]> icculus.org git repositories - divverent/darkplaces.git/blob - cl_particles.c
fix textured DrawQ_Fill problem when DrawQ_Fill is the first 2d primitive rendered...
[divverent/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeamVerts (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 4] = org1[0] - width * right1[0];
65         vert[ 5] = org1[1] - width * right1[1];
66         vert[ 6] = org1[2] - width * right1[2];
67         vert[ 8] = org2[0] - width * right2[0];
68         vert[ 9] = org2[1] - width * right2[1];
69         vert[10] = org2[2] - width * right2[2];
70         vert[12] = org2[0] + width * right2[0];
71         vert[13] = org2[1] + width * right2[1];
72         vert[14] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
184 }
185 ptype_t;
186
187 #define PARTICLE_INVALID 0
188 #define PARTICLE_BILLBOARD 1
189 #define PARTICLE_SPARK 2
190 #define PARTICLE_ORIENTED_DOUBLESIDED 3
191 #define PARTICLE_BEAM 4
192
193 #define PBLEND_ALPHA 0
194 #define PBLEND_ADD 1
195 #define PBLEND_MOD 2
196
197 typedef struct particle_s
198 {
199         ptype_t         type;
200         int                     orientation;
201         int                     texnum;
202         int                     blendmode;
203         vec3_t          org;
204         vec3_t          vel;
205         float           die;
206         float           scalex;
207         float           scaley;
208         float           alpha; // 0-255
209         float           alphafade; // how much alpha reduces per second
210         float           time2; // used for various things (snow fluttering, for example)
211         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
212         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
213         vec3_t          oldorg;
214         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
215         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
216         float           pressure; // if non-zero, apply pressure to other particles
217         qbyte           color[4];
218 }
219 particle_t;
220
221 static int particlepalette[256] =
222 {
223         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
224         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
225         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
226         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
227         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
228         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
229         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
230         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
231         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
232         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
233         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
234         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
235         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
236         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
237         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
238         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
239         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
240         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
241         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
242         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
243         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
244         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
245         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
246         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
247         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
248         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
249         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
250         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
251         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
252         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
253         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
254         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
255 };
256
257 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
258
259 // texture numbers in particle font
260 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
261 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
262 static const int tex_particle = 24;
263 static const int tex_raindrop = 25;
264 static const int tex_bubble = 26;
265 static const int tex_beam = 27;
266 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
267
268 static int                      cl_maxparticles;
269 static int                      cl_numparticles;
270 static particle_t       *particles;
271 static particle_t       **freeparticles; // list used only in compacting particles array
272
273 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
274 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
275 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
276 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
277 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
278 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
279 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
280 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
281 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
282 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
283 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
284 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
285 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
286
287 #ifndef WORKINGLQUAKE
288 static mempool_t *cl_part_mempool;
289 #endif
290
291 void CL_Particles_Clear(void)
292 {
293         cl_numparticles = 0;
294 }
295
296 /*
297 ===============
298 CL_InitParticles
299 ===============
300 */
301 void CL_ReadPointFile_f (void);
302 void CL_Particles_Init (void)
303 {
304         int             i;
305
306         i = COM_CheckParm ("-particles");
307
308         if (i && i < com_argc - 1)
309         {
310                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
311                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
312                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
313         }
314         else
315                 cl_maxparticles = MAX_PARTICLES;
316
317         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
318
319         Cvar_RegisterVariable (&cl_particles);
320         Cvar_RegisterVariable (&cl_particles_size);
321         Cvar_RegisterVariable (&cl_particles_bloodshowers);
322         Cvar_RegisterVariable (&cl_particles_blood);
323         Cvar_RegisterVariable (&cl_particles_blood_size);
324         Cvar_RegisterVariable (&cl_particles_blood_alpha);
325         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
326         Cvar_RegisterVariable (&cl_particles_smoke);
327         Cvar_RegisterVariable (&cl_particles_sparks);
328         Cvar_RegisterVariable (&cl_particles_bubbles);
329         Cvar_RegisterVariable (&cl_decals);
330         Cvar_RegisterVariable (&cl_decals_time);
331         Cvar_RegisterVariable (&cl_decals_fadetime);
332
333 #ifdef WORKINGLQUAKE
334         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
335         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
336 #else
337         cl_part_mempool = Mem_AllocPool("CL_Part");
338         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
339         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
340 #endif
341         cl_numparticles = 0;
342 }
343
344 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
345 {\
346         if (cl_numparticles < cl_maxparticles)\
347         {\
348                 particle_t      *part;\
349                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
