 0.5) // interior reflection
1368                         f += ((dot *  2) - 1);
1369                 else if (dot < -0.5) // exterior reflection
1370                         f += ((dot * -2) - 1);
1371                 f *= 128;
1372                 f += 16; // just to give it a haze so you can see the outline
1373                 f = bound(0, f, 255);
1374                 return (qbyte) f;
1375         }
1376         else
1377                 return 0;
1378 }
1379
1380 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1381 {
1382         int basex, basey, y;
1383         basex = ((texnum >> 0) & 7) * 32;
1384         basey = ((texnum >> 3) & 7) * 32;
1385         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1386         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1387         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1388         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1389         for (y = 0;y < 32;y++)
1390                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1391 }
1392
1393 static void R_InitParticleTexture (void)
1394 {
1395         int x, y, d, i, j, k, m;
1396         float cx, cy, dx, dy, radius, f, f2;
1397         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1398         vec3_t light;
1399         qbyte particletexturedata[256*256*4];
1400
1401         memset(particletexturedata, 255, sizeof(particletexturedata));
1402
1403         // smoke/blood
1404         for (i = 0;i < 8;i++)
1405         {
1406                 do
1407                 {
1408                         fractalnoise(&noise1[0][0], 64, 4);
1409                         fractalnoise(&noise2[0][0], 64, 8);
1410                         m = 0;
1411                         for (y = 0;y < 32;y++)
1412                         {
1413                                 dy = y - 16;
1414                                 for (x = 0;x < 32;x++)
1415                                 {
1416                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1417                                         dx = x - 16;
1418                                         d = (noise2[y][x] - 128) * 3 + 192;
1419                                         if (d > 0)
1420                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1421                                         d = (d * noise1[y][x]) >> 7;
1422                                         d = bound(0, d, 255);
1423                                         data[y][x][3] = (qbyte) d;
1424                                         if (m < d)
1425                                                 m = d;
1426                                 }
1427                         }
1428                 }
1429                 while (m < 224);
1430
1431                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1432         }
1433
1434         // rain splash
1435         for (i = 0;i < 16;i++)
1436         {
1437                 radius = i * 3.0f / 16.0f;
1438                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1439                 for (y = 0;y < 32;y++)
1440                 {
1441                         dy = (y - 16) * 0.25f;
1442                         for (x = 0;x < 32;x++)
1443                         {
1444                                 dx = (x - 16) * 0.25f;
1445                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1446                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1447                                 f = bound(0.0f, f, 255.0f);
1448                                 data[y][x][3] = (int) f;
1449                         }
1450                 }
1451                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1452         }
1453
1454         // normal particle
1455         for (y = 0;y < 32;y++)
1456         {
1457                 dy = y - 16;
1458                 for (x = 0;x < 32;x++)
1459                 {
1460                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1461                         dx = x - 16;
1462                         d = (256 - (dx*dx+dy*dy));
1463                         d = bound(0, d, 255);
1464                         data[y][x][3] = (qbyte) d;
1465                 }
1466         }
1467         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1468
1469         // rain
1470         light[0] = 1;light[1] = 1;light[2] = 1;
1471         VectorNormalize(light);
1472         for (y = 0;y < 32;y++)
1473         {
1474                 for (x = 0;x < 32;x++)
1475                 {
1476                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1477                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1478                 }
1479         }
1480         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1481
1482         // bubble
1483         light[0] = 1;light[1] = 1;light[2] = 1;
1484         VectorNormalize(light);
1485         for (y = 0;y < 32;y++)
1486         {
1487                 for (x = 0;x < 32;x++)
1488                 {
1489                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1490                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1491                 }
1492         }
1493         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1494
1495         // smoke/blood
1496         for (i = 0;i < 8;i++)
1497         {
1498                 memset(&data[0][0][0], 255, sizeof(data));
1499                 for (j = 1;j < 8;j++)
1500                 {
1501                         for (k = 0;k < 3;k++)
1502                         {
1503                                 cx = lhrandom(j + 1, 30 - j);
1504                                 cy = lhrandom(j + 1, 30 - j);
1505                                 for (y = 0;y < 32;y++)
1506                                 {
1507                                         for (x = 0;x < 32;x++)
1508                                         {
1509                                                 dx = (x - cx);
1510                                                 dy = (y - cy);