350                 ptempcolor = (pcolor1);\
351                 ptempcolor2 = (pcolor2);\
352                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
353                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
354                 pcb2 = (ptempcolor2) & 0xFF;\
355                 if (ptempcolor != ptempcolor2)\
356                 {\
357                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
358                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
359                         pcb1 = (ptempcolor) & 0xFF;\
360                         ptempcolor = rand() & 0xFF;\
361                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
362                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
363                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
364                 }\
365                 part = &particles[cl_numparticles++];\
366                 part->type = (ptype);\
367                 part->color[0] = pcr2;\
368                 part->color[1] = pcg2;\
369                 part->color[2] = pcb2;\
370                 part->color[3] = 0xFF;\
371                 part->orientation = porientation;\
372                 part->texnum = ptex;\
373                 part->blendmode = pblendmode;\
374                 part->scalex = (pscalex);\
375                 part->scaley = (pscaley);\
376                 part->alpha = (palpha);\
377                 part->alphafade = (palphafade);\
378                 part->die = cl.time + (ptime);\
379                 part->gravity = (pgravity);\
380                 part->bounce = (pbounce);\
381                 part->org[0] = (px);\
382                 part->org[1] = (py);\
383                 part->org[2] = (pz);\
384                 part->vel[0] = (pvx);\
385                 part->vel[1] = (pvy);\
386                 part->vel[2] = (pvz);\
387                 part->time2 = (ptime2);\
388                 part->vel2[0] = (pvx2);\
389                 part->vel2[1] = (pvy2);\
390                 part->vel2[2] = (pvz2);\
391                 part->friction = (pfriction);\
392                 part->pressure = (ppressure);\
393         }\
394 }
395
396 /*
397 ===============
398 CL_EntityParticles
399 ===============
400 */
401 void CL_EntityParticles (entity_t *ent)
402 {
403         int                     i;
404         float           angle;
405         float           sp, sy, cp, cy;
406         vec3_t          forward;
407         float           dist;
408         float           beamlength;
409         static vec3_t avelocities[NUMVERTEXNORMALS];
410         if (!cl_particles.integer) return;
411
412         dist = 64;
413         beamlength = 16;
414
415         if (!avelocities[0][0])
416                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
417                         avelocities[0][i] = (rand()&255) * 0.01;
418
419         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
420         {
421                 angle = cl.time * avelocities[i][0];
422                 sy = sin(angle);
423                 cy = cos(angle);
424                 angle = cl.time * avelocities[i][1];
425                 sp = sin(angle);
426                 cp = cos(angle);
427
428                 forward[0] = cp*cy;
429                 forward[1] = cp*sy;
430                 forward[2] = -sp;
431
432 #ifdef WORKINGLQUAKE
433                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
434 #else
435                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
436 #endif
437         }
438 }
439
440
441 void CL_ReadPointFile_f (void)
442 {
443         vec3_t  org;
444         int             r, c;
445         char    *pointfile = NULL, *pointfilepos, *t, tchar;
446 #if WORKINGLQUAKE
447         char    name[MAX_OSPATH];
448         
449         sprintf (name,"maps/%s.pts", cl.worldmodel->name);
450         COM_FOpenFile (name, &f);
451         if (f)
452         {
453                 int pointfilelength;
454                 fseek(f, 0, SEEK_END);
455                 pointfilelength = ftell(f);
456                 fseek(f, 0, SEEK_SET);
457                 pointfile = malloc(pointfilelength + 1);
458                 fread(pointfile, 1, pointfilelength, f);
459                 pointfile[pointfilelength] = 0;
460                 fclose(f);
461         }
462 #else
463         pointfile = COM_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true);
464 #endif
465         if (!pointfile)
466         {
467                 Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name);
468                 return;
469         }
470
471         Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name);
472         c = 0;
473         pointfilepos = pointfile;
474         while (*pointfilepos)
475         {
476                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
477                         pointfilepos++;
478                 if (!*pointfilepos)
479                         break;
480                 t = pointfilepos;
481                 while (*t && *t != '\n' && *t != '\r')
482                         t++;
483                 tchar = *t;
484                 *t = 0;
485                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
486                 *t = tchar;
487                 pointfilepos = t;
488                 if (r != 3)
489                         break;
490                 c++;
491
492                 if (cl_numparticles >= cl_maxparticles)
493                 {
494                         Con_Printf ("Not enough free particles\n");
495                         break;
496                 }
497                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
498         }
499
500 #ifdef WORKINGLQUAKE
501         free(pointfile);
502 #else
503         Mem_Free(pointfile);
504 #endif
505         Con_Printf ("%i points read\n", c);
506 }
507
508 /*
509 ===============
510 CL_ParseParticleEffect
511
512 Parse an effect out of the server message
513 ===============
514 */
515 void CL_ParseParticleEffect (void)
516 {
517         vec3_t org, dir;
518         int i, count, msgcount, color;
519
520         for (i=0 ; i<3 ; i++)
521                 org[i] = MSG_ReadCoord ();
522         for (i=0 ; i<3 ; i++)
523                 dir[i] = MSG_ReadChar () * (1.0/16);
524         msgcount = MSG_ReadByte ();
525         color = MSG_ReadByte ();
526
527         if (msgcount == 255)
528                 count = 1024;
529         else
530                 count = msgcount;
531
532         CL_RunParticleEffect (org, dir, color, count);
533 }
534
535 /*
536 ===============
537 CL_ParticleExplosion
538
539 ===============
540 */
541 void CL_ParticleExplosion (vec3_t org)
542 {
543         int i, k;
544         //vec3_t v;
545         //vec3_t v2;
546         if (cl_stainmaps.integer)
547                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
548
549         i = Mod_PointContents(org, cl.worldmodel);
550         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
551         {
552                 for (i = 0;i < 128;i++)
553                 {
554                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
555                 }
556         }
557         else
558         {
559                 /*
560                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
561                 // smoke puff
562                 if (cl_particles_smoke.integer)
563                 {
564                         for (i = 0;i < 64;i++)
565                         {
566 #ifdef WORKINGLQUAKE
567                                 v2[0] = lhrandom(-64, 64);
568                                 v2[1] = lhrandom(-64, 64);
569                                 v2[2] = lhrandom(-8, 24);
570 #else
571                                 for (k = 0;k < 16;k++)
572                                 {