1511                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1512                                                 if (f > 0)
1513                                                 {
1514                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1515                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1516                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1517                                                 }
1518                                         }
1519                                 }
1520                         }
1521                 }
1522                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1523                 for (y = 0;y < 32;y++)
1524                 {
1525                         for (x = 0;x < 32;x++)
1526                         {
1527                                 data[y][x][0] = 255 - data[y][x][0];
1528                                 data[y][x][1] = 255 - data[y][x][1];
1529                                 data[y][x][2] = 255 - data[y][x][2];
1530                         }
1531                 }
1532                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1533         }
1534
1535 #if WORKINGLQUAKE
1536         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1537         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1538         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1539 #else
1540         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1541         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1542                 particletexture[i].texture = particlefonttexture;
1543
1544         // beam
1545         fractalnoise(&noise1[0][0], 64, 4);
1546         m = 0;
1547         for (y = 0;y < 64;y++)
1548         {
1549                 for (x = 0;x < 16;x++)
1550                 {
1551                         if (x < 8)
1552                                 d = x;
1553                         else
1554                                 d = (15 - x);
1555                         d = d * d * noise1[y][x] / (7 * 7);
1556                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1557                         data2[y][x][3] = 255;
1558                 }
1559         }
1560
1561         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1562         particletexture[tex_beam].s1 = 0;
1563         particletexture[tex_beam].t1 = 0;
1564         particletexture[tex_beam].s2 = 1;
1565         particletexture[tex_beam].t2 = 1;
1566 #endif
1567 }
1568
1569 static void r_part_start(void)
1570 {
1571         particletexturepool = R_AllocTexturePool();
1572         R_InitParticleTexture ();
1573 }
1574
1575 static void r_part_shutdown(void)
1576 {
1577         R_FreeTexturePool(&particletexturepool);
1578 }
1579
1580 static void r_part_newmap(void)
1581 {
1582         cl_numparticles = 0;
1583 }
1584
1585 void R_Particles_Init (void)
1586 {
1587         Cvar_RegisterVariable(&r_drawparticles);
1588 #ifdef WORKINGLQUAKE
1589         r_part_start();
1590 #else
1591         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1592 #endif
1593 }
1594
1595 #ifdef WORKINGLQUAKE
1596 void R_InitParticles(void)
1597 {
1598         CL_Particles_Init();
1599         R_Particles_Init();
1600 }
1601
1602 float varray_vertex[16];
1603 #endif
1604
1605 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1606 {
1607         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1608         particletexture_t *tex;
1609 #ifndef WORKINGLQUAKE
1610         rmeshstate_t m;
1611 #endif
1612         const particle_t *p = calldata1;
1613
1614         VectorCopy(p->org, org);
1615
1616         if (p->orientation == PARTICLE_BILLBOARD)
1617         {
1618                 VectorScale(vright, p->scalex, right);
1619                 VectorScale(vup, p->scaley, up);
1620                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1621                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1622                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1623                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1624                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1625                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1626                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1627                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1628                 varray_vertex[10] = org[2] - right[2] + up[2];
1629                 varray_vertex[12] = org[0] + right[0] + up[0];
1630                 varray_vertex[13] = org[1] + right[1] + up[1];
1631                 varray_vertex[14] = org[2] + right[2] + up[2];
1632         }
1633         else if (p->orientation == PARTICLE_SPARK)
1634         {
1635                 VectorMA(p->org, -p->scaley, p->vel, v);
1636                 VectorMA(p->org, p->scaley, p->vel, up2);
1637                 R_CalcBeamVerts(varray_vertex, v, up2, p->scalex);
1638         }
1639         else if (p->orientation == PARTICLE_BEAM)
1640                 R_CalcBeamVerts(varray_vertex, p->org, p->vel2, p->scalex);
1641         else if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1642         {
1643                 // double-sided
1644                 if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1645                 {
1646                         VectorNegate(p->vel2, v);
1647                         VectorVectors(v, right, up);
1648                 }
1649                 else
1650                         VectorVectors(p->vel2, right, up);
1651                 VectorScale(right, p->scalex, right);
1652                 VectorScale(up, p->scaley, up);