573                                         v[0] = org[0] + lhrandom(-64, 64);
574                                         v[1] = org[1] + lhrandom(-64, 64);
575                                         v[2] = org[2] + lhrandom(-8, 24);
576                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
577                                                 break;
578                                 }
579                                 VectorSubtract(v2, org, v2);
580 #endif
581                                 VectorScale(v2, 2.0f, v2);
582                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
583                         }
584                 }
585                 */
586
587                 if (cl_particles_sparks.integer)
588                 {
589                         // sparks
590                         for (i = 0;i < 256;i++)
591                         {
592                                 k = particlepalette[0x68 + (rand() & 7)];
593                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
594                         }
595                 }
596         }
597
598         if (cl_explosions.integer)
599                 R_NewExplosion(org);
600 }
601
602 /*
603 ===============
604 CL_ParticleExplosion2
605
606 ===============
607 */
608 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
609 {
610         int i, k;
611         if (!cl_particles.integer) return;
612
613         for (i = 0;i < 512;i++)
614         {
615                 k = particlepalette[colorStart + (i % colorLength)];
616                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
617         }
618 }
619
620 /*
621 ===============
622 CL_BlobExplosion
623
624 ===============
625 */
626 void CL_BlobExplosion (vec3_t org)
627 {
628         if (cl_stainmaps.integer)
629                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
630
631         if (cl_explosions.integer)
632                 R_NewExplosion(org);
633 }
634
635 /*
636 ===============
637 CL_RunParticleEffect
638
639 ===============
640 */
641 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
642 {
643         int k;
644
645         if (count == 1024)
646         {
647                 CL_ParticleExplosion(org);
648                 return;
649         }
650         if (!cl_particles.integer) return;
651         while (count--)
652         {
653                 k = particlepalette[color + (rand()&7)];
654                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
655         }
656 }
657
658 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
659 /*
660 ===============
661 CL_SparkShower
662 ===============
663 */
664 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
665 {
666         int k;
667         if (!cl_particles.integer) return;
668
669         if (cl_stainmaps.integer)
670                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
671
672         if (cl_particles_bulletimpacts.integer)
673         {
674                 // smoke puff
675                 if (cl_particles_smoke.integer)
676                 {
677                         k = count / 4;
678                         while(k--)
679                         {
680                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
681                         }
682                 }
683
684                 if (cl_particles_sparks.integer)
685                 {
686                         // sparks
687                         while(count--)
688                         {
689                                 k = particlepalette[0x68 + (rand() & 7)];
690                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
691                         }
692                 }
693         }
694 }
695
696 void CL_PlasmaBurn (vec3_t org)
697 {
698         if (cl_stainmaps.integer)
699                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
700 }
701
702 static float bloodcount = 0;
703 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
704 {
705         float s, r, a;
706         // bloodcount is used to accumulate counts too small to cause a blood particle
707         if (!cl_particles.integer) return;
708         if (!cl_particles_blood.integer) return;
709
710         s = count + 32.0f;
711         count *= 5.0f;
712         if (count > 1000)
713                 count = 1000;
714         bloodcount += count;
715         r = cl_particles_blood_size.value;
716         a = cl_particles_blood_alpha.value * 255;
717         while(bloodcount > 0)
718         {
719                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
720                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
721                 bloodcount -= r;
722         }
723 }
724
725 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
726 {
727         float r;
728         float a;
729         vec3_t diff, center, velscale;
730         if (!cl_particles.integer) return;
731         if (!cl_particles_bloodshowers.integer) return;
732         if (!cl_particles_blood.integer) return;
733
734         VectorSubtract(maxs, mins, diff);
735         center[0] = (mins[0] + maxs[0]) * 0.5;
736         center[1] = (mins[1] + maxs[1]) * 0.5;
737         center[2] = (mins[2] + maxs[2]) * 0.5;
738         // FIXME: change velspeed back to 2.0x after fixing mod
739         velscale[0] = velspeed * 2.0 / diff[0];
740         velscale[1] = velspeed * 2.0 / diff[1];
741         velscale[2] = velspeed * 2.0 / diff[2];
742
743         bloodcount += count * 5.0f;
744         r = cl_particles_blood_size.value;
745         a = cl_particles_blood_alpha.value * 255;
746         while (bloodcount > 0)
747         {
748                 vec3_t org, vel;
749                 org[0] = lhrandom(mins[0], maxs[0]);
750                 org[1] = lhrandom(mins[1], maxs[1]);
751                 org[2] = lhrandom(mins[2], maxs[2]);
752                 vel[0] = (org[0] - center[0]) * velscale[0];
753                 vel[1] = (org[1] - center[1]) * velscale[1];
754                 vel[2] = (org[2] - center[2]) * velscale[2];
755                 bloodcount -= r;
756                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
757                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
758         }
759 }
760
761 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
762 {
763         int k;
764         float t;
765         if (!cl_particles.integer) return;
766         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
767         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
768         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
769
770         while (count--)
771         {
772                 k = particlepalette[colorbase + (rand()&3)];
773                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
774         }
775 }
776
777 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
778 {
779         int k;
780         float t, z, minz, maxz;
781         if (!cl_particles.integer) return;
782         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
783         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
784         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
785         if (dir[2] < 0) // falling
786         {
787                 t = (maxs[2] - mins[2]) / -dir[2];
788                 z = maxs[2];
789         }
790         else // rising??
791         {
792                 t = (maxs[2] - mins[2]) / dir[2];
793                 z = mins[2];
794         }
795         if (t < 0 || t > 2) // sanity check
796                 t = 2;
797
798         minz = z - fabs(dir[2]) * 0.1;
799         maxz = z + fabs(dir[2]) * 0.1;
800         minz = bound(mins[2], minz, maxs[2]);
801         maxz = bound(mins[2], maxz, maxs[2]);
802
803         switch(type)
804         {
805         case 0:
806                 count *= 4; // ick, this should be in the mod or maps?
807
808                 while(count--)
809                 {
810                         k = particlepalette[colorbase + (rand()&3)];
811                         particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
812                 }
813                 break;
814         case 1:
815                 while(count--)
816                 {
817                         k = particlepalette[colorbase + (rand()&3)];
818                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
819                 }
820                 break;
821         default:
822                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
823         }
824 }
825
826 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
827 {
828         int k;
829         float t;
830         vec3_t o, v, center;
831         if (!cl_particles.integer) return;
832
833         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
834         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
835         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
836
837         center[0] = (mins[0] + maxs[0]) * 0.5f;
838         center[1] = (mins[1] + maxs[1]) * 0.5f;
839         center[2] = (mins[2] + maxs[2]) * 0.5f;
840
841         while (count--)
842         {
843                 k = particlepalette[224 + (rand()&15)];
844                 o[0] = lhrandom(mins[0], maxs[0]);
845                 o[1] = lhrandom(mins[1], maxs[1]);
846                 o[2] = lhrandom(mins[2], maxs[2]);
847                 VectorSubtract(o, center, v);
848                 VectorNormalizeFast(v);
849                 VectorScale(v, 100, v);
850                 v[2] += sv_gravity.value * 0.15f;
851                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
852         }
853 }
854
855 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
856 {
857         int k;
858         float t;
859         if (!cl_particles.integer) return;
860         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
861         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
862         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
863
864         while (count--)
865         {
866                 k = particlepalette[224 + (rand()&15)];
867                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
868                 if (count & 1)
869                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
870         }
871 }
872
873 void CL_Flames (vec3_t org, vec3_t vel, int count)
874 {
875         int k;
876         if (!cl_particles.integer) return;
877
878         while (count--)
879         {
880                 k = particlepalette[224 + (rand()&15)];
881                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
882         }
883 }
884
885
886
887 /*
888 ===============
889 CL_LavaSplash
890
891 ===============
892 */
893 void CL_LavaSplash (vec3_t origin)
894 {
895         int                     i, j, k;
896         float           vel;
897         vec3_t          dir, org;
898         if (!cl_particles.integer) return;
899
900         for (i=-128 ; i<128 ; i+=16)
901         {
902                 for (j=-128 ; j<128 ; j+=16)
903                 {
904                         dir[0] = j + lhrandom(0, 8);
905                         dir[1] = i + lhrandom(0, 8);
906                         dir[2] = 256;
907                         org[0] = origin[0] + dir[0];
908                         org[1] = origin[1] + dir[1];
909                         org[2] = origin[2] + lhrandom(0, 64);
910                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
911                         k = particlepalette[224 + (rand()&7)];
912                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
913                 }
914         }
915 }
916
917 /*
918 ===============
919 CL_TeleportSplash
920
921 ===============
922 */
923 #if WORKINGLQUAKE
924 void R_TeleportSplash (vec3_t org)
925 {
926         int i, j, k;
927         if (!cl_particles.integer) return;
928
929         for (i=-16 ; i<16 ; i+=8)
930                 for (j=-16 ; j<16 ; j+=8)
931                         for (k=-24 ; k<32 ; k+=8)
932                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
933 }
934 #endif
935
936 #ifdef WORKINGLQUAKE
937 void R_RocketTrail (vec3_t start, vec3_t end, int type)
938 #else
939 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
940 #endif
941 {
942         vec3_t vec, dir, vel, pos;
943         float len, dec, speed, r;
944         int contents, smoke, blood, bubbles;
945
946         VectorSubtract(end, start, dir);
947         VectorNormalize(dir);
948
949         VectorSubtract (end, start, vec);
950 #ifdef WORKINGLQUAKE
951         len = VectorNormalize (vec);
952         dec = 0;
953         speed = 1.0f / cl.frametime;
954         VectorSubtract(end, start, vel);
955 #else
956         len = VectorNormalizeLength (vec);
957         dec = -ent->persistent.trail_time;
958         ent->persistent.trail_time += len;
959         if (ent->persistent.trail_time < 0.01f)
960                 return;
961
962         // if we skip out, leave it reset
963         ent->persistent.trail_time = 0.0f;
964
965         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
966         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
967 #endif
968         VectorScale(vel, speed, vel);
969
970         // advance into this frame to reach the first puff location
971         VectorMA(start, dec, vec, pos);
972         len -= dec;
973
974         contents = Mod_PointContents(pos, cl.worldmodel);
975         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
976                 return;
977
978         smoke = cl_particles.integer && cl_particles_smoke.integer;
979         blood = cl_particles.integer && cl_particles_blood.integer;
980         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
981
982         while (len >= 0)
983         {
984                 switch (type)
985                 {
986                         case 0: // rocket trail
987                                 dec = 3;
988                                 if (smoke)
989                                 {
990                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 32, 64, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 6, 0, 0, 0, 0, 0);
991                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 128, 768, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
992                                 }
993                                 if (bubbles)
994                                 {
995                                         r = lhrandom(1, 2);
996                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
997                                 }
998                                 break;
999
1000                         case 1: // grenade trail
1001                                 // FIXME: make it gradually stop smoking
1002                                 dec = 3;
1003                                 if (cl_particles.integer && cl_particles_smoke.integer)
1004                                 {
1005                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, 32, 96, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0, 0, 0, 0, 0, 0);
1006                                 }
1007                                 break;
1008
1009
1010                         case 2: // blood
1011                         case 4: // slight blood
1012                                 dec = cl_particles_blood_size.value;
1013                                 if (blood)
1014                                 {
1015                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1016                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1017                                 }
1018                                 break;
1019
1020                         case 3: // green tracer
1021                                 dec = 6;
1022                                 if (smoke)
1023                                 {
1024                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1025                                 }
1026                                 break;
1027
1028                         case 5: // flame tracer
1029                                 dec = 6;
1030                                 if (smoke)
1031                                 {