1653                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1654                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1655                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1656                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1657                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1658                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1659                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1660                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1661                 varray_vertex[10] = org[2] - right[2] + up[2];
1662                 varray_vertex[12] = org[0] + right[0] + up[0];
1663                 varray_vertex[13] = org[1] + right[1] + up[1];
1664                 varray_vertex[14] = org[2] + right[2] + up[2];
1665         }
1666         else
1667                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1668
1669         tex = &particletexture[p->texnum];
1670         cr = p->color[0] * (1.0f / 255.0f);
1671         cg = p->color[1] * (1.0f / 255.0f);
1672         cb = p->color[2] * (1.0f / 255.0f);
1673         ca = p->alpha * (1.0f / 255.0f);
1674         if (p->blendmode == PBLEND_MOD)
1675         {
1676                 cr *= ca;
1677                 cg *= ca;
1678                 cb *= ca;
1679                 cr = min(cr, 1);
1680                 cg = min(cg, 1);
1681                 cb = min(cb, 1);
1682                 ca = 1;
1683         }
1684
1685 #if WORKINGLQUAKE
1686         if (p->blendmode == 0)
1687                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1688         else if (p->blendmode == 1)
1689                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1690         else
1691                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1692         glBegin(GL_QUADS);
1693         glColor4f(cr, cg, cb, ca);
1694         glTexCoord2f(tex->s2, tex->t1);glVertex3f(varray_vertex[ 0], varray_vertex[ 1], varray_vertex[ 2]);
1695         glTexCoord2f(tex->s1, tex->t1);glVertex3f(varray_vertex[ 4], varray_vertex[ 5], varray_vertex[ 6]);
1696         glTexCoord2f(tex->s1, tex->t2);glVertex3f(varray_vertex[ 8], varray_vertex[ 9], varray_vertex[10]);
1697         glTexCoord2f(tex->s2, tex->t2);glVertex3f(varray_vertex[12], varray_vertex[13], varray_vertex[14]);
1698         glEnd();
1699 #else
1700         memset(&m, 0, sizeof(m));
1701         if (p->blendmode == 0)
1702         {
1703                 m.blendfunc1 = GL_SRC_ALPHA;
1704                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
1705         }
1706         else if (p->blendmode == 1)
1707         {
1708                 m.blendfunc1 = GL_SRC_ALPHA;
1709                 m.blendfunc2 = GL_ONE;
1710         }
1711         else
1712         {
1713                 m.blendfunc1 = GL_ZERO;
1714                 m.blendfunc2 = GL_ONE_MINUS_SRC_COLOR;
1715         }
1716         m.tex[0] = R_GetTexture(tex->texture);
1717         R_Mesh_Matrix(&r_identitymatrix);
1718         R_Mesh_State(&m);
1719
1720         if (fogenabled && p->blendmode != PBLEND_MOD)
1721         {
1722                 VectorSubtract(org, r_origin, fogvec);
1723                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1724                 ifog = 1 - fog;
1725                 cr = cr * ifog;
1726                 cg = cg * ifog;
1727                 cb = cb * ifog;
1728                 if (p->blendmode == 0)
1729                 {
1730                         cr += fogcolor[0] * fog;
1731                         cg += fogcolor[1] * fog;
1732                         cb += fogcolor[2] * fog;
1733                 }
1734         }
1735         cr *= r_colorscale;
1736         cg *= r_colorscale;
1737         cb *= r_colorscale;
1738
1739         if (p->orientation == PARTICLE_BEAM)
1740         {
1741                 VectorSubtract(p->vel2, p->org, up);
1742                 VectorNormalizeFast(up);
1743                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1744                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1745                 varray_texcoord[0][0] = 1;varray_texcoord[0][1] = v[0];
1746                 varray_texcoord[0][4] = 0;varray_texcoord[0][5] = v[0];
1747                 varray_texcoord[0][8] = 0;varray_texcoord[0][9] = v[1];
1748                 varray_texcoord[0][12] = 1;varray_texcoord[0][13] = v[1];
1749         }
1750         else
1751         {
1752                 varray_texcoord[0][0] = tex->s2;varray_texcoord[0][1] = tex->t1;
1753                 varray_texcoord[0][4] = tex->s1;varray_texcoord[0][5] = tex->t1;
1754                 varray_texcoord[0][8] = tex->s1;varray_texcoord[0][9] = tex->t2;
1755                 varray_texcoord[0][12] = tex->s2;varray_texcoord[0][13] = tex->t2;
1756         }
1757
1758         GL_Color(cr, cg, cb, ca);
1759         R_Mesh_Draw(4, 2, polygonelements);
1760 #endif
1761 }
1762
1763 void R_DrawParticles (void)
1764 {
1765         int i;
1766         float minparticledist;
1767         particle_t *p;
1768
1769 #ifdef WORKINGLQUAKE
1770         CL_MoveParticles();
1771 #endif
1772
1773         // LordHavoc: early out conditions
1774         if ((!cl_numparticles) || (!r_drawparticles.integer))
1775                 return;
1776
1777         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1778
1779 #ifdef WORKINGLQUAKE
1780         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1781         glEnable(GL_BLEND);
1782         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1783         glDepthMask(0);
1784         // LordHavoc: only render if not too close
1785         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1786                 if (DotProduct(p->org, vpn) >= minparticledist)
1787                         R_DrawParticleCallback(p, 0);
1788         glDepthMask(1);
1789         glDisable(GL_BLEND);
1790         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1791 #else
1792         // LordHavoc: only render if not too close
1793         c_particles += cl_numparticles;
1794         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1795                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1796                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1797 #endif
1798 }
1799