1032                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1033                                 }
1034                                 break;
1035
1036                         case 6: // voor trail
1037                                 dec = 6;
1038                                 if (smoke)
1039                                 {
1040                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1041                                 }
1042                                 break;
1043
1044                         case 7: // Nehahra smoke tracer
1045                                 dec = 7;
1046                                 if (smoke)
1047                                 {
1048                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1049                                 }
1050                                 break;
1051                         case 8: // Nexiuz plasma trail
1052                                 dec = 4;
1053                                 if (smoke)
1054                                 {
1055                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1056                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1057                                 }
1058                 }
1059
1060                 // advance to next time and position
1061                 len -= dec;
1062                 VectorMA (pos, dec, vec, pos);
1063         }
1064 #ifndef WORKINGLQUAKE
1065         ent->persistent.trail_time = len;
1066 #endif
1067 }
1068
1069 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1070 {
1071         vec3_t vec, pos;
1072         int len;
1073         if (!cl_particles.integer) return;
1074         if (!cl_particles_smoke.integer) return;
1075
1076         VectorCopy(start, pos);
1077         VectorSubtract (end, start, vec);
1078 #ifdef WORKINGLQUAKE
1079         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1080 #else
1081         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1082 #endif
1083         VectorScale(vec, 3, vec);
1084         color = particlepalette[color];
1085         while (len--)
1086         {
1087                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1088                 VectorAdd (pos, vec, pos);
1089         }
1090 }
1091
1092 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1093 {
1094         int tempcolor2, cr, cg, cb;
1095         cr = red * 255;
1096         cg = green * 255;
1097         cb = blue * 255;
1098         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1099         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1100 }
1101
1102 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1103 {
1104         int k;
1105         if (!cl_particles.integer) return;
1106
1107         // smoke puff
1108         if (cl_particles_smoke.integer)
1109         {
1110                 k = count / 4;
1111                 while(k--)
1112                 {
1113                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1114                 }
1115         }
1116 }
1117
1118 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1119 {
1120         int k;
1121         if (!cl_particles.integer) return;
1122
1123         if (cl_stainmaps.integer)
1124                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1125
1126         // smoke puff
1127         if (cl_particles_smoke.integer)
1128         {
1129                 k = count / 4;
1130                 while(k--)
1131                 {
1132                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1133                 }
1134         }
1135
1136         if (cl_particles_sparks.integer)
1137         {
1138                 // sparks
1139                 while(count--)
1140                 {
1141                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1142                 }
1143         }
1144 }
1145
1146 /*
1147 ===============
1148 CL_MoveParticles
1149 ===============
1150 */
1151 void CL_MoveParticles (void)
1152 {
1153         particle_t *p;
1154         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1155         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1156
1157         // LordHavoc: early out condition
1158         if (!cl_numparticles)
1159                 return;
1160
1161 #ifdef WORKINGLQUAKE
1162         frametime = cl.frametime;
1163 #else
1164         frametime = cl.time - cl.oldtime;
1165 #endif
1166         gravity = frametime * sv_gravity.value;
1167         dvel = 1+4*frametime;
1168         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1169
1170         activeparticles = 0;
1171         maxparticle = -1;
1172         j = 0;
1173         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1174         {
1175                 content = 0;
1176                 VectorCopy(p->org, p->oldorg);
1177                 VectorMA(p->org, frametime, p->vel, p->org);
1178                 VectorCopy(p->org, org);
1179                 if (p->bounce)
1180                 {
1181                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, NULL) < 1)
1182                         {
1183                                 VectorCopy(v, p->org);
1184                                 if (p->bounce < 0)
1185                                 {
1186                                         // assume it's blood (lame, but...)
1187 #ifndef WORKINGLQUAKE
1188                                         if (cl_stainmaps.integer)
1189                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1190 #endif
1191                                         if (cl_decals.integer)
1192                                         {
1193                                                 p->type = pt_decal;
1194                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1195                                                 p->time2 = cl.time + cl_decals_time.value;
1196                                                 p->die = p->time2 + cl_decals_fadetime.value;
1197                                                 p->alphafade = 0;
1198                                                 VectorCopy(normal, p->vel2);
1199                                                 VectorClear(p->vel);
1200                                                 VectorAdd(p->org, normal, p->org);
1201                                                 p->bounce = 0;
1202                                                 p->friction = 0;
1203                                                 p->gravity = 0;
1204                                                 p->scalex *= 1.25f;
1205                                                 p->scaley *= 1.25f;
1206                                         }
1207                                         else
1208                                         {
1209                                                 p->die = -1;
1210                                                 freeparticles[j++] = p;
1211                                                 continue;
1212                                         }
1213                                 }
1214                                 else
1215                                 {
1216                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1217                                         VectorMA(p->vel, dist, normal, p->vel);
1218                                         if (DotProduct(p->vel, p->vel) < 0.03)
1219                                                 VectorClear(p->vel);
1220                                 }
1221                         }
1222                 }
1223                 p->vel[2] -= p->gravity * gravity;
1224                 p->alpha -= p->alphafade * frametime;
1225                 if (p->friction)
1226                 {
1227                         f = p->friction * frametime;
1228                         if (!content)
1229                                 content = Mod_PointContents(p->org, cl.worldmodel);
1230                         if (content != CONTENTS_EMPTY)
1231                                 f *= 4;
1232                         f = 1.0f - f;
1233                         VectorScale(p->vel, f, p->vel);
1234                 }
1235
1236                 if (p->type != pt_static)
1237                 {
1238                         switch (p->type)
1239                         {
1240                         case pt_blood:
1241                                 if (!content)
1242                                         content = Mod_PointContents(p->org, cl.worldmodel);
1243                                 a = content;
1244                                 if (a != CONTENTS_EMPTY)
1245                                 {
1246                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1247                                         {
1248                                                 p->scalex += frametime * cl_particles_blood_size.value;
1249                                                 p->scaley += frametime * cl_particles_blood_size.value;
1250                                                 //p->alpha -= bloodwaterfade;
1251                                         }
1252                                         else
1253                                                 p->die = -1;
1254                                 }
1255                                 else
1256                                         p->vel[2] -= gravity;
1257                                 break;
1258                         case pt_bubble:
1259                                 if (!content)
1260                                         content = Mod_PointContents(p->org, cl.worldmodel);
1261                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1262                                 {
1263                                         p->die = -1;
1264                                         break;
1265                                 }
1266                                 break;
1267                         case pt_rain:
1268                                 if (cl.time > p->time2)
1269                                 {
1270                                         // snow flutter
1271                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1272                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1273                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1274                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1275                                 }
1276                                 if (!content)
1277                                         content = Mod_PointContents(p->org, cl.worldmodel);
1278                                 a = content;
1279                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1280                                         p->die = -1;
1281                                 break;
1282                         case pt_grow:
1283                                 p->scalex += frametime * p->time2;
1284                                 p->scaley += frametime * p->time2;
1285                                 break;
1286                         case pt_decal:
1287                                 if (cl.time > p->time2)
1288                                 {
1289                                         p->alphafade = p->alpha / (p->die - cl.time);
1290                                         p->time2 += 10000;
1291                                 }
1292                                 break;
1293                         default:
1294                                 printf("unknown particle type %i\n", p->type);
1295                                 p->die = -1;
1296                                 break;
1297                         }
1298                 }
1299
1300                 // remove dead particles
1301                 if (p->alpha < 1 || p->die < cl.time)
1302                         freeparticles[j++] = p;
1303                 else
1304                 {
1305                         maxparticle = i;
1306                         activeparticles++;
1307                         if (p->pressure)
1308                                 pressureused = true;
1309                 }
1310         }
1311         // fill in gaps to compact the array
1312         i = 0;
1313         while (maxparticle >= activeparticles)
1314         {
1315                 *freeparticles[i++] = particles[maxparticle--];
1316                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1317                         maxparticle--;
1318         }
1319         cl_numparticles = activeparticles;
1320
1321         if (pressureused)
1322         {
1323                 activeparticles = 0;
1324                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1325                         if (p->pressure)
1326                                 freeparticles[activeparticles++] = p;
1327
1328                 if (activeparticles)
1329                 {
1330                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1331                         {
1332                                 for (j = 0;j < activeparticles;j++)
1333                                 {
1334                                         if (freeparticles[j] != p)
1335                                         {
1336                                                 float dist, diff[3];
1337                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1338                                                 dist = DotProduct(diff, diff);
1339                                                 if (dist < 4096 && dist >= 1)
1340                                                 {
1341                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1342                                                         VectorMA(p->vel, dist, diff, p->vel);
1343                                                 }
1344                                         }
1345                                 }
1346                         }
1347                 }
1348         }
1349 }
1350
1351 #define MAX_PARTICLETEXTURES 64
1352 // particletexture_t is a rectangle in the particlefonttexture
1353 typedef struct
1354 {
1355         rtexture_t *texture;
1356         float s1, t1, s2, t2;
1357 }
1358 particletexture_t;
1359
1360 #if WORKINGLQUAKE
1361 static int particlefonttexture;
1362 #else
1363 static rtexturepool_t *particletexturepool;
1364 static rtexture_t *particlefonttexture;
1365 #endif
1366 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1367
1368 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1369
1370 static qbyte shadebubble(float dx, float dy, vec3_t light)
1371 {
1372         float dz, f, dot;
1373         vec3_t normal;
1374         dz = 1 - (dx*dx+dy*dy);
1375         if (dz > 0) // it does hit the sphere
1376         {
1377                 f = 0;
1378                 // back side
1379                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1380                 VectorNormalize(normal);
1381                 dot = DotProduct(normal, light);
1382                 if (dot > 0.5) // interior reflection
1383                         f += ((dot *  2) - 1);
1384                 else if (dot < -0.5) // exterior reflection
1385                         f += ((dot * -2) - 1);
1386                 // front side
1387                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1388                 VectorNormalize(normal);
1389                 dot = DotProduct(normal, light);
1390                 if (dot > 0.5) // interior reflection
1391                         f += ((dot *  2) - 1);
1392                 else if (dot < -0.5) // exterior reflection
1393                         f += ((dot * -2) - 1);
1394                 f *= 128;
1395                 f += 16; // just to give it a haze so you can see the outline
1396                 f = bound(0, f, 255);
1397                 return (qbyte) f;
1398         }
1399         else
1400                 return 0;
1401 }
1402
1403 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1404 {
1405         int basex, basey, y;
1406         basex = ((texnum >> 0) & 7) * 32;
1407         basey = ((texnum >> 3) & 7) * 32;
1408         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1409         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1410         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1411         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1412         for (y = 0;y < 32;y++)
1413                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1414 }
1415
1416 static void R_InitParticleTexture (void)
1417 {
1418         int x, y, d, i, j, k, m;
1419         float cx, cy, dx, dy, radius, f, f2;
1420         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1421         vec3_t light;
1422         qbyte particletexturedata[256*256*4];
1423
1424         memset(particletexturedata, 255, sizeof(particletexturedata));
1425
1426         // smoke/blood
1427         for (i = 0;i < 8;i++)
1428         {
1429                 do
1430                 {
1431                         fractalnoise(&noise1[0][0], 64, 4);
1432                         fractalnoise(&noise2[0][0], 64, 8);
1433                         m = 0;
1434                         for (y = 0;y < 32;y++)
1435                         {
1436                                 dy = y - 16;
1437                                 for (x = 0;x < 32;x++)
1438                                 {
1439                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1440                                         dx = x - 16;
1441                                         d = (noise2[y][x] - 128) * 3 + 192;
1442                                         if (d > 0)
1443                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1444                                         d = (d * noise1[y][x]) >> 7;
1445                                         d = bound(0, d, 255);
1446                                         data[y][x][3] = (qbyte) d;
1447                                         if (m < d)
1448                                                 m = d;
1449                                 }
1450                         }
1451                 }
1452                 while (m < 224);
1453
1454                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1455         }
1456
1457         // rain splash
1458         for (i = 0;i < 16;i++)
1459         {
1460                 radius = i * 3.0f / 16.0f;
1461                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1462                 for (y = 0;y < 32;y++)
1463                 {
1464                         dy = (y - 16) * 0.25f;
1465                         for (x = 0;x < 32;x++)
1466                         {
1467                                 dx = (x - 16) * 0.25f;
1468                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1469                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1470                                 f = bound(0.0f, f, 255.0f);
1471                                 data[y][x][3] = (int) f;
1472                         }
1473                 }
1474                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1475         }
1476
1477         // normal particle
1478         for (y = 0;y < 32;y++)
1479         {
1480                 dy = y - 16;
1481                 for (x = 0;x < 32;x++)
1482                 {
1483                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1484                         dx = x - 16;
1485                         d = (256 - (dx*dx+dy*dy));
1486                         d = bound(0, d, 255);
1487                         data[y][x][3] = (qbyte) d;
1488                 }
1489         }
1490         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1491
1492         // rain
1493         light[0] = 1;light[1] = 1;light[2] = 1;
1494         VectorNormalize(light);
1495         for (y = 0;y < 32;y++)
1496         {
1497                 for (x = 0;x < 32;x++)
1498                 {
1499                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1500                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1501                 }
1502         }
1503         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1504
1505         // bubble
1506         light[0] = 1;light[1] = 1;light[2] = 1;
1507         VectorNormalize(light);
1508         for (y = 0;y < 32;y++)
1509         {
1510                 for (x = 0;x < 32;x++)
1511                 {
1512                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1513                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1514                 }
1515         }
1516         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1517
1518         // smoke/blood
1519         for (i = 0;i < 8;i++)
1520         {
1521                 memset(&data[0][0][0], 255, sizeof(data));
1522                 for (j = 1;j < 8;j++)
1523                 {
1524                         for (k = 0;k < 3;k++)
1525                         {
1526                                 cx = lhrandom(j + 1, 30 - j);
1527                                 cy = lhrandom(j + 1, 30 - j);
1528                                 for (y = 0;y < 32;y++)
1529                                 {
1530                                         for (x = 0;x < 32;x++)
1531                                         {
1532                                                 dx = (x - cx);
1533                                                 dy = (y - cy);
1534                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1535                                                 if (f > 0)
1536                                                 {
1537                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1538                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1539                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1540                                                 }
1541                                         }
1542                                 }
1543                         }
1544                 }
1545                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1546                 for (y = 0;y < 32;y++)
1547                 {
1548                         for (x = 0;x < 32;x++)
1549                         {
1550                                 data[y][x][0] = 255 - data[y][x][0];
1551                                 data[y][x][1] = 255 - data[y][x][1];
1552                                 data[y][x][2] = 255 - data[y][x][2];
1553                         }
1554                 }
1555                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1556         }
1557
1558 #if WORKINGLQUAKE
1559         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1560         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1561         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1562 #else
1563         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1564         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1565                 particletexture[i].texture = particlefonttexture;
1566
1567         // beam
1568         fractalnoise(&noise1[0][0], 64, 4);
1569         m = 0;
1570         for (y = 0;y < 64;y++)
1571         {
1572                 for (x = 0;x < 16;x++)
1573                 {
1574                         if (x < 8)
1575                                 d = x;
1576                         else
1577                                 d = (15 - x);
1578                         d = d * d * noise1[y][x] / (7 * 7);
1579                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1580                         data2[y][x][3] = 255;
1581                 }
1582         }
1583
1584         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1585         particletexture[tex_beam].s1 = 0;
1586         particletexture[tex_beam].t1 = 0;
1587         particletexture[tex_beam].s2 = 1;
1588         particletexture[tex_beam].t2 = 1;
1589 #endif
1590 }
1591
1592 static void r_part_start(void)
1593 {
1594         particletexturepool = R_AllocTexturePool();
1595         R_InitParticleTexture ();
1596 }
1597
1598 static void r_part_shutdown(void)
1599 {
1600         R_FreeTexturePool(&particletexturepool);
1601 }
1602
1603 static void r_part_newmap(void)
1604 {
1605         cl_numparticles = 0;
1606 }
1607
1608 void R_Particles_Init (void)
1609 {
1610         Cvar_RegisterVariable(&r_drawparticles);
1611 #ifdef WORKINGLQUAKE
1612         r_part_start();
1613 #else
1614         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1615 #endif
1616 }
1617
1618 #ifdef WORKINGLQUAKE
1619 void R_InitParticles(void)
1620 {
1621         CL_Particles_Init();
1622         R_Particles_Init();
1623 }
1624
1625 float varray_vertex[16];
1626 #endif
1627
1628 #ifdef WORKINGLQUAKE
1629 void R_DrawParticle(particle_t *p)
1630 {
1631 #else
1632 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1633 {
1634         const particle_t *p = calldata1;
1635         rmeshstate_t m;
1636 #endif
1637         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1638         particletexture_t *tex;
1639
1640         VectorCopy(p->org, org);
1641
1642         if (p->orientation == PARTICLE_BILLBOARD)
1643         {
1644                 VectorScale(vright, p->scalex, right);
1645                 VectorScale(vup, p->scaley, up);
1646                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1647                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1648                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1649                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1650                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1651                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1652                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1653                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1654                 varray_vertex[10] = org[2] - right[2] + up[2];
1655                 varray_vertex[12] = org[0] + right[0] + up[0];
1656                 varray_vertex[13] = org[1] + right[1] + up[1];
1657                 varray_vertex[14] = org[2] + right[2] + up[2];
1658         }
1659         else if (p->orientation == PARTICLE_SPARK)
1660         {
1661                 VectorMA(p->org, -p->scaley, p->vel, v);
1662                 VectorMA(p->org, p->scaley, p->vel, up2);
1663                 R_CalcBeamVerts(varray_vertex, v, up2, p->scalex);
1664         }
1665         else if (p->orientation == PARTICLE_BEAM)
1666                 R_CalcBeamVerts(varray_vertex, p->org, p->vel2, p->scalex);
1667         else if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1668         {
1669                 // double-sided
1670                 if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1671                 {
1672                         VectorNegate(p->vel2, v);
1673                         VectorVectors(v, right, up);
1674                 }
1675                 else
1676                         VectorVectors(p->vel2, right, up);
1677                 VectorScale(right, p->scalex, right);
1678                 VectorScale(up, p->scaley, up);
1679                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1680                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1681                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1682                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1683                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1684                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1685                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1686                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1687                 varray_vertex[10] = org[2] - right[2] + up[2];
1688                 varray_vertex[12] = org[0] + right[0] + up[0];
1689                 varray_vertex[13] = org[1] + right[1] + up[1];
1690                 varray_vertex[14] = org[2] + right[2] + up[2];
1691         }
1692         else
1693                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1694
1695         tex = &particletexture[p->texnum];
1696         cr = p->color[0] * (1.0f / 255.0f);
1697         cg = p->color[1] * (1.0f / 255.0f);
1698         cb = p->color[2] * (1.0f / 255.0f);
1699         ca = p->alpha * (1.0f / 255.0f);
1700         if (p->blendmode == PBLEND_MOD)
1701         {
1702                 cr *= ca;
1703                 cg *= ca;
1704                 cb *= ca;
1705                 cr = min(cr, 1);
1706                 cg = min(cg, 1);
1707                 cb = min(cb, 1);
1708                 ca = 1;
1709         }
1710
1711 #if WORKINGLQUAKE
1712         if (p->blendmode == 0)
1713                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1714         else if (p->blendmode == 1)
1715                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1716         else
1717                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1718         glBegin(GL_QUADS);
1719         glColor4f(cr, cg, cb, ca);
1720         glTexCoord2f(tex->s2, tex->t1);glVertex3f(varray_vertex[ 0], varray_vertex[ 1], varray_vertex[ 2]);
1721         glTexCoord2f(tex->s1, tex->t1);glVertex3f(varray_vertex[ 4], varray_vertex[ 5], varray_vertex[ 6]);
1722         glTexCoord2f(tex->s1, tex->t2);glVertex3f(varray_vertex[ 8], varray_vertex[ 9], varray_vertex[10]);
1723         glTexCoord2f(tex->s2, tex->t2);glVertex3f(varray_vertex[12], varray_vertex[13], varray_vertex[14]);
1724         glEnd();
1725 #else
1726         memset(&m, 0, sizeof(m));
1727         if (p->blendmode == 0)
1728         {
1729                 m.blendfunc1 = GL_SRC_ALPHA;
1730                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
1731         }
1732         else if (p->blendmode == 1)
1733         {
1734                 m.blendfunc1 = GL_SRC_ALPHA;
1735                 m.blendfunc2 = GL_ONE;
1736         }
1737         else
1738         {
1739                 m.blendfunc1 = GL_ZERO;
1740                 m.blendfunc2 = GL_ONE_MINUS_SRC_COLOR;
1741         }
1742         m.tex[0] = R_GetTexture(tex->texture);
1743         R_Mesh_Matrix(&r_identitymatrix);
1744         R_Mesh_State(&m);
1745
1746         if (fogenabled && p->blendmode != PBLEND_MOD)
1747         {
1748                 VectorSubtract(org, r_origin, fogvec);
1749                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1750                 ifog = 1 - fog;
1751                 cr = cr * ifog;
1752                 cg = cg * ifog;
1753                 cb = cb * ifog;
1754                 if (p->blendmode == 0)
1755                 {
1756                         cr += fogcolor[0] * fog;
1757                         cg += fogcolor[1] * fog;
1758                         cb += fogcolor[2] * fog;
1759                 }
1760         }
1761         cr *= r_colorscale;
1762         cg *= r_colorscale;
1763         cb *= r_colorscale;
1764
1765         if (p->orientation == PARTICLE_BEAM)
1766         {
1767                 VectorSubtract(p->vel2, p->org, up);
1768                 VectorNormalizeFast(up);
1769                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1770                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1771                 varray_texcoord[0][0] = 1;varray_texcoord[0][1] = v[0];
1772                 varray_texcoord[0][4] = 0;varray_texcoord[0][5] = v[0];
1773                 varray_texcoord[0][8] = 0;varray_texcoord[0][9] = v[1];
1774                 varray_texcoord[0][12] = 1;varray_texcoord[0][13] = v[1];
1775         }
1776         else
1777         {
1778                 varray_texcoord[0][0] = tex->s2;varray_texcoord[0][1] = tex->t1;
1779                 varray_texcoord[0][4] = tex->s1;varray_texcoord[0][5] = tex->t1;
1780                 varray_texcoord[0][8] = tex->s1;varray_texcoord[0][9] = tex->t2;
1781                 varray_texcoord[0][12] = tex->s2;varray_texcoord[0][13] = tex->t2;
1782         }
1783
1784         GL_Color(cr, cg, cb, ca);
1785         R_Mesh_Draw(4, 2, polygonelements);
1786 #endif
1787 }
1788
1789 void R_DrawParticles (void)
1790 {
1791         int i;
1792         float minparticledist;
1793         particle_t *p;
1794
1795 #ifdef WORKINGLQUAKE
1796         CL_MoveParticles();
1797 #endif
1798
1799         // LordHavoc: early out conditions
1800         if ((!cl_numparticles) || (!r_drawparticles.integer))
1801                 return;
1802
1803         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1804
1805 #ifdef WORKINGLQUAKE
1806         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1807         glEnable(GL_BLEND);
1808         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1809         glDepthMask(0);
1810         // LordHavoc: only render if not too close
1811         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1812                 if (DotProduct(p->org, vpn) >= minparticledist)
1813                         R_DrawParticle(p);
1814         glDepthMask(1);
1815         glDisable(GL_BLEND);
1816         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1817 #else
1818         // LordHavoc: only render if not too close
1819         c_particles += cl_numparticles;
1820         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1821                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1822                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1823 #endif
1824 }
1